mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-15 21:30:43 +00:00
9c225f2655
Our write() system call has always been atomic in the sense that you get the expected thread-safe contiguous write, but we haven't actually guaranteed that concurrent writes are serialized wrt f_pos accesses, so threads (or processes) that share a file descriptor and use "write()" concurrently would quite likely overwrite each others data. This violates POSIX.1-2008/SUSv4 Section XSI 2.9.7 that says: "2.9.7 Thread Interactions with Regular File Operations All of the following functions shall be atomic with respect to each other in the effects specified in POSIX.1-2008 when they operate on regular files or symbolic links: [...]" and one of the effects is the file position update. This unprotected file position behavior is not new behavior, and nobody has ever cared. Until now. Yongzhi Pan reported unexpected behavior to Michael Kerrisk that was due to this. This resolves the issue with a f_pos-specific lock that is taken by read/write/lseek on file descriptors that may be shared across threads or processes. Reported-by: Yongzhi Pan <panyongzhi@gmail.com> Reported-by: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
365 lines
9.5 KiB
C
365 lines
9.5 KiB
C
/*
|
|
* linux/fs/file_table.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/security.h>
|
|
#include <linux/eventpoll.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/lglock.h>
|
|
#include <linux/percpu_counter.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/task_work.h>
|
|
#include <linux/ima.h>
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/* sysctl tunables... */
|
|
struct files_stat_struct files_stat = {
|
|
.max_files = NR_FILE
|
|
};
|
|
|
|
/* SLAB cache for file structures */
|
|
static struct kmem_cache *filp_cachep __read_mostly;
|
|
|
|
static struct percpu_counter nr_files __cacheline_aligned_in_smp;
|
|
|
|
static void file_free_rcu(struct rcu_head *head)
|
|
{
|
|
struct file *f = container_of(head, struct file, f_u.fu_rcuhead);
|
|
|
|
put_cred(f->f_cred);
|
|
kmem_cache_free(filp_cachep, f);
|
|
}
|
|
|
|
static inline void file_free(struct file *f)
|
|
{
|
|
percpu_counter_dec(&nr_files);
|
|
file_check_state(f);
|
|
call_rcu(&f->f_u.fu_rcuhead, file_free_rcu);
|
|
}
|
|
|
|
/*
|
|
* Return the total number of open files in the system
|
|
*/
|
|
static long get_nr_files(void)
|
|
{
|
|
return percpu_counter_read_positive(&nr_files);
|
|
}
|
|
|
|
/*
|
|
* Return the maximum number of open files in the system
|
|
*/
|
|
unsigned long get_max_files(void)
|
|
{
|
|
return files_stat.max_files;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_max_files);
|
|
|
|
/*
|
|
* Handle nr_files sysctl
|
|
*/
|
|
#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
|
|
int proc_nr_files(ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
files_stat.nr_files = get_nr_files();
|
|
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
|
|
}
|
|
#else
|
|
int proc_nr_files(ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
/* Find an unused file structure and return a pointer to it.
|
|
* Returns an error pointer if some error happend e.g. we over file
|
|
* structures limit, run out of memory or operation is not permitted.
|
|
*
|
|
* Be very careful using this. You are responsible for
|
|
* getting write access to any mount that you might assign
|
|
* to this filp, if it is opened for write. If this is not
|
|
* done, you will imbalance int the mount's writer count
|
|
* and a warning at __fput() time.
|
|
*/
|
|
struct file *get_empty_filp(void)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
static long old_max;
|
|
struct file *f;
|
|
int error;
|
|
|
|
/*
|
|
* Privileged users can go above max_files
|
|
*/
|
|
if (get_nr_files() >= files_stat.max_files && !capable(CAP_SYS_ADMIN)) {
|
|
/*
|
|
* percpu_counters are inaccurate. Do an expensive check before
|
|
* we go and fail.
|
|
*/
|
|
if (percpu_counter_sum_positive(&nr_files) >= files_stat.max_files)
|
|
goto over;
|
|
}
|
|
|
|
f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL);
|
|
if (unlikely(!f))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
percpu_counter_inc(&nr_files);
|
|
f->f_cred = get_cred(cred);
|
|
error = security_file_alloc(f);
|
|
if (unlikely(error)) {
|
|
file_free(f);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
atomic_long_set(&f->f_count, 1);
|
|
rwlock_init(&f->f_owner.lock);
|
|
spin_lock_init(&f->f_lock);
|
|
mutex_init(&f->f_pos_lock);
|
|
eventpoll_init_file(f);
|
|
/* f->f_version: 0 */
|
|
return f;
|
|
|
|
over:
|
|
/* Ran out of filps - report that */
|
|
if (get_nr_files() > old_max) {
|
|
pr_info("VFS: file-max limit %lu reached\n", get_max_files());
|
|
old_max = get_nr_files();
|
|
}
|
|
return ERR_PTR(-ENFILE);
|
|
}
|
|
|
|
/**
|
|
* alloc_file - allocate and initialize a 'struct file'
|
|
* @mnt: the vfsmount on which the file will reside
|
|
* @dentry: the dentry representing the new file
|
|
* @mode: the mode with which the new file will be opened
|
|
* @fop: the 'struct file_operations' for the new file
|
|
*
|
|
* Use this instead of get_empty_filp() to get a new
|
|
* 'struct file'. Do so because of the same initialization
|
|
* pitfalls reasons listed for init_file(). This is a
|
|
* preferred interface to using init_file().
|
|
*
|
|
* If all the callers of init_file() are eliminated, its
|
|
* code should be moved into this function.
|
|
*/
|
|
struct file *alloc_file(struct path *path, fmode_t mode,
|
|
const struct file_operations *fop)
|
|
{
|
|
struct file *file;
|
|
|
|
file = get_empty_filp();
|
|
if (IS_ERR(file))
|
|
return file;
|
|
|
|
file->f_path = *path;
|
|
file->f_inode = path->dentry->d_inode;
|
|
file->f_mapping = path->dentry->d_inode->i_mapping;
|
|
file->f_mode = mode;
|
|
file->f_op = fop;
|
|
|
|
/*
|
|
* These mounts don't really matter in practice
|
|
* for r/o bind mounts. They aren't userspace-
|
|
* visible. We do this for consistency, and so
|
|
* that we can do debugging checks at __fput()
|
|
*/
|
|
if ((mode & FMODE_WRITE) && !special_file(path->dentry->d_inode->i_mode)) {
|
|
file_take_write(file);
|
|
WARN_ON(mnt_clone_write(path->mnt));
|
|
}
|
|
if ((mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ)
|
|
i_readcount_inc(path->dentry->d_inode);
|
|
return file;
|
|
}
|
|
EXPORT_SYMBOL(alloc_file);
|
|
|
|
/**
|
|
* drop_file_write_access - give up ability to write to a file
|
|
* @file: the file to which we will stop writing
|
|
*
|
|
* This is a central place which will give up the ability
|
|
* to write to @file, along with access to write through
|
|
* its vfsmount.
|
|
*/
|
|
static void drop_file_write_access(struct file *file)
|
|
{
|
|
struct vfsmount *mnt = file->f_path.mnt;
|
|
struct dentry *dentry = file->f_path.dentry;
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
put_write_access(inode);
|
|
|
|
if (special_file(inode->i_mode))
|
|
return;
|
|
if (file_check_writeable(file) != 0)
|
|
return;
|
|
__mnt_drop_write(mnt);
|
|
file_release_write(file);
|
|
}
|
|
|
|
/* the real guts of fput() - releasing the last reference to file
|
|
*/
|
|
static void __fput(struct file *file)
|
|
{
|
|
struct dentry *dentry = file->f_path.dentry;
|
|
struct vfsmount *mnt = file->f_path.mnt;
|
|
struct inode *inode = file->f_inode;
|
|
|
|
might_sleep();
|
|
|
|
fsnotify_close(file);
|
|
/*
|
|
* The function eventpoll_release() should be the first called
|
|
* in the file cleanup chain.
|
|
*/
|
|
eventpoll_release(file);
|
|
locks_remove_flock(file);
|
|
|
|
if (unlikely(file->f_flags & FASYNC)) {
|
|
if (file->f_op->fasync)
|
|
file->f_op->fasync(-1, file, 0);
|
|
}
|
|
ima_file_free(file);
|
|
if (file->f_op->release)
|
|
file->f_op->release(inode, file);
|
|
security_file_free(file);
|
|
if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL &&
|
|
!(file->f_mode & FMODE_PATH))) {
|
|
cdev_put(inode->i_cdev);
|
|
}
|
|
fops_put(file->f_op);
|
|
put_pid(file->f_owner.pid);
|
|
if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ)
|
|
i_readcount_dec(inode);
|
|
if (file->f_mode & FMODE_WRITE)
|
|
drop_file_write_access(file);
|
|
file->f_path.dentry = NULL;
|
|
file->f_path.mnt = NULL;
|
|
file->f_inode = NULL;
|
|
file_free(file);
|
|
dput(dentry);
|
|
mntput(mnt);
|
|
}
|
|
|
|
static LLIST_HEAD(delayed_fput_list);
|
|
static void delayed_fput(struct work_struct *unused)
|
|
{
|
|
struct llist_node *node = llist_del_all(&delayed_fput_list);
|
|
struct llist_node *next;
|
|
|
|
for (; node; node = next) {
|
|
next = llist_next(node);
|
|
__fput(llist_entry(node, struct file, f_u.fu_llist));
|
|
}
|
|
}
|
|
|
|
static void ____fput(struct callback_head *work)
|
|
{
|
|
__fput(container_of(work, struct file, f_u.fu_rcuhead));
|
|
}
|
|
|
|
/*
|
|
* If kernel thread really needs to have the final fput() it has done
|
|
* to complete, call this. The only user right now is the boot - we
|
|
* *do* need to make sure our writes to binaries on initramfs has
|
|
* not left us with opened struct file waiting for __fput() - execve()
|
|
* won't work without that. Please, don't add more callers without
|
|
* very good reasons; in particular, never call that with locks
|
|
* held and never call that from a thread that might need to do
|
|
* some work on any kind of umount.
|
|
*/
|
|
void flush_delayed_fput(void)
|
|
{
|
|
delayed_fput(NULL);
|
|
}
|
|
|
|
static DECLARE_DELAYED_WORK(delayed_fput_work, delayed_fput);
|
|
|
|
void fput(struct file *file)
|
|
{
|
|
if (atomic_long_dec_and_test(&file->f_count)) {
|
|
struct task_struct *task = current;
|
|
|
|
if (likely(!in_interrupt() && !(task->flags & PF_KTHREAD))) {
|
|
init_task_work(&file->f_u.fu_rcuhead, ____fput);
|
|
if (!task_work_add(task, &file->f_u.fu_rcuhead, true))
|
|
return;
|
|
/*
|
|
* After this task has run exit_task_work(),
|
|
* task_work_add() will fail. Fall through to delayed
|
|
* fput to avoid leaking *file.
|
|
*/
|
|
}
|
|
|
|
if (llist_add(&file->f_u.fu_llist, &delayed_fput_list))
|
|
schedule_delayed_work(&delayed_fput_work, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* synchronous analog of fput(); for kernel threads that might be needed
|
|
* in some umount() (and thus can't use flush_delayed_fput() without
|
|
* risking deadlocks), need to wait for completion of __fput() and know
|
|
* for this specific struct file it won't involve anything that would
|
|
* need them. Use only if you really need it - at the very least,
|
|
* don't blindly convert fput() by kernel thread to that.
|
|
*/
|
|
void __fput_sync(struct file *file)
|
|
{
|
|
if (atomic_long_dec_and_test(&file->f_count)) {
|
|
struct task_struct *task = current;
|
|
BUG_ON(!(task->flags & PF_KTHREAD));
|
|
__fput(file);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(fput);
|
|
|
|
void put_filp(struct file *file)
|
|
{
|
|
if (atomic_long_dec_and_test(&file->f_count)) {
|
|
security_file_free(file);
|
|
file_free(file);
|
|
}
|
|
}
|
|
|
|
void __init files_init(unsigned long mempages)
|
|
{
|
|
unsigned long n;
|
|
|
|
filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
|
|
SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
|
|
|
|
/*
|
|
* One file with associated inode and dcache is very roughly 1K.
|
|
* Per default don't use more than 10% of our memory for files.
|
|
*/
|
|
|
|
n = (mempages * (PAGE_SIZE / 1024)) / 10;
|
|
files_stat.max_files = max_t(unsigned long, n, NR_FILE);
|
|
files_defer_init();
|
|
percpu_counter_init(&nr_files, 0);
|
|
}
|