mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-15 05:11:32 +00:00
aba54da3d0
We observe soft lockups when doing heavy test which creates directory with a lot of direntries and deletes them. This cycle is the reason fo this. Make it nicer and add cond_resched() inside of it. Signed-off-by: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: David Woodhouse <dwmw2@infradead.org>
1293 lines
42 KiB
C
1293 lines
42 KiB
C
/*
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
|
*
|
|
* Copyright (C) 2001-2003 Red Hat, Inc.
|
|
*
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
|
*
|
|
* $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/stat.h>
|
|
#include "nodelist.h"
|
|
#include "compr.h"
|
|
|
|
static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_cache *ic,
|
|
struct jffs2_raw_node_ref *raw);
|
|
static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
|
|
static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
|
|
static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
|
|
static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
|
|
uint32_t start, uint32_t end);
|
|
static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
|
|
uint32_t start, uint32_t end);
|
|
static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
|
|
|
|
/* Called with erase_completion_lock held */
|
|
static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
|
|
{
|
|
struct jffs2_eraseblock *ret;
|
|
struct list_head *nextlist = NULL;
|
|
int n = jiffies % 128;
|
|
|
|
/* Pick an eraseblock to garbage collect next. This is where we'll
|
|
put the clever wear-levelling algorithms. Eventually. */
|
|
/* We possibly want to favour the dirtier blocks more when the
|
|
number of free blocks is low. */
|
|
again:
|
|
if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
|
|
D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
|
|
nextlist = &c->bad_used_list;
|
|
} else if (n < 50 && !list_empty(&c->erasable_list)) {
|
|
/* Note that most of them will have gone directly to be erased.
|
|
So don't favour the erasable_list _too_ much. */
|
|
D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
|
|
nextlist = &c->erasable_list;
|
|
} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
|
|
/* Most of the time, pick one off the very_dirty list */
|
|
D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
|
|
nextlist = &c->very_dirty_list;
|
|
} else if (n < 126 && !list_empty(&c->dirty_list)) {
|
|
D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
|
|
nextlist = &c->dirty_list;
|
|
} else if (!list_empty(&c->clean_list)) {
|
|
D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
|
|
nextlist = &c->clean_list;
|
|
} else if (!list_empty(&c->dirty_list)) {
|
|
D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
|
|
|
|
nextlist = &c->dirty_list;
|
|
} else if (!list_empty(&c->very_dirty_list)) {
|
|
D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
|
|
nextlist = &c->very_dirty_list;
|
|
} else if (!list_empty(&c->erasable_list)) {
|
|
D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
|
|
|
|
nextlist = &c->erasable_list;
|
|
} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
|
|
/* There are blocks are wating for the wbuf sync */
|
|
D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
|
|
spin_unlock(&c->erase_completion_lock);
|
|
jffs2_flush_wbuf_pad(c);
|
|
spin_lock(&c->erase_completion_lock);
|
|
goto again;
|
|
} else {
|
|
/* Eep. All were empty */
|
|
D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
|
|
return NULL;
|
|
}
|
|
|
|
ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
|
|
list_del(&ret->list);
|
|
c->gcblock = ret;
|
|
ret->gc_node = ret->first_node;
|
|
if (!ret->gc_node) {
|
|
printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
|
|
BUG();
|
|
}
|
|
|
|
/* Have we accidentally picked a clean block with wasted space ? */
|
|
if (ret->wasted_size) {
|
|
D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
|
|
ret->dirty_size += ret->wasted_size;
|
|
c->wasted_size -= ret->wasted_size;
|
|
c->dirty_size += ret->wasted_size;
|
|
ret->wasted_size = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* jffs2_garbage_collect_pass
|
|
* Make a single attempt to progress GC. Move one node, and possibly
|
|
* start erasing one eraseblock.
|
|
*/
|
|
int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
|
|
{
|
|
struct jffs2_inode_info *f;
|
|
struct jffs2_inode_cache *ic;
|
|
struct jffs2_eraseblock *jeb;
|
|
struct jffs2_raw_node_ref *raw;
|
|
int ret = 0, inum, nlink;
|
|
int xattr = 0;
|
|
|
|
if (down_interruptible(&c->alloc_sem))
|
|
return -EINTR;
|
|
|
|
for (;;) {
|
|
spin_lock(&c->erase_completion_lock);
|
|
if (!c->unchecked_size)
|
|
break;
|
|
|
|
/* We can't start doing GC yet. We haven't finished checking
|
|
the node CRCs etc. Do it now. */
|
|
|
|
/* checked_ino is protected by the alloc_sem */
|
|
if (c->checked_ino > c->highest_ino && xattr) {
|
|
printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
|
|
c->unchecked_size);
|
|
jffs2_dbg_dump_block_lists_nolock(c);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
BUG();
|
|
}
|
|
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
if (!xattr)
|
|
xattr = jffs2_verify_xattr(c);
|
|
|
|
spin_lock(&c->inocache_lock);
|
|
|
|
ic = jffs2_get_ino_cache(c, c->checked_ino++);
|
|
|
|
if (!ic) {
|
|
spin_unlock(&c->inocache_lock);
|
|
continue;
|
|
}
|
|
|
|
if (!ic->nlink) {
|
|
D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
|
|
ic->ino));
|
|
spin_unlock(&c->inocache_lock);
|
|
jffs2_xattr_delete_inode(c, ic);
|
|
continue;
|
|
}
|
|
switch(ic->state) {
|
|
case INO_STATE_CHECKEDABSENT:
|
|
case INO_STATE_PRESENT:
|
|
D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
|
|
spin_unlock(&c->inocache_lock);
|
|
continue;
|
|
|
|
case INO_STATE_GC:
|
|
case INO_STATE_CHECKING:
|
|
printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
|
|
spin_unlock(&c->inocache_lock);
|
|
BUG();
|
|
|
|
case INO_STATE_READING:
|
|
/* We need to wait for it to finish, lest we move on
|
|
and trigger the BUG() above while we haven't yet
|
|
finished checking all its nodes */
|
|
D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
|
|
/* We need to come back again for the _same_ inode. We've
|
|
made no progress in this case, but that should be OK */
|
|
c->checked_ino--;
|
|
|
|
up(&c->alloc_sem);
|
|
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
|
|
return 0;
|
|
|
|
default:
|
|
BUG();
|
|
|
|
case INO_STATE_UNCHECKED:
|
|
;
|
|
}
|
|
ic->state = INO_STATE_CHECKING;
|
|
spin_unlock(&c->inocache_lock);
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
|
|
|
|
ret = jffs2_do_crccheck_inode(c, ic);
|
|
if (ret)
|
|
printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
|
|
|
|
jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
|
|
up(&c->alloc_sem);
|
|
return ret;
|
|
}
|
|
|
|
/* First, work out which block we're garbage-collecting */
|
|
jeb = c->gcblock;
|
|
|
|
if (!jeb)
|
|
jeb = jffs2_find_gc_block(c);
|
|
|
|
if (!jeb) {
|
|
D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
|
|
spin_unlock(&c->erase_completion_lock);
|
|
up(&c->alloc_sem);
|
|
return -EIO;
|
|
}
|
|
|
|
D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
|
|
D1(if (c->nextblock)
|
|
printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
|
|
|
|
if (!jeb->used_size) {
|
|
up(&c->alloc_sem);
|
|
goto eraseit;
|
|
}
|
|
|
|
raw = jeb->gc_node;
|
|
|
|
while(ref_obsolete(raw)) {
|
|
D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
|
|
raw = ref_next(raw);
|
|
if (unlikely(!raw)) {
|
|
printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
|
|
printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
|
|
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
|
|
jeb->gc_node = raw;
|
|
spin_unlock(&c->erase_completion_lock);
|
|
up(&c->alloc_sem);
|
|
BUG();
|
|
}
|
|
}
|
|
jeb->gc_node = raw;
|
|
|
|
D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
|
|
|
|
if (!raw->next_in_ino) {
|
|
/* Inode-less node. Clean marker, snapshot or something like that */
|
|
spin_unlock(&c->erase_completion_lock);
|
|
if (ref_flags(raw) == REF_PRISTINE) {
|
|
/* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
|
|
jffs2_garbage_collect_pristine(c, NULL, raw);
|
|
} else {
|
|
/* Just mark it obsolete */
|
|
jffs2_mark_node_obsolete(c, raw);
|
|
}
|
|
up(&c->alloc_sem);
|
|
goto eraseit_lock;
|
|
}
|
|
|
|
ic = jffs2_raw_ref_to_ic(raw);
|
|
|
|
#ifdef CONFIG_JFFS2_FS_XATTR
|
|
/* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
|
|
* We can decide whether this node is inode or xattr by ic->class. */
|
|
if (ic->class == RAWNODE_CLASS_XATTR_DATUM
|
|
|| ic->class == RAWNODE_CLASS_XATTR_REF) {
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
|
|
ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
|
|
} else {
|
|
ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
|
|
}
|
|
goto release_sem;
|
|
}
|
|
#endif
|
|
|
|
/* We need to hold the inocache. Either the erase_completion_lock or
|
|
the inocache_lock are sufficient; we trade down since the inocache_lock
|
|
causes less contention. */
|
|
spin_lock(&c->inocache_lock);
|
|
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
|
|
|
|
/* Three possibilities:
|
|
1. Inode is already in-core. We must iget it and do proper
|
|
updating to its fragtree, etc.
|
|
2. Inode is not in-core, node is REF_PRISTINE. We lock the
|
|
inocache to prevent a read_inode(), copy the node intact.
|
|
3. Inode is not in-core, node is not pristine. We must iget()
|
|
and take the slow path.
|
|
*/
|
|
|
|
switch(ic->state) {
|
|
case INO_STATE_CHECKEDABSENT:
|
|
/* It's been checked, but it's not currently in-core.
|
|
We can just copy any pristine nodes, but have
|
|
to prevent anyone else from doing read_inode() while
|
|
we're at it, so we set the state accordingly */
|
|
if (ref_flags(raw) == REF_PRISTINE)
|
|
ic->state = INO_STATE_GC;
|
|
else {
|
|
D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
|
|
ic->ino));
|
|
}
|
|
break;
|
|
|
|
case INO_STATE_PRESENT:
|
|
/* It's in-core. GC must iget() it. */
|
|
break;
|
|
|
|
case INO_STATE_UNCHECKED:
|
|
case INO_STATE_CHECKING:
|
|
case INO_STATE_GC:
|
|
/* Should never happen. We should have finished checking
|
|
by the time we actually start doing any GC, and since
|
|
we're holding the alloc_sem, no other garbage collection
|
|
can happen.
|
|
*/
|
|
printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
|
|
ic->ino, ic->state);
|
|
up(&c->alloc_sem);
|
|
spin_unlock(&c->inocache_lock);
|
|
BUG();
|
|
|
|
case INO_STATE_READING:
|
|
/* Someone's currently trying to read it. We must wait for
|
|
them to finish and then go through the full iget() route
|
|
to do the GC. However, sometimes read_inode() needs to get
|
|
the alloc_sem() (for marking nodes invalid) so we must
|
|
drop the alloc_sem before sleeping. */
|
|
|
|
up(&c->alloc_sem);
|
|
D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
|
|
ic->ino, ic->state));
|
|
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
|
|
/* And because we dropped the alloc_sem we must start again from the
|
|
beginning. Ponder chance of livelock here -- we're returning success
|
|
without actually making any progress.
|
|
|
|
Q: What are the chances that the inode is back in INO_STATE_READING
|
|
again by the time we next enter this function? And that this happens
|
|
enough times to cause a real delay?
|
|
|
|
A: Small enough that I don't care :)
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
|
|
node intact, and we don't have to muck about with the fragtree etc.
|
|
because we know it's not in-core. If it _was_ in-core, we go through
|
|
all the iget() crap anyway */
|
|
|
|
if (ic->state == INO_STATE_GC) {
|
|
spin_unlock(&c->inocache_lock);
|
|
|
|
ret = jffs2_garbage_collect_pristine(c, ic, raw);
|
|
|
|
spin_lock(&c->inocache_lock);
|
|
ic->state = INO_STATE_CHECKEDABSENT;
|
|
wake_up(&c->inocache_wq);
|
|
|
|
if (ret != -EBADFD) {
|
|
spin_unlock(&c->inocache_lock);
|
|
goto release_sem;
|
|
}
|
|
|
|
/* Fall through if it wanted us to, with inocache_lock held */
|
|
}
|
|
|
|
/* Prevent the fairly unlikely race where the gcblock is
|
|
entirely obsoleted by the final close of a file which had
|
|
the only valid nodes in the block, followed by erasure,
|
|
followed by freeing of the ic because the erased block(s)
|
|
held _all_ the nodes of that inode.... never been seen but
|
|
it's vaguely possible. */
|
|
|
|
inum = ic->ino;
|
|
nlink = ic->nlink;
|
|
spin_unlock(&c->inocache_lock);
|
|
|
|
f = jffs2_gc_fetch_inode(c, inum, nlink);
|
|
if (IS_ERR(f)) {
|
|
ret = PTR_ERR(f);
|
|
goto release_sem;
|
|
}
|
|
if (!f) {
|
|
ret = 0;
|
|
goto release_sem;
|
|
}
|
|
|
|
ret = jffs2_garbage_collect_live(c, jeb, raw, f);
|
|
|
|
jffs2_gc_release_inode(c, f);
|
|
|
|
release_sem:
|
|
up(&c->alloc_sem);
|
|
|
|
eraseit_lock:
|
|
/* If we've finished this block, start it erasing */
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
eraseit:
|
|
if (c->gcblock && !c->gcblock->used_size) {
|
|
D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
|
|
/* We're GC'ing an empty block? */
|
|
list_add_tail(&c->gcblock->list, &c->erase_pending_list);
|
|
c->gcblock = NULL;
|
|
c->nr_erasing_blocks++;
|
|
jffs2_erase_pending_trigger(c);
|
|
}
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
|
|
{
|
|
struct jffs2_node_frag *frag;
|
|
struct jffs2_full_dnode *fn = NULL;
|
|
struct jffs2_full_dirent *fd;
|
|
uint32_t start = 0, end = 0, nrfrags = 0;
|
|
int ret = 0;
|
|
|
|
down(&f->sem);
|
|
|
|
/* Now we have the lock for this inode. Check that it's still the one at the head
|
|
of the list. */
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
if (c->gcblock != jeb) {
|
|
spin_unlock(&c->erase_completion_lock);
|
|
D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
|
|
goto upnout;
|
|
}
|
|
if (ref_obsolete(raw)) {
|
|
spin_unlock(&c->erase_completion_lock);
|
|
D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
|
|
/* They'll call again */
|
|
goto upnout;
|
|
}
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
|
|
if (f->metadata && f->metadata->raw == raw) {
|
|
fn = f->metadata;
|
|
ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
|
|
goto upnout;
|
|
}
|
|
|
|
/* FIXME. Read node and do lookup? */
|
|
for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
|
|
if (frag->node && frag->node->raw == raw) {
|
|
fn = frag->node;
|
|
end = frag->ofs + frag->size;
|
|
if (!nrfrags++)
|
|
start = frag->ofs;
|
|
if (nrfrags == frag->node->frags)
|
|
break; /* We've found them all */
|
|
}
|
|
}
|
|
if (fn) {
|
|
if (ref_flags(raw) == REF_PRISTINE) {
|
|
ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
|
|
if (!ret) {
|
|
/* Urgh. Return it sensibly. */
|
|
frag->node->raw = f->inocache->nodes;
|
|
}
|
|
if (ret != -EBADFD)
|
|
goto upnout;
|
|
}
|
|
/* We found a datanode. Do the GC */
|
|
if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
|
|
/* It crosses a page boundary. Therefore, it must be a hole. */
|
|
ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
|
|
} else {
|
|
/* It could still be a hole. But we GC the page this way anyway */
|
|
ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
|
|
}
|
|
goto upnout;
|
|
}
|
|
|
|
/* Wasn't a dnode. Try dirent */
|
|
for (fd = f->dents; fd; fd=fd->next) {
|
|
if (fd->raw == raw)
|
|
break;
|
|
}
|
|
|
|
if (fd && fd->ino) {
|
|
ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
|
|
} else if (fd) {
|
|
ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
|
|
} else {
|
|
printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
|
|
ref_offset(raw), f->inocache->ino);
|
|
if (ref_obsolete(raw)) {
|
|
printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
|
|
} else {
|
|
jffs2_dbg_dump_node(c, ref_offset(raw));
|
|
BUG();
|
|
}
|
|
}
|
|
upnout:
|
|
up(&f->sem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_cache *ic,
|
|
struct jffs2_raw_node_ref *raw)
|
|
{
|
|
union jffs2_node_union *node;
|
|
size_t retlen;
|
|
int ret;
|
|
uint32_t phys_ofs, alloclen;
|
|
uint32_t crc, rawlen;
|
|
int retried = 0;
|
|
|
|
D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
|
|
|
|
alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
|
|
|
|
/* Ask for a small amount of space (or the totlen if smaller) because we
|
|
don't want to force wastage of the end of a block if splitting would
|
|
work. */
|
|
if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
|
|
alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
|
|
|
|
ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
|
|
/* 'rawlen' is not the exact summary size; it is only an upper estimation */
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (alloclen < rawlen) {
|
|
/* Doesn't fit untouched. We'll go the old route and split it */
|
|
return -EBADFD;
|
|
}
|
|
|
|
node = kmalloc(rawlen, GFP_KERNEL);
|
|
if (!node)
|
|
return -ENOMEM;
|
|
|
|
ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
|
|
if (!ret && retlen != rawlen)
|
|
ret = -EIO;
|
|
if (ret)
|
|
goto out_node;
|
|
|
|
crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
|
|
if (je32_to_cpu(node->u.hdr_crc) != crc) {
|
|
printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
|
|
goto bail;
|
|
}
|
|
|
|
switch(je16_to_cpu(node->u.nodetype)) {
|
|
case JFFS2_NODETYPE_INODE:
|
|
crc = crc32(0, node, sizeof(node->i)-8);
|
|
if (je32_to_cpu(node->i.node_crc) != crc) {
|
|
printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
|
|
goto bail;
|
|
}
|
|
|
|
if (je32_to_cpu(node->i.dsize)) {
|
|
crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
|
|
if (je32_to_cpu(node->i.data_crc) != crc) {
|
|
printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
|
|
goto bail;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case JFFS2_NODETYPE_DIRENT:
|
|
crc = crc32(0, node, sizeof(node->d)-8);
|
|
if (je32_to_cpu(node->d.node_crc) != crc) {
|
|
printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
|
|
goto bail;
|
|
}
|
|
|
|
if (node->d.nsize) {
|
|
crc = crc32(0, node->d.name, node->d.nsize);
|
|
if (je32_to_cpu(node->d.name_crc) != crc) {
|
|
printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
|
|
goto bail;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
/* If it's inode-less, we don't _know_ what it is. Just copy it intact */
|
|
if (ic) {
|
|
printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
|
|
ref_offset(raw), je16_to_cpu(node->u.nodetype));
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
/* OK, all the CRCs are good; this node can just be copied as-is. */
|
|
retry:
|
|
phys_ofs = write_ofs(c);
|
|
|
|
ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
|
|
|
|
if (ret || (retlen != rawlen)) {
|
|
printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
|
|
rawlen, phys_ofs, ret, retlen);
|
|
if (retlen) {
|
|
jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
|
|
} else {
|
|
printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
|
|
}
|
|
if (!retried) {
|
|
/* Try to reallocate space and retry */
|
|
uint32_t dummy;
|
|
struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
|
|
|
|
retried = 1;
|
|
|
|
D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
|
|
|
|
jffs2_dbg_acct_sanity_check(c,jeb);
|
|
jffs2_dbg_acct_paranoia_check(c, jeb);
|
|
|
|
ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
|
|
/* this is not the exact summary size of it,
|
|
it is only an upper estimation */
|
|
|
|
if (!ret) {
|
|
D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
|
|
|
|
jffs2_dbg_acct_sanity_check(c,jeb);
|
|
jffs2_dbg_acct_paranoia_check(c, jeb);
|
|
|
|
goto retry;
|
|
}
|
|
D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
|
|
}
|
|
|
|
if (!ret)
|
|
ret = -EIO;
|
|
goto out_node;
|
|
}
|
|
jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
|
|
|
|
jffs2_mark_node_obsolete(c, raw);
|
|
D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
|
|
|
|
out_node:
|
|
kfree(node);
|
|
return ret;
|
|
bail:
|
|
ret = -EBADFD;
|
|
goto out_node;
|
|
}
|
|
|
|
static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
|
|
{
|
|
struct jffs2_full_dnode *new_fn;
|
|
struct jffs2_raw_inode ri;
|
|
struct jffs2_node_frag *last_frag;
|
|
union jffs2_device_node dev;
|
|
char *mdata = NULL, mdatalen = 0;
|
|
uint32_t alloclen, ilen;
|
|
int ret;
|
|
|
|
if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
|
|
S_ISCHR(JFFS2_F_I_MODE(f)) ) {
|
|
/* For these, we don't actually need to read the old node */
|
|
mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
|
|
mdata = (char *)&dev;
|
|
D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
|
|
} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
|
|
mdatalen = fn->size;
|
|
mdata = kmalloc(fn->size, GFP_KERNEL);
|
|
if (!mdata) {
|
|
printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
|
|
return -ENOMEM;
|
|
}
|
|
ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
|
|
if (ret) {
|
|
printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
|
|
kfree(mdata);
|
|
return ret;
|
|
}
|
|
D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
|
|
|
|
}
|
|
|
|
ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
|
|
JFFS2_SUMMARY_INODE_SIZE);
|
|
if (ret) {
|
|
printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
|
|
sizeof(ri)+ mdatalen, ret);
|
|
goto out;
|
|
}
|
|
|
|
last_frag = frag_last(&f->fragtree);
|
|
if (last_frag)
|
|
/* Fetch the inode length from the fragtree rather then
|
|
* from i_size since i_size may have not been updated yet */
|
|
ilen = last_frag->ofs + last_frag->size;
|
|
else
|
|
ilen = JFFS2_F_I_SIZE(f);
|
|
|
|
memset(&ri, 0, sizeof(ri));
|
|
ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
|
|
ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
|
|
ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
|
|
|
|
ri.ino = cpu_to_je32(f->inocache->ino);
|
|
ri.version = cpu_to_je32(++f->highest_version);
|
|
ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
|
|
ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
|
|
ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
|
|
ri.isize = cpu_to_je32(ilen);
|
|
ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
|
|
ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
|
|
ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
|
|
ri.offset = cpu_to_je32(0);
|
|
ri.csize = cpu_to_je32(mdatalen);
|
|
ri.dsize = cpu_to_je32(mdatalen);
|
|
ri.compr = JFFS2_COMPR_NONE;
|
|
ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
|
|
ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
|
|
|
|
new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
|
|
|
|
if (IS_ERR(new_fn)) {
|
|
printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
|
|
ret = PTR_ERR(new_fn);
|
|
goto out;
|
|
}
|
|
jffs2_mark_node_obsolete(c, fn->raw);
|
|
jffs2_free_full_dnode(fn);
|
|
f->metadata = new_fn;
|
|
out:
|
|
if (S_ISLNK(JFFS2_F_I_MODE(f)))
|
|
kfree(mdata);
|
|
return ret;
|
|
}
|
|
|
|
static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
|
|
{
|
|
struct jffs2_full_dirent *new_fd;
|
|
struct jffs2_raw_dirent rd;
|
|
uint32_t alloclen;
|
|
int ret;
|
|
|
|
rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
|
|
rd.nsize = strlen(fd->name);
|
|
rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
|
|
rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
|
|
|
|
rd.pino = cpu_to_je32(f->inocache->ino);
|
|
rd.version = cpu_to_je32(++f->highest_version);
|
|
rd.ino = cpu_to_je32(fd->ino);
|
|
/* If the times on this inode were set by explicit utime() they can be different,
|
|
so refrain from splatting them. */
|
|
if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
|
|
rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
|
|
else
|
|
rd.mctime = cpu_to_je32(0);
|
|
rd.type = fd->type;
|
|
rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
|
|
rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
|
|
|
|
ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
|
|
JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
|
|
if (ret) {
|
|
printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
|
|
sizeof(rd)+rd.nsize, ret);
|
|
return ret;
|
|
}
|
|
new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
|
|
|
|
if (IS_ERR(new_fd)) {
|
|
printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
|
|
return PTR_ERR(new_fd);
|
|
}
|
|
jffs2_add_fd_to_list(c, new_fd, &f->dents);
|
|
return 0;
|
|
}
|
|
|
|
static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
|
|
{
|
|
struct jffs2_full_dirent **fdp = &f->dents;
|
|
int found = 0;
|
|
|
|
/* On a medium where we can't actually mark nodes obsolete
|
|
pernamently, such as NAND flash, we need to work out
|
|
whether this deletion dirent is still needed to actively
|
|
delete a 'real' dirent with the same name that's still
|
|
somewhere else on the flash. */
|
|
if (!jffs2_can_mark_obsolete(c)) {
|
|
struct jffs2_raw_dirent *rd;
|
|
struct jffs2_raw_node_ref *raw;
|
|
int ret;
|
|
size_t retlen;
|
|
int name_len = strlen(fd->name);
|
|
uint32_t name_crc = crc32(0, fd->name, name_len);
|
|
uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
|
|
|
|
rd = kmalloc(rawlen, GFP_KERNEL);
|
|
if (!rd)
|
|
return -ENOMEM;
|
|
|
|
/* Prevent the erase code from nicking the obsolete node refs while
|
|
we're looking at them. I really don't like this extra lock but
|
|
can't see any alternative. Suggestions on a postcard to... */
|
|
down(&c->erase_free_sem);
|
|
|
|
for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
|
|
|
|
cond_resched();
|
|
|
|
/* We only care about obsolete ones */
|
|
if (!(ref_obsolete(raw)))
|
|
continue;
|
|
|
|
/* Any dirent with the same name is going to have the same length... */
|
|
if (ref_totlen(c, NULL, raw) != rawlen)
|
|
continue;
|
|
|
|
/* Doesn't matter if there's one in the same erase block. We're going to
|
|
delete it too at the same time. */
|
|
if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
|
|
continue;
|
|
|
|
D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
|
|
|
|
/* This is an obsolete node belonging to the same directory, and it's of the right
|
|
length. We need to take a closer look...*/
|
|
ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
|
|
if (ret) {
|
|
printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
|
|
/* If we can't read it, we don't need to continue to obsolete it. Continue */
|
|
continue;
|
|
}
|
|
if (retlen != rawlen) {
|
|
printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
|
|
retlen, rawlen, ref_offset(raw));
|
|
continue;
|
|
}
|
|
|
|
if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
|
|
continue;
|
|
|
|
/* If the name CRC doesn't match, skip */
|
|
if (je32_to_cpu(rd->name_crc) != name_crc)
|
|
continue;
|
|
|
|
/* If the name length doesn't match, or it's another deletion dirent, skip */
|
|
if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
|
|
continue;
|
|
|
|
/* OK, check the actual name now */
|
|
if (memcmp(rd->name, fd->name, name_len))
|
|
continue;
|
|
|
|
/* OK. The name really does match. There really is still an older node on
|
|
the flash which our deletion dirent obsoletes. So we have to write out
|
|
a new deletion dirent to replace it */
|
|
up(&c->erase_free_sem);
|
|
|
|
D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
|
|
ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
|
|
kfree(rd);
|
|
|
|
return jffs2_garbage_collect_dirent(c, jeb, f, fd);
|
|
}
|
|
|
|
up(&c->erase_free_sem);
|
|
kfree(rd);
|
|
}
|
|
|
|
/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
|
|
we should update the metadata node with those times accordingly */
|
|
|
|
/* No need for it any more. Just mark it obsolete and remove it from the list */
|
|
while (*fdp) {
|
|
if ((*fdp) == fd) {
|
|
found = 1;
|
|
*fdp = fd->next;
|
|
break;
|
|
}
|
|
fdp = &(*fdp)->next;
|
|
}
|
|
if (!found) {
|
|
printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
|
|
}
|
|
jffs2_mark_node_obsolete(c, fd->raw);
|
|
jffs2_free_full_dirent(fd);
|
|
return 0;
|
|
}
|
|
|
|
static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
|
|
uint32_t start, uint32_t end)
|
|
{
|
|
struct jffs2_raw_inode ri;
|
|
struct jffs2_node_frag *frag;
|
|
struct jffs2_full_dnode *new_fn;
|
|
uint32_t alloclen, ilen;
|
|
int ret;
|
|
|
|
D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
|
|
f->inocache->ino, start, end));
|
|
|
|
memset(&ri, 0, sizeof(ri));
|
|
|
|
if(fn->frags > 1) {
|
|
size_t readlen;
|
|
uint32_t crc;
|
|
/* It's partially obsoleted by a later write. So we have to
|
|
write it out again with the _same_ version as before */
|
|
ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
|
|
if (readlen != sizeof(ri) || ret) {
|
|
printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
|
|
goto fill;
|
|
}
|
|
if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
|
|
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
|
|
ref_offset(fn->raw),
|
|
je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
|
|
return -EIO;
|
|
}
|
|
if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
|
|
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
|
|
ref_offset(fn->raw),
|
|
je32_to_cpu(ri.totlen), sizeof(ri));
|
|
return -EIO;
|
|
}
|
|
crc = crc32(0, &ri, sizeof(ri)-8);
|
|
if (crc != je32_to_cpu(ri.node_crc)) {
|
|
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
|
|
ref_offset(fn->raw),
|
|
je32_to_cpu(ri.node_crc), crc);
|
|
/* FIXME: We could possibly deal with this by writing new holes for each frag */
|
|
printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
|
|
start, end, f->inocache->ino);
|
|
goto fill;
|
|
}
|
|
if (ri.compr != JFFS2_COMPR_ZERO) {
|
|
printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
|
|
printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
|
|
start, end, f->inocache->ino);
|
|
goto fill;
|
|
}
|
|
} else {
|
|
fill:
|
|
ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
|
|
ri.totlen = cpu_to_je32(sizeof(ri));
|
|
ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
|
|
|
|
ri.ino = cpu_to_je32(f->inocache->ino);
|
|
ri.version = cpu_to_je32(++f->highest_version);
|
|
ri.offset = cpu_to_je32(start);
|
|
ri.dsize = cpu_to_je32(end - start);
|
|
ri.csize = cpu_to_je32(0);
|
|
ri.compr = JFFS2_COMPR_ZERO;
|
|
}
|
|
|
|
frag = frag_last(&f->fragtree);
|
|
if (frag)
|
|
/* Fetch the inode length from the fragtree rather then
|
|
* from i_size since i_size may have not been updated yet */
|
|
ilen = frag->ofs + frag->size;
|
|
else
|
|
ilen = JFFS2_F_I_SIZE(f);
|
|
|
|
ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
|
|
ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
|
|
ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
|
|
ri.isize = cpu_to_je32(ilen);
|
|
ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
|
|
ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
|
|
ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
|
|
ri.data_crc = cpu_to_je32(0);
|
|
ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
|
|
|
|
ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
|
|
JFFS2_SUMMARY_INODE_SIZE);
|
|
if (ret) {
|
|
printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
|
|
sizeof(ri), ret);
|
|
return ret;
|
|
}
|
|
new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
|
|
|
|
if (IS_ERR(new_fn)) {
|
|
printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
|
|
return PTR_ERR(new_fn);
|
|
}
|
|
if (je32_to_cpu(ri.version) == f->highest_version) {
|
|
jffs2_add_full_dnode_to_inode(c, f, new_fn);
|
|
if (f->metadata) {
|
|
jffs2_mark_node_obsolete(c, f->metadata->raw);
|
|
jffs2_free_full_dnode(f->metadata);
|
|
f->metadata = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We should only get here in the case where the node we are
|
|
* replacing had more than one frag, so we kept the same version
|
|
* number as before. (Except in case of error -- see 'goto fill;'
|
|
* above.)
|
|
*/
|
|
D1(if(unlikely(fn->frags <= 1)) {
|
|
printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
|
|
fn->frags, je32_to_cpu(ri.version), f->highest_version,
|
|
je32_to_cpu(ri.ino));
|
|
});
|
|
|
|
/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
|
|
mark_ref_normal(new_fn->raw);
|
|
|
|
for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
|
|
frag; frag = frag_next(frag)) {
|
|
if (frag->ofs > fn->size + fn->ofs)
|
|
break;
|
|
if (frag->node == fn) {
|
|
frag->node = new_fn;
|
|
new_fn->frags++;
|
|
fn->frags--;
|
|
}
|
|
}
|
|
if (fn->frags) {
|
|
printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
|
|
BUG();
|
|
}
|
|
if (!new_fn->frags) {
|
|
printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
|
|
BUG();
|
|
}
|
|
|
|
jffs2_mark_node_obsolete(c, fn->raw);
|
|
jffs2_free_full_dnode(fn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
|
|
uint32_t start, uint32_t end)
|
|
{
|
|
struct jffs2_full_dnode *new_fn;
|
|
struct jffs2_raw_inode ri;
|
|
uint32_t alloclen, offset, orig_end, orig_start;
|
|
int ret = 0;
|
|
unsigned char *comprbuf = NULL, *writebuf;
|
|
unsigned long pg;
|
|
unsigned char *pg_ptr;
|
|
|
|
memset(&ri, 0, sizeof(ri));
|
|
|
|
D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
|
|
f->inocache->ino, start, end));
|
|
|
|
orig_end = end;
|
|
orig_start = start;
|
|
|
|
if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
|
|
/* Attempt to do some merging. But only expand to cover logically
|
|
adjacent frags if the block containing them is already considered
|
|
to be dirty. Otherwise we end up with GC just going round in
|
|
circles dirtying the nodes it already wrote out, especially
|
|
on NAND where we have small eraseblocks and hence a much higher
|
|
chance of nodes having to be split to cross boundaries. */
|
|
|
|
struct jffs2_node_frag *frag;
|
|
uint32_t min, max;
|
|
|
|
min = start & ~(PAGE_CACHE_SIZE-1);
|
|
max = min + PAGE_CACHE_SIZE;
|
|
|
|
frag = jffs2_lookup_node_frag(&f->fragtree, start);
|
|
|
|
/* BUG_ON(!frag) but that'll happen anyway... */
|
|
|
|
BUG_ON(frag->ofs != start);
|
|
|
|
/* First grow down... */
|
|
while((frag = frag_prev(frag)) && frag->ofs >= min) {
|
|
|
|
/* If the previous frag doesn't even reach the beginning, there's
|
|
excessive fragmentation. Just merge. */
|
|
if (frag->ofs > min) {
|
|
D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
|
|
frag->ofs, frag->ofs+frag->size));
|
|
start = frag->ofs;
|
|
continue;
|
|
}
|
|
/* OK. This frag holds the first byte of the page. */
|
|
if (!frag->node || !frag->node->raw) {
|
|
D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
|
|
frag->ofs, frag->ofs+frag->size));
|
|
break;
|
|
} else {
|
|
|
|
/* OK, it's a frag which extends to the beginning of the page. Does it live
|
|
in a block which is still considered clean? If so, don't obsolete it.
|
|
If not, cover it anyway. */
|
|
|
|
struct jffs2_raw_node_ref *raw = frag->node->raw;
|
|
struct jffs2_eraseblock *jeb;
|
|
|
|
jeb = &c->blocks[raw->flash_offset / c->sector_size];
|
|
|
|
if (jeb == c->gcblock) {
|
|
D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
|
|
frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
|
|
start = frag->ofs;
|
|
break;
|
|
}
|
|
if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
|
|
D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
|
|
frag->ofs, frag->ofs+frag->size, jeb->offset));
|
|
break;
|
|
}
|
|
|
|
D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
|
|
frag->ofs, frag->ofs+frag->size, jeb->offset));
|
|
start = frag->ofs;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* ... then up */
|
|
|
|
/* Find last frag which is actually part of the node we're to GC. */
|
|
frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
|
|
|
|
while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
|
|
|
|
/* If the previous frag doesn't even reach the beginning, there's lots
|
|
of fragmentation. Just merge. */
|
|
if (frag->ofs+frag->size < max) {
|
|
D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
|
|
frag->ofs, frag->ofs+frag->size));
|
|
end = frag->ofs + frag->size;
|
|
continue;
|
|
}
|
|
|
|
if (!frag->node || !frag->node->raw) {
|
|
D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
|
|
frag->ofs, frag->ofs+frag->size));
|
|
break;
|
|
} else {
|
|
|
|
/* OK, it's a frag which extends to the beginning of the page. Does it live
|
|
in a block which is still considered clean? If so, don't obsolete it.
|
|
If not, cover it anyway. */
|
|
|
|
struct jffs2_raw_node_ref *raw = frag->node->raw;
|
|
struct jffs2_eraseblock *jeb;
|
|
|
|
jeb = &c->blocks[raw->flash_offset / c->sector_size];
|
|
|
|
if (jeb == c->gcblock) {
|
|
D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
|
|
frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
|
|
end = frag->ofs + frag->size;
|
|
break;
|
|
}
|
|
if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
|
|
D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
|
|
frag->ofs, frag->ofs+frag->size, jeb->offset));
|
|
break;
|
|
}
|
|
|
|
D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
|
|
frag->ofs, frag->ofs+frag->size, jeb->offset));
|
|
end = frag->ofs + frag->size;
|
|
break;
|
|
}
|
|
}
|
|
D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
|
|
orig_start, orig_end, start, end));
|
|
|
|
D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
|
|
BUG_ON(end < orig_end);
|
|
BUG_ON(start > orig_start);
|
|
}
|
|
|
|
/* First, use readpage() to read the appropriate page into the page cache */
|
|
/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
|
|
* triggered garbage collection in the first place?
|
|
* A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
|
|
* page OK. We'll actually write it out again in commit_write, which is a little
|
|
* suboptimal, but at least we're correct.
|
|
*/
|
|
pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
|
|
|
|
if (IS_ERR(pg_ptr)) {
|
|
printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
|
|
return PTR_ERR(pg_ptr);
|
|
}
|
|
|
|
offset = start;
|
|
while(offset < orig_end) {
|
|
uint32_t datalen;
|
|
uint32_t cdatalen;
|
|
uint16_t comprtype = JFFS2_COMPR_NONE;
|
|
|
|
ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
|
|
&alloclen, JFFS2_SUMMARY_INODE_SIZE);
|
|
|
|
if (ret) {
|
|
printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
|
|
sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
|
|
break;
|
|
}
|
|
cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
|
|
datalen = end - offset;
|
|
|
|
writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
|
|
|
|
comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
|
|
|
|
ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
|
|
ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
|
|
ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
|
|
|
|
ri.ino = cpu_to_je32(f->inocache->ino);
|
|
ri.version = cpu_to_je32(++f->highest_version);
|
|
ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
|
|
ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
|
|
ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
|
|
ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
|
|
ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
|
|
ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
|
|
ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
|
|
ri.offset = cpu_to_je32(offset);
|
|
ri.csize = cpu_to_je32(cdatalen);
|
|
ri.dsize = cpu_to_je32(datalen);
|
|
ri.compr = comprtype & 0xff;
|
|
ri.usercompr = (comprtype >> 8) & 0xff;
|
|
ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
|
|
ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
|
|
|
|
new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
|
|
|
|
jffs2_free_comprbuf(comprbuf, writebuf);
|
|
|
|
if (IS_ERR(new_fn)) {
|
|
printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
|
|
ret = PTR_ERR(new_fn);
|
|
break;
|
|
}
|
|
ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
|
|
offset += datalen;
|
|
if (f->metadata) {
|
|
jffs2_mark_node_obsolete(c, f->metadata->raw);
|
|
jffs2_free_full_dnode(f->metadata);
|
|
f->metadata = NULL;
|
|
}
|
|
}
|
|
|
|
jffs2_gc_release_page(c, pg_ptr, &pg);
|
|
return ret;
|
|
}
|