mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-08 10:30:50 +00:00
145e664231
Provide the architecture specific implementation for SPARSEMEM for PPC64 systems. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Mike Kravetz <kravetz@us.ibm.com> (in part) Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
866 lines
21 KiB
C
866 lines
21 KiB
C
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Dave Engebretsen <engebret@us.ibm.com>
|
|
* Rework for PPC64 port.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/page.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/lmb.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/eeh.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mmzone.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/ppcdebug.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/system.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/imalloc.h>
|
|
|
|
int mem_init_done;
|
|
unsigned long ioremap_bot = IMALLOC_BASE;
|
|
static unsigned long phbs_io_bot = PHBS_IO_BASE;
|
|
|
|
extern pgd_t swapper_pg_dir[];
|
|
extern struct task_struct *current_set[NR_CPUS];
|
|
|
|
unsigned long klimit = (unsigned long)_end;
|
|
|
|
unsigned long _SDR1=0;
|
|
unsigned long _ASR=0;
|
|
|
|
/* max amount of RAM to use */
|
|
unsigned long __max_memory;
|
|
|
|
/* info on what we think the IO hole is */
|
|
unsigned long io_hole_start;
|
|
unsigned long io_hole_size;
|
|
|
|
void show_mem(void)
|
|
{
|
|
unsigned long total = 0, reserved = 0;
|
|
unsigned long shared = 0, cached = 0;
|
|
struct page *page;
|
|
pg_data_t *pgdat;
|
|
unsigned long i;
|
|
|
|
printk("Mem-info:\n");
|
|
show_free_areas();
|
|
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
|
|
for_each_pgdat(pgdat) {
|
|
for (i = 0; i < pgdat->node_spanned_pages; i++) {
|
|
page = pgdat_page_nr(pgdat, i);
|
|
total++;
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (page_count(page))
|
|
shared += page_count(page) - 1;
|
|
}
|
|
}
|
|
printk("%ld pages of RAM\n", total);
|
|
printk("%ld reserved pages\n", reserved);
|
|
printk("%ld pages shared\n", shared);
|
|
printk("%ld pages swap cached\n", cached);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_ISERIES
|
|
|
|
void __iomem *ioremap(unsigned long addr, unsigned long size)
|
|
{
|
|
return (void __iomem *)addr;
|
|
}
|
|
|
|
extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
return (void __iomem *)addr;
|
|
}
|
|
|
|
void iounmap(volatile void __iomem *addr)
|
|
{
|
|
return;
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
* map_io_page currently only called by __ioremap
|
|
* map_io_page adds an entry to the ioremap page table
|
|
* and adds an entry to the HPT, possibly bolting it
|
|
*/
|
|
static int map_io_page(unsigned long ea, unsigned long pa, int flags)
|
|
{
|
|
pgd_t *pgdp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
unsigned long vsid;
|
|
|
|
if (mem_init_done) {
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pgdp = pgd_offset_k(ea);
|
|
pudp = pud_alloc(&init_mm, pgdp, ea);
|
|
if (!pudp)
|
|
return -ENOMEM;
|
|
pmdp = pmd_alloc(&init_mm, pudp, ea);
|
|
if (!pmdp)
|
|
return -ENOMEM;
|
|
ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
|
|
if (!ptep)
|
|
return -ENOMEM;
|
|
pa = abs_to_phys(pa);
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
|
|
__pgprot(flags)));
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
} else {
|
|
unsigned long va, vpn, hash, hpteg;
|
|
|
|
/*
|
|
* If the mm subsystem is not fully up, we cannot create a
|
|
* linux page table entry for this mapping. Simply bolt an
|
|
* entry in the hardware page table.
|
|
*/
|
|
vsid = get_kernel_vsid(ea);
|
|
va = (vsid << 28) | (ea & 0xFFFFFFF);
|
|
vpn = va >> PAGE_SHIFT;
|
|
|
|
hash = hpt_hash(vpn, 0);
|
|
|
|
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
|
|
|
|
/* Panic if a pte grpup is full */
|
|
if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0,
|
|
_PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX,
|
|
1, 0) == -1) {
|
|
panic("map_io_page: could not insert mapping");
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
|
|
unsigned long ea, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long i;
|
|
|
|
if ((flags & _PAGE_PRESENT) == 0)
|
|
flags |= pgprot_val(PAGE_KERNEL);
|
|
|
|
for (i = 0; i < size; i += PAGE_SIZE)
|
|
if (map_io_page(ea+i, pa+i, flags))
|
|
return NULL;
|
|
|
|
return (void __iomem *) (ea + (addr & ~PAGE_MASK));
|
|
}
|
|
|
|
|
|
void __iomem *
|
|
ioremap(unsigned long addr, unsigned long size)
|
|
{
|
|
return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
|
|
}
|
|
|
|
void __iomem * __ioremap(unsigned long addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long pa, ea;
|
|
void __iomem *ret;
|
|
|
|
/*
|
|
* Choose an address to map it to.
|
|
* Once the imalloc system is running, we use it.
|
|
* Before that, we map using addresses going
|
|
* up from ioremap_bot. imalloc will use
|
|
* the addresses from ioremap_bot through
|
|
* IMALLOC_END (0xE000001fffffffff)
|
|
*
|
|
*/
|
|
pa = addr & PAGE_MASK;
|
|
size = PAGE_ALIGN(addr + size) - pa;
|
|
|
|
if (size == 0)
|
|
return NULL;
|
|
|
|
if (mem_init_done) {
|
|
struct vm_struct *area;
|
|
area = im_get_free_area(size);
|
|
if (area == NULL)
|
|
return NULL;
|
|
ea = (unsigned long)(area->addr);
|
|
ret = __ioremap_com(addr, pa, ea, size, flags);
|
|
if (!ret)
|
|
im_free(area->addr);
|
|
} else {
|
|
ea = ioremap_bot;
|
|
ret = __ioremap_com(addr, pa, ea, size, flags);
|
|
if (ret)
|
|
ioremap_bot += size;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
|
|
|
|
int __ioremap_explicit(unsigned long pa, unsigned long ea,
|
|
unsigned long size, unsigned long flags)
|
|
{
|
|
struct vm_struct *area;
|
|
void __iomem *ret;
|
|
|
|
/* For now, require page-aligned values for pa, ea, and size */
|
|
if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
|
|
!IS_PAGE_ALIGNED(size)) {
|
|
printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
|
|
return 1;
|
|
}
|
|
|
|
if (!mem_init_done) {
|
|
/* Two things to consider in this case:
|
|
* 1) No records will be kept (imalloc, etc) that the region
|
|
* has been remapped
|
|
* 2) It won't be easy to iounmap() the region later (because
|
|
* of 1)
|
|
*/
|
|
;
|
|
} else {
|
|
area = im_get_area(ea, size,
|
|
IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
|
|
if (area == NULL) {
|
|
/* Expected when PHB-dlpar is in play */
|
|
return 1;
|
|
}
|
|
if (ea != (unsigned long) area->addr) {
|
|
printk(KERN_ERR "unexpected addr return from "
|
|
"im_get_area\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
ret = __ioremap_com(pa, pa, ea, size, flags);
|
|
if (ret == NULL) {
|
|
printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
|
|
return 1;
|
|
}
|
|
if (ret != (void *) ea) {
|
|
printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Unmap an IO region and remove it from imalloc'd list.
|
|
* Access to IO memory should be serialized by driver.
|
|
* This code is modeled after vmalloc code - unmap_vm_area()
|
|
*
|
|
* XXX what about calls before mem_init_done (ie python_countermeasures())
|
|
*/
|
|
void iounmap(volatile void __iomem *token)
|
|
{
|
|
void *addr;
|
|
|
|
if (!mem_init_done)
|
|
return;
|
|
|
|
addr = (void *) ((unsigned long __force) token & PAGE_MASK);
|
|
|
|
im_free(addr);
|
|
}
|
|
|
|
static int iounmap_subset_regions(unsigned long addr, unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
/* Check whether subsets of this region exist */
|
|
area = im_get_area(addr, size, IM_REGION_SUPERSET);
|
|
if (area == NULL)
|
|
return 1;
|
|
|
|
while (area) {
|
|
iounmap((void __iomem *) area->addr);
|
|
area = im_get_area(addr, size,
|
|
IM_REGION_SUPERSET);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iounmap_explicit(volatile void __iomem *start, unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long addr;
|
|
int rc;
|
|
|
|
addr = (unsigned long __force) start & PAGE_MASK;
|
|
|
|
/* Verify that the region either exists or is a subset of an existing
|
|
* region. In the latter case, split the parent region to create
|
|
* the exact region
|
|
*/
|
|
area = im_get_area(addr, size,
|
|
IM_REGION_EXISTS | IM_REGION_SUBSET);
|
|
if (area == NULL) {
|
|
/* Determine whether subset regions exist. If so, unmap */
|
|
rc = iounmap_subset_regions(addr, size);
|
|
if (rc) {
|
|
printk(KERN_ERR
|
|
"%s() cannot unmap nonexistent range 0x%lx\n",
|
|
__FUNCTION__, addr);
|
|
return 1;
|
|
}
|
|
} else {
|
|
iounmap((void __iomem *) area->addr);
|
|
}
|
|
/*
|
|
* FIXME! This can't be right:
|
|
iounmap(area->addr);
|
|
* Maybe it should be "iounmap(area);"
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
EXPORT_SYMBOL(ioremap);
|
|
EXPORT_SYMBOL(__ioremap);
|
|
EXPORT_SYMBOL(iounmap);
|
|
|
|
void free_initmem(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = (unsigned long)__init_begin;
|
|
for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
|
|
ClearPageReserved(virt_to_page(addr));
|
|
set_page_count(virt_to_page(addr), 1);
|
|
free_page(addr);
|
|
totalram_pages++;
|
|
}
|
|
printk ("Freeing unused kernel memory: %luk freed\n",
|
|
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
if (start < end)
|
|
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
ClearPageReserved(virt_to_page(start));
|
|
set_page_count(virt_to_page(start), 1);
|
|
free_page(start);
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(mmu_context_lock);
|
|
static DEFINE_IDR(mmu_context_idr);
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
int index;
|
|
int err;
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/* We leave htlb_segs as it was, but for a fork, we need to
|
|
* clear the huge_pgdir. */
|
|
mm->context.huge_pgdir = NULL;
|
|
#endif
|
|
|
|
again:
|
|
if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&mmu_context_lock);
|
|
err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
|
|
spin_unlock(&mmu_context_lock);
|
|
|
|
if (err == -EAGAIN)
|
|
goto again;
|
|
else if (err)
|
|
return err;
|
|
|
|
if (index > MAX_CONTEXT) {
|
|
idr_remove(&mmu_context_idr, index);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mm->context.id = index;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
spin_lock(&mmu_context_lock);
|
|
idr_remove(&mmu_context_idr, mm->context.id);
|
|
spin_unlock(&mmu_context_lock);
|
|
|
|
mm->context.id = NO_CONTEXT;
|
|
|
|
hugetlb_mm_free_pgd(mm);
|
|
}
|
|
|
|
/*
|
|
* Do very early mm setup.
|
|
*/
|
|
void __init mm_init_ppc64(void)
|
|
{
|
|
#ifndef CONFIG_PPC_ISERIES
|
|
unsigned long i;
|
|
#endif
|
|
|
|
ppc64_boot_msg(0x100, "MM Init");
|
|
|
|
/* This is the story of the IO hole... please, keep seated,
|
|
* unfortunately, we are out of oxygen masks at the moment.
|
|
* So we need some rough way to tell where your big IO hole
|
|
* is. On pmac, it's between 2G and 4G, on POWER3, it's around
|
|
* that area as well, on POWER4 we don't have one, etc...
|
|
* We need that as a "hint" when sizing the TCE table on POWER3
|
|
* So far, the simplest way that seem work well enough for us it
|
|
* to just assume that the first discontinuity in our physical
|
|
* RAM layout is the IO hole. That may not be correct in the future
|
|
* (and isn't on iSeries but then we don't care ;)
|
|
*/
|
|
|
|
#ifndef CONFIG_PPC_ISERIES
|
|
for (i = 1; i < lmb.memory.cnt; i++) {
|
|
unsigned long base, prevbase, prevsize;
|
|
|
|
prevbase = lmb.memory.region[i-1].physbase;
|
|
prevsize = lmb.memory.region[i-1].size;
|
|
base = lmb.memory.region[i].physbase;
|
|
if (base > (prevbase + prevsize)) {
|
|
io_hole_start = prevbase + prevsize;
|
|
io_hole_size = base - (prevbase + prevsize);
|
|
break;
|
|
}
|
|
}
|
|
#endif /* CONFIG_PPC_ISERIES */
|
|
if (io_hole_start)
|
|
printk("IO Hole assumed to be %lx -> %lx\n",
|
|
io_hole_start, io_hole_start + io_hole_size - 1);
|
|
|
|
ppc64_boot_msg(0x100, "MM Init Done");
|
|
}
|
|
|
|
/*
|
|
* This is called by /dev/mem to know if a given address has to
|
|
* be mapped non-cacheable or not
|
|
*/
|
|
int page_is_ram(unsigned long pfn)
|
|
{
|
|
int i;
|
|
unsigned long paddr = (pfn << PAGE_SHIFT);
|
|
|
|
for (i=0; i < lmb.memory.cnt; i++) {
|
|
unsigned long base;
|
|
|
|
#ifdef CONFIG_MSCHUNKS
|
|
base = lmb.memory.region[i].physbase;
|
|
#else
|
|
base = lmb.memory.region[i].base;
|
|
#endif
|
|
if ((paddr >= base) &&
|
|
(paddr < (base + lmb.memory.region[i].size))) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(page_is_ram);
|
|
|
|
/*
|
|
* Initialize the bootmem system and give it all the memory we
|
|
* have available.
|
|
*/
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
void __init do_init_bootmem(void)
|
|
{
|
|
unsigned long i;
|
|
unsigned long start, bootmap_pages;
|
|
unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
|
int boot_mapsize;
|
|
|
|
/*
|
|
* Find an area to use for the bootmem bitmap. Calculate the size of
|
|
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
|
|
* Add 1 additional page in case the address isn't page-aligned.
|
|
*/
|
|
bootmap_pages = bootmem_bootmap_pages(total_pages);
|
|
|
|
start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
|
|
BUG_ON(!start);
|
|
|
|
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
|
|
|
|
max_pfn = max_low_pfn;
|
|
|
|
/* Add all physical memory to the bootmem map, mark each area
|
|
* present.
|
|
*/
|
|
for (i=0; i < lmb.memory.cnt; i++) {
|
|
unsigned long physbase, size;
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
physbase = lmb.memory.region[i].physbase;
|
|
size = lmb.memory.region[i].size;
|
|
|
|
start_pfn = physbase >> PAGE_SHIFT;
|
|
end_pfn = start_pfn + (size >> PAGE_SHIFT);
|
|
memory_present(0, start_pfn, end_pfn);
|
|
|
|
free_bootmem(physbase, size);
|
|
}
|
|
|
|
/* reserve the sections we're already using */
|
|
for (i=0; i < lmb.reserved.cnt; i++) {
|
|
unsigned long physbase = lmb.reserved.region[i].physbase;
|
|
unsigned long size = lmb.reserved.region[i].size;
|
|
|
|
reserve_bootmem(physbase, size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables - in fact we've already done this.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long zones_size[MAX_NR_ZONES];
|
|
unsigned long zholes_size[MAX_NR_ZONES];
|
|
unsigned long total_ram = lmb_phys_mem_size();
|
|
unsigned long top_of_ram = lmb_end_of_DRAM();
|
|
|
|
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
|
top_of_ram, total_ram);
|
|
printk(KERN_INFO "Memory hole size: %ldMB\n",
|
|
(top_of_ram - total_ram) >> 20);
|
|
/*
|
|
* All pages are DMA-able so we put them all in the DMA zone.
|
|
*/
|
|
memset(zones_size, 0, sizeof(zones_size));
|
|
memset(zholes_size, 0, sizeof(zholes_size));
|
|
|
|
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
|
|
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
|
|
|
|
free_area_init_node(0, NODE_DATA(0), zones_size,
|
|
__pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
|
|
}
|
|
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
|
|
|
|
static struct kcore_list kcore_vmem;
|
|
|
|
static int __init setup_kcore(void)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i < lmb.memory.cnt; i++) {
|
|
unsigned long physbase, size;
|
|
struct kcore_list *kcore_mem;
|
|
|
|
physbase = lmb.memory.region[i].physbase;
|
|
size = lmb.memory.region[i].size;
|
|
|
|
/* GFP_ATOMIC to avoid might_sleep warnings during boot */
|
|
kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
|
|
if (!kcore_mem)
|
|
panic("mem_init: kmalloc failed\n");
|
|
|
|
kclist_add(kcore_mem, __va(physbase), size);
|
|
}
|
|
|
|
kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
|
|
|
|
return 0;
|
|
}
|
|
module_init(setup_kcore);
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
int nid;
|
|
#endif
|
|
pg_data_t *pgdat;
|
|
unsigned long i;
|
|
struct page *page;
|
|
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
|
|
|
|
num_physpages = max_low_pfn; /* RAM is assumed contiguous */
|
|
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
for_each_online_node(nid) {
|
|
if (NODE_DATA(nid)->node_spanned_pages != 0) {
|
|
printk("freeing bootmem node %x\n", nid);
|
|
totalram_pages +=
|
|
free_all_bootmem_node(NODE_DATA(nid));
|
|
}
|
|
}
|
|
#else
|
|
max_mapnr = num_physpages;
|
|
totalram_pages += free_all_bootmem();
|
|
#endif
|
|
|
|
for_each_pgdat(pgdat) {
|
|
for (i = 0; i < pgdat->node_spanned_pages; i++) {
|
|
page = pgdat_page_nr(pgdat, i);
|
|
if (PageReserved(page))
|
|
reservedpages++;
|
|
}
|
|
}
|
|
|
|
codesize = (unsigned long)&_etext - (unsigned long)&_stext;
|
|
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
|
|
datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
|
|
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
|
|
"%luk reserved, %luk data, %luk bss, %luk init)\n",
|
|
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
|
|
num_physpages << (PAGE_SHIFT-10),
|
|
codesize >> 10,
|
|
reservedpages << (PAGE_SHIFT-10),
|
|
datasize >> 10,
|
|
bsssize >> 10,
|
|
initsize >> 10);
|
|
|
|
mem_init_done = 1;
|
|
|
|
#ifdef CONFIG_PPC_ISERIES
|
|
iommu_vio_init();
|
|
#endif
|
|
/* Initialize the vDSO */
|
|
vdso_init();
|
|
}
|
|
|
|
/*
|
|
* This is called when a page has been modified by the kernel.
|
|
* It just marks the page as not i-cache clean. We do the i-cache
|
|
* flush later when the page is given to a user process, if necessary.
|
|
*/
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
|
return;
|
|
/* avoid an atomic op if possible */
|
|
if (test_bit(PG_arch_1, &page->flags))
|
|
clear_bit(PG_arch_1, &page->flags);
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
|
|
{
|
|
clear_page(page);
|
|
|
|
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
|
return;
|
|
/*
|
|
* We shouldnt have to do this, but some versions of glibc
|
|
* require it (ld.so assumes zero filled pages are icache clean)
|
|
* - Anton
|
|
*/
|
|
|
|
/* avoid an atomic op if possible */
|
|
if (test_bit(PG_arch_1, &pg->flags))
|
|
clear_bit(PG_arch_1, &pg->flags);
|
|
}
|
|
EXPORT_SYMBOL(clear_user_page);
|
|
|
|
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
|
|
struct page *pg)
|
|
{
|
|
copy_page(vto, vfrom);
|
|
|
|
/*
|
|
* We should be able to use the following optimisation, however
|
|
* there are two problems.
|
|
* Firstly a bug in some versions of binutils meant PLT sections
|
|
* were not marked executable.
|
|
* Secondly the first word in the GOT section is blrl, used
|
|
* to establish the GOT address. Until recently the GOT was
|
|
* not marked executable.
|
|
* - Anton
|
|
*/
|
|
#if 0
|
|
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
|
|
return;
|
|
#endif
|
|
|
|
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
|
return;
|
|
|
|
/* avoid an atomic op if possible */
|
|
if (test_bit(PG_arch_1, &pg->flags))
|
|
clear_bit(PG_arch_1, &pg->flags);
|
|
}
|
|
|
|
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long addr, int len)
|
|
{
|
|
unsigned long maddr;
|
|
|
|
maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
|
|
flush_icache_range(maddr, maddr + len);
|
|
}
|
|
EXPORT_SYMBOL(flush_icache_user_range);
|
|
|
|
/*
|
|
* This is called at the end of handling a user page fault, when the
|
|
* fault has been handled by updating a PTE in the linux page tables.
|
|
* We use it to preload an HPTE into the hash table corresponding to
|
|
* the updated linux PTE.
|
|
*
|
|
* This must always be called with the mm->page_table_lock held
|
|
*/
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
|
|
pte_t pte)
|
|
{
|
|
unsigned long vsid;
|
|
void *pgdir;
|
|
pte_t *ptep;
|
|
int local = 0;
|
|
cpumask_t tmp;
|
|
unsigned long flags;
|
|
|
|
/* handle i-cache coherency */
|
|
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
|
|
!cpu_has_feature(CPU_FTR_NOEXECUTE)) {
|
|
unsigned long pfn = pte_pfn(pte);
|
|
if (pfn_valid(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
if (!PageReserved(page)
|
|
&& !test_bit(PG_arch_1, &page->flags)) {
|
|
__flush_dcache_icache(page_address(page));
|
|
set_bit(PG_arch_1, &page->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
|
|
if (!pte_young(pte))
|
|
return;
|
|
|
|
pgdir = vma->vm_mm->pgd;
|
|
if (pgdir == NULL)
|
|
return;
|
|
|
|
ptep = find_linux_pte(pgdir, ea);
|
|
if (!ptep)
|
|
return;
|
|
|
|
vsid = get_vsid(vma->vm_mm->context.id, ea);
|
|
|
|
local_irq_save(flags);
|
|
tmp = cpumask_of_cpu(smp_processor_id());
|
|
if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
|
|
local = 1;
|
|
|
|
__hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
|
|
0x300, local);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void __iomem * reserve_phb_iospace(unsigned long size)
|
|
{
|
|
void __iomem *virt_addr;
|
|
|
|
if (phbs_io_bot >= IMALLOC_BASE)
|
|
panic("reserve_phb_iospace(): phb io space overflow\n");
|
|
|
|
virt_addr = (void __iomem *) phbs_io_bot;
|
|
phbs_io_bot += size;
|
|
|
|
return virt_addr;
|
|
}
|
|
|
|
kmem_cache_t *zero_cache;
|
|
|
|
static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
|
|
{
|
|
memset(pte, 0, PAGE_SIZE);
|
|
}
|
|
|
|
void pgtable_cache_init(void)
|
|
{
|
|
zero_cache = kmem_cache_create("zero",
|
|
PAGE_SIZE,
|
|
0,
|
|
SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
|
|
zero_ctor,
|
|
NULL);
|
|
if (!zero_cache)
|
|
panic("pgtable_cache_init(): could not create zero_cache!\n");
|
|
}
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
if (ppc_md.phys_mem_access_prot)
|
|
return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
|
|
|
|
if (!page_is_ram(addr >> PAGE_SHIFT))
|
|
vma_prot = __pgprot(pgprot_val(vma_prot)
|
|
| _PAGE_GUARDED | _PAGE_NO_CACHE);
|
|
return vma_prot;
|
|
}
|
|
EXPORT_SYMBOL(phys_mem_access_prot);
|