linux/virt/kvm/arm/vgic.c
Linus Torvalds 933425fb00 s390: A bunch of fixes and optimizations for interrupt and time
handling.
 
 PPC: Mostly bug fixes.
 
 ARM: No big features, but many small fixes and prerequisites including:
 - a number of fixes for the arch-timer
 - introducing proper level-triggered semantics for the arch-timers
 - a series of patches to synchronously halt a guest (prerequisite for
   IRQ forwarding)
 - some tracepoint improvements
 - a tweak for the EL2 panic handlers
 - some more VGIC cleanups getting rid of redundant state
 
 x86: quite a few changes:
 
 - support for VT-d posted interrupts (i.e. PCI devices can inject
 interrupts directly into vCPUs).  This introduces a new component (in
 virt/lib/) that connects VFIO and KVM together.  The same infrastructure
 will be used for ARM interrupt forwarding as well.
 
 - more Hyper-V features, though the main one Hyper-V synthetic interrupt
 controller will have to wait for 4.5.  These will let KVM expose Hyper-V
 devices.
 
 - nested virtualization now supports VPID (same as PCID but for vCPUs)
 which makes it quite a bit faster
 
 - for future hardware that supports NVDIMM, there is support for clflushopt,
 clwb, pcommit
 
 - support for "split irqchip", i.e. LAPIC in kernel + IOAPIC/PIC/PIT in
 userspace, which reduces the attack surface of the hypervisor
 
 - obligatory smattering of SMM fixes
 
 - on the guest side, stable scheduler clock support was rewritten to not
 require help from the hypervisor.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJWO2IQAAoJEL/70l94x66D/K0H/3AovAgYmJQToZlimsktMk6a
 f2xhdIqfU5lIQQh5uNBCfL3o9o8H9Py1ym7aEw3fmztPHHJYc91oTatt2UEKhmEw
 VtZHp/dFHt3hwaIdXmjRPEXiYctraKCyrhaUYdWmUYkoKi7lW5OL5h+S7frG2U6u
 p/hFKnHRZfXHr6NSgIqvYkKqtnc+C0FWY696IZMzgCksOO8jB1xrxoSN3tANW3oJ
 PDV+4og0fN/Fr1capJUFEc/fejREHneANvlKrLaa8ht0qJQutoczNADUiSFLcMPG
 iHljXeDsv5eyjMtUuIL8+MPzcrIt/y4rY41ZPiKggxULrXc6H+JJL/e/zThZpXc=
 =iv2z
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "First batch of KVM changes for 4.4.

  s390:
     A bunch of fixes and optimizations for interrupt and time handling.

  PPC:
     Mostly bug fixes.

  ARM:
     No big features, but many small fixes and prerequisites including:

      - a number of fixes for the arch-timer

      - introducing proper level-triggered semantics for the arch-timers

      - a series of patches to synchronously halt a guest (prerequisite
        for IRQ forwarding)

      - some tracepoint improvements

      - a tweak for the EL2 panic handlers

      - some more VGIC cleanups getting rid of redundant state

  x86:
     Quite a few changes:

      - support for VT-d posted interrupts (i.e. PCI devices can inject
        interrupts directly into vCPUs).  This introduces a new
        component (in virt/lib/) that connects VFIO and KVM together.
        The same infrastructure will be used for ARM interrupt
        forwarding as well.

      - more Hyper-V features, though the main one Hyper-V synthetic
        interrupt controller will have to wait for 4.5.  These will let
        KVM expose Hyper-V devices.

      - nested virtualization now supports VPID (same as PCID but for
        vCPUs) which makes it quite a bit faster

      - for future hardware that supports NVDIMM, there is support for
        clflushopt, clwb, pcommit

      - support for "split irqchip", i.e.  LAPIC in kernel +
        IOAPIC/PIC/PIT in userspace, which reduces the attack surface of
        the hypervisor

      - obligatory smattering of SMM fixes

      - on the guest side, stable scheduler clock support was rewritten
        to not require help from the hypervisor"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (123 commits)
  KVM: VMX: Fix commit which broke PML
  KVM: x86: obey KVM_X86_QUIRK_CD_NW_CLEARED in kvm_set_cr0()
  KVM: x86: allow RSM from 64-bit mode
  KVM: VMX: fix SMEP and SMAP without EPT
  KVM: x86: move kvm_set_irq_inatomic to legacy device assignment
  KVM: device assignment: remove pointless #ifdefs
  KVM: x86: merge kvm_arch_set_irq with kvm_set_msi_inatomic
  KVM: x86: zero apic_arb_prio on reset
  drivers/hv: share Hyper-V SynIC constants with userspace
  KVM: x86: handle SMBASE as physical address in RSM
  KVM: x86: add read_phys to x86_emulate_ops
  KVM: x86: removing unused variable
  KVM: don't pointlessly leave KVM_COMPAT=y in non-KVM configs
  KVM: arm/arm64: Merge vgic_set_lr() and vgic_sync_lr_elrsr()
  KVM: arm/arm64: Clean up vgic_retire_lr() and surroundings
  KVM: arm/arm64: Optimize away redundant LR tracking
  KVM: s390: use simple switch statement as multiplexer
  KVM: s390: drop useless newline in debugging data
  KVM: s390: SCA must not cross page boundaries
  KVM: arm: Do not indent the arguments of DECLARE_BITMAP
  ...
2015-11-05 16:26:26 -08:00

2475 lines
63 KiB
C

/*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/rculist.h>
#include <linux/uaccess.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include <trace/events/kvm.h>
#include <asm/kvm.h>
#include <kvm/iodev.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
/*
* How the whole thing works (courtesy of Christoffer Dall):
*
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
* something is pending on the CPU interface.
* - Interrupts that are pending on the distributor are stored on the
* vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
* ioctls and guest mmio ops, and other in-kernel peripherals such as the
* arch. timers).
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
* recalculated
* - To calculate the oracle, we need info for each cpu from
* compute_pending_for_cpu, which considers:
* - PPI: dist->irq_pending & dist->irq_enable
* - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
* - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
* registers, stored on each vcpu. We only keep one bit of
* information per interrupt, making sure that only one vcpu can
* accept the interrupt.
* - If any of the above state changes, we must recalculate the oracle.
* - The same is true when injecting an interrupt, except that we only
* consider a single interrupt at a time. The irq_spi_cpu array
* contains the target CPU for each SPI.
*
* The handling of level interrupts adds some extra complexity. We
* need to track when the interrupt has been EOIed, so we can sample
* the 'line' again. This is achieved as such:
*
* - When a level interrupt is moved onto a vcpu, the corresponding
* bit in irq_queued is set. As long as this bit is set, the line
* will be ignored for further interrupts. The interrupt is injected
* into the vcpu with the GICH_LR_EOI bit set (generate a
* maintenance interrupt on EOI).
* - When the interrupt is EOIed, the maintenance interrupt fires,
* and clears the corresponding bit in irq_queued. This allows the
* interrupt line to be sampled again.
* - Note that level-triggered interrupts can also be set to pending from
* writes to GICD_ISPENDRn and lowering the external input line does not
* cause the interrupt to become inactive in such a situation.
* Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
* inactive as long as the external input line is held high.
*
*
* Initialization rules: there are multiple stages to the vgic
* initialization, both for the distributor and the CPU interfaces.
*
* Distributor:
*
* - kvm_vgic_early_init(): initialization of static data that doesn't
* depend on any sizing information or emulation type. No allocation
* is allowed there.
*
* - vgic_init(): allocation and initialization of the generic data
* structures that depend on sizing information (number of CPUs,
* number of interrupts). Also initializes the vcpu specific data
* structures. Can be executed lazily for GICv2.
* [to be renamed to kvm_vgic_init??]
*
* CPU Interface:
*
* - kvm_vgic_cpu_early_init(): initialization of static data that
* doesn't depend on any sizing information or emulation type. No
* allocation is allowed there.
*/
#include "vgic.h"
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
int virt_irq);
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
}
static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
}
int kvm_vgic_map_resources(struct kvm *kvm)
{
return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
}
/*
* struct vgic_bitmap contains a bitmap made of unsigned longs, but
* extracts u32s out of them.
*
* This does not work on 64-bit BE systems, because the bitmap access
* will store two consecutive 32-bit words with the higher-addressed
* register's bits at the lower index and the lower-addressed register's
* bits at the higher index.
*
* Therefore, swizzle the register index when accessing the 32-bit word
* registers to access the right register's value.
*/
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
#define REG_OFFSET_SWIZZLE 1
#else
#define REG_OFFSET_SWIZZLE 0
#endif
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
int nr_longs;
nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
if (!b->private)
return -ENOMEM;
b->shared = b->private + nr_cpus;
return 0;
}
static void vgic_free_bitmap(struct vgic_bitmap *b)
{
kfree(b->private);
b->private = NULL;
b->shared = NULL;
}
/*
* Call this function to convert a u64 value to an unsigned long * bitmask
* in a way that works on both 32-bit and 64-bit LE and BE platforms.
*
* Warning: Calling this function may modify *val.
*/
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
*val = (*val >> 32) | (*val << 32);
#endif
return (unsigned long *)val;
}
u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
{
offset >>= 2;
if (!offset)
return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
else
return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
}
static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
int cpuid, int irq)
{
if (irq < VGIC_NR_PRIVATE_IRQS)
return test_bit(irq, x->private + cpuid);
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
}
void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
int irq, int val)
{
unsigned long *reg;
if (irq < VGIC_NR_PRIVATE_IRQS) {
reg = x->private + cpuid;
} else {
reg = x->shared;
irq -= VGIC_NR_PRIVATE_IRQS;
}
if (val)
set_bit(irq, reg);
else
clear_bit(irq, reg);
}
static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
return x->private + cpuid;
}
unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
return x->shared;
}
static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
int size;
size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
x->private = kzalloc(size, GFP_KERNEL);
if (!x->private)
return -ENOMEM;
x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
return 0;
}
static void vgic_free_bytemap(struct vgic_bytemap *b)
{
kfree(b->private);
b->private = NULL;
b->shared = NULL;
}
u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
u32 *reg;
if (offset < VGIC_NR_PRIVATE_IRQS) {
reg = x->private;
offset += cpuid * VGIC_NR_PRIVATE_IRQS;
} else {
reg = x->shared;
offset -= VGIC_NR_PRIVATE_IRQS;
}
return reg + (offset / sizeof(u32));
}
#define VGIC_CFG_LEVEL 0
#define VGIC_CFG_EDGE 1
static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int irq_val;
irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
return irq_val == VGIC_CFG_EDGE;
}
static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
}
static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
}
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
}
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
}
static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
}
static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
}
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}
static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}
static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
}
static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
}
static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
if (!vgic_dist_irq_get_level(vcpu, irq)) {
vgic_dist_irq_clear_pending(vcpu, irq);
if (!compute_pending_for_cpu(vcpu))
clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}
}
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
}
void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
}
void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
}
static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
if (irq < VGIC_NR_PRIVATE_IRQS)
set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
else
set_bit(irq - VGIC_NR_PRIVATE_IRQS,
vcpu->arch.vgic_cpu.pending_shared);
}
void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
if (irq < VGIC_NR_PRIVATE_IRQS)
clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
else
clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
vcpu->arch.vgic_cpu.pending_shared);
}
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
return !vgic_irq_is_queued(vcpu, irq);
}
/**
* vgic_reg_access - access vgic register
* @mmio: pointer to the data describing the mmio access
* @reg: pointer to the virtual backing of vgic distributor data
* @offset: least significant 2 bits used for word offset
* @mode: ACCESS_ mode (see defines above)
*
* Helper to make vgic register access easier using one of the access
* modes defined for vgic register access
* (read,raz,write-ignored,setbit,clearbit,write)
*/
void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
phys_addr_t offset, int mode)
{
int word_offset = (offset & 3) * 8;
u32 mask = (1UL << (mmio->len * 8)) - 1;
u32 regval;
/*
* Any alignment fault should have been delivered to the guest
* directly (ARM ARM B3.12.7 "Prioritization of aborts").
*/
if (reg) {
regval = *reg;
} else {
BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
regval = 0;
}
if (mmio->is_write) {
u32 data = mmio_data_read(mmio, mask) << word_offset;
switch (ACCESS_WRITE_MASK(mode)) {
case ACCESS_WRITE_IGNORED:
return;
case ACCESS_WRITE_SETBIT:
regval |= data;
break;
case ACCESS_WRITE_CLEARBIT:
regval &= ~data;
break;
case ACCESS_WRITE_VALUE:
regval = (regval & ~(mask << word_offset)) | data;
break;
}
*reg = regval;
} else {
switch (ACCESS_READ_MASK(mode)) {
case ACCESS_READ_RAZ:
regval = 0;
/* fall through */
case ACCESS_READ_VALUE:
mmio_data_write(mmio, mask, regval >> word_offset);
}
}
}
bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id, int access)
{
u32 *reg;
int mode = ACCESS_READ_VALUE | access;
struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
if (access & ACCESS_WRITE_CLEARBIT) {
if (offset < 4) /* Force SGI enabled */
*reg |= 0xffff;
vgic_retire_disabled_irqs(target_vcpu);
}
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_set_pending_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *reg, orig;
u32 level_mask;
int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
level_mask = (~(*reg));
/* Mark both level and edge triggered irqs as pending */
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
orig = *reg;
vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
/* Set the soft-pending flag only for level-triggered irqs */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
vcpu_id, offset);
vgic_reg_access(mmio, reg, offset, mode);
*reg &= level_mask;
/* Ignore writes to SGIs */
if (offset < 2) {
*reg &= ~0xffff;
*reg |= orig & 0xffff;
}
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_clear_pending_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *level_active;
u32 *reg, orig;
int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
orig = *reg;
vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
/* Re-set level triggered level-active interrupts */
level_active = vgic_bitmap_get_reg(&dist->irq_level,
vcpu_id, offset);
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
*reg |= *level_active;
/* Ignore writes to SGIs */
if (offset < 2) {
*reg &= ~0xffff;
*reg |= orig & 0xffff;
}
/* Clear soft-pending flags */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
vcpu_id, offset);
vgic_reg_access(mmio, reg, offset, mode);
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_set_active_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *reg;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
if (mmio->is_write) {
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_clear_active_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *reg;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
if (mmio->is_write) {
vgic_update_state(kvm);
return true;
}
return false;
}
static u32 vgic_cfg_expand(u16 val)
{
u32 res = 0;
int i;
/*
* Turn a 16bit value like abcd...mnop into a 32bit word
* a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
*/
for (i = 0; i < 16; i++)
res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
return res;
}
static u16 vgic_cfg_compress(u32 val)
{
u16 res = 0;
int i;
/*
* Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
* abcd...mnop which is what we really care about.
*/
for (i = 0; i < 16; i++)
res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
return res;
}
/*
* The distributor uses 2 bits per IRQ for the CFG register, but the
* LSB is always 0. As such, we only keep the upper bit, and use the
* two above functions to compress/expand the bits
*/
bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 val;
if (offset & 4)
val = *reg >> 16;
else
val = *reg & 0xffff;
val = vgic_cfg_expand(val);
vgic_reg_access(mmio, &val, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
/* Ignore writes to read-only SGI and PPI bits */
if (offset < 8)
return false;
val = vgic_cfg_compress(val);
if (offset & 4) {
*reg &= 0xffff;
*reg |= val << 16;
} else {
*reg &= 0xffff << 16;
*reg |= val;
}
}
return false;
}
/**
* vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
* @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
*
* Move any IRQs that have already been assigned to LRs back to the
* emulated distributor state so that the complete emulated state can be read
* from the main emulation structures without investigating the LRs.
*/
void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 elrsr = vgic_get_elrsr(vcpu);
unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
int i;
for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
struct vgic_lr lr = vgic_get_lr(vcpu, i);
/*
* There are three options for the state bits:
*
* 01: pending
* 10: active
* 11: pending and active
*/
BUG_ON(!(lr.state & LR_STATE_MASK));
/* Reestablish SGI source for pending and active IRQs */
if (lr.irq < VGIC_NR_SGIS)
add_sgi_source(vcpu, lr.irq, lr.source);
/*
* If the LR holds an active (10) or a pending and active (11)
* interrupt then move the active state to the
* distributor tracking bit.
*/
if (lr.state & LR_STATE_ACTIVE)
vgic_irq_set_active(vcpu, lr.irq);
/*
* Reestablish the pending state on the distributor and the
* CPU interface and mark the LR as free for other use.
*/
vgic_retire_lr(i, vcpu);
/* Finally update the VGIC state. */
vgic_update_state(vcpu->kvm);
}
}
const
struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
int len, gpa_t offset)
{
while (ranges->len) {
if (offset >= ranges->base &&
(offset + len) <= (ranges->base + ranges->len))
return ranges;
ranges++;
}
return NULL;
}
static bool vgic_validate_access(const struct vgic_dist *dist,
const struct vgic_io_range *range,
unsigned long offset)
{
int irq;
if (!range->bits_per_irq)
return true; /* Not an irq-based access */
irq = offset * 8 / range->bits_per_irq;
if (irq >= dist->nr_irqs)
return false;
return true;
}
/*
* Call the respective handler function for the given range.
* We split up any 64 bit accesses into two consecutive 32 bit
* handler calls and merge the result afterwards.
* We do this in a little endian fashion regardless of the host's
* or guest's endianness, because the GIC is always LE and the rest of
* the code (vgic_reg_access) also puts it in a LE fashion already.
* At this point we have already identified the handle function, so
* range points to that one entry and offset is relative to this.
*/
static bool call_range_handler(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
unsigned long offset,
const struct vgic_io_range *range)
{
struct kvm_exit_mmio mmio32;
bool ret;
if (likely(mmio->len <= 4))
return range->handle_mmio(vcpu, mmio, offset);
/*
* Any access bigger than 4 bytes (that we currently handle in KVM)
* is actually 8 bytes long, caused by a 64-bit access
*/
mmio32.len = 4;
mmio32.is_write = mmio->is_write;
mmio32.private = mmio->private;
mmio32.phys_addr = mmio->phys_addr + 4;
mmio32.data = &((u32 *)mmio->data)[1];
ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
mmio32.phys_addr = mmio->phys_addr;
mmio32.data = &((u32 *)mmio->data)[0];
ret |= range->handle_mmio(vcpu, &mmio32, offset);
return ret;
}
/**
* vgic_handle_mmio_access - handle an in-kernel MMIO access
* This is called by the read/write KVM IO device wrappers below.
* @vcpu: pointer to the vcpu performing the access
* @this: pointer to the KVM IO device in charge
* @addr: guest physical address of the access
* @len: size of the access
* @val: pointer to the data region
* @is_write: read or write access
*
* returns true if the MMIO access could be performed
*/
static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
struct kvm_io_device *this, gpa_t addr,
int len, void *val, bool is_write)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_io_device *iodev = container_of(this,
struct vgic_io_device, dev);
struct kvm_run *run = vcpu->run;
const struct vgic_io_range *range;
struct kvm_exit_mmio mmio;
bool updated_state;
gpa_t offset;
offset = addr - iodev->addr;
range = vgic_find_range(iodev->reg_ranges, len, offset);
if (unlikely(!range || !range->handle_mmio)) {
pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
return -ENXIO;
}
mmio.phys_addr = addr;
mmio.len = len;
mmio.is_write = is_write;
mmio.data = val;
mmio.private = iodev->redist_vcpu;
spin_lock(&dist->lock);
offset -= range->base;
if (vgic_validate_access(dist, range, offset)) {
updated_state = call_range_handler(vcpu, &mmio, offset, range);
} else {
if (!is_write)
memset(val, 0, len);
updated_state = false;
}
spin_unlock(&dist->lock);
run->mmio.is_write = is_write;
run->mmio.len = len;
run->mmio.phys_addr = addr;
memcpy(run->mmio.data, val, len);
kvm_handle_mmio_return(vcpu, run);
if (updated_state)
vgic_kick_vcpus(vcpu->kvm);
return 0;
}
static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, void *val)
{
return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
}
static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, const void *val)
{
return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
true);
}
struct kvm_io_device_ops vgic_io_ops = {
.read = vgic_handle_mmio_read,
.write = vgic_handle_mmio_write,
};
/**
* vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
* @kvm: The VM structure pointer
* @base: The (guest) base address for the register frame
* @len: Length of the register frame window
* @ranges: Describing the handler functions for each register
* @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
* @iodev: Points to memory to be passed on to the handler
*
* @iodev stores the parameters of this function to be usable by the handler
* respectively the dispatcher function (since the KVM I/O bus framework lacks
* an opaque parameter). Initialization is done in this function, but the
* reference should be valid and unique for the whole VGIC lifetime.
* If the register frame is not mapped for a specific VCPU, pass -1 to
* @redist_vcpu_id.
*/
int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
const struct vgic_io_range *ranges,
int redist_vcpu_id,
struct vgic_io_device *iodev)
{
struct kvm_vcpu *vcpu = NULL;
int ret;
if (redist_vcpu_id >= 0)
vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
iodev->addr = base;
iodev->len = len;
iodev->reg_ranges = ranges;
iodev->redist_vcpu = vcpu;
kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
&iodev->dev);
mutex_unlock(&kvm->slots_lock);
/* Mark the iodev as invalid if registration fails. */
if (ret)
iodev->dev.ops = NULL;
return ret;
}
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}
static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *active, *enabled, *act_percpu, *act_shared;
unsigned long active_private, active_shared;
int nr_shared = vgic_nr_shared_irqs(dist);
int vcpu_id;
vcpu_id = vcpu->vcpu_id;
act_percpu = vcpu->arch.vgic_cpu.active_percpu;
act_shared = vcpu->arch.vgic_cpu.active_shared;
active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
active = vgic_bitmap_get_shared_map(&dist->irq_active);
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
bitmap_and(act_shared, active, enabled, nr_shared);
bitmap_and(act_shared, act_shared,
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
nr_shared);
active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
active_shared = find_first_bit(act_shared, nr_shared);
return (active_private < VGIC_NR_PRIVATE_IRQS ||
active_shared < nr_shared);
}
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
unsigned long pending_private, pending_shared;
int nr_shared = vgic_nr_shared_irqs(dist);
int vcpu_id;
vcpu_id = vcpu->vcpu_id;
pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
pend_shared = vcpu->arch.vgic_cpu.pending_shared;
if (!dist->enabled) {
bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
bitmap_zero(pend_shared, nr_shared);
return 0;
}
pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
bitmap_and(pend_shared, pending, enabled, nr_shared);
bitmap_and(pend_shared, pend_shared,
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
nr_shared);
pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
pending_shared = find_first_bit(pend_shared, nr_shared);
return (pending_private < VGIC_NR_PRIVATE_IRQS ||
pending_shared < vgic_nr_shared_irqs(dist));
}
/*
* Update the interrupt state and determine which CPUs have pending
* or active interrupts. Must be called with distributor lock held.
*/
void vgic_update_state(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int c;
kvm_for_each_vcpu(c, vcpu, kvm) {
if (compute_pending_for_cpu(vcpu))
set_bit(c, dist->irq_pending_on_cpu);
if (compute_active_for_cpu(vcpu))
set_bit(c, dist->irq_active_on_cpu);
else
clear_bit(c, dist->irq_active_on_cpu);
}
}
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
return vgic_ops->get_lr(vcpu, lr);
}
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
struct vgic_lr vlr)
{
vgic_ops->set_lr(vcpu, lr, vlr);
}
static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
return vgic_ops->get_elrsr(vcpu);
}
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
return vgic_ops->get_eisr(vcpu);
}
static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
{
vgic_ops->clear_eisr(vcpu);
}
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
return vgic_ops->get_interrupt_status(vcpu);
}
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
vgic_ops->enable_underflow(vcpu);
}
static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
vgic_ops->disable_underflow(vcpu);
}
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
vgic_ops->get_vmcr(vcpu, vmcr);
}
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
vgic_ops->set_vmcr(vcpu, vmcr);
}
static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
vgic_ops->enable(vcpu);
}
static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
{
struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
vgic_irq_clear_queued(vcpu, vlr.irq);
/*
* We must transfer the pending state back to the distributor before
* retiring the LR, otherwise we may loose edge-triggered interrupts.
*/
if (vlr.state & LR_STATE_PENDING) {
vgic_dist_irq_set_pending(vcpu, vlr.irq);
vlr.hwirq = 0;
}
vlr.state = 0;
vgic_set_lr(vcpu, lr_nr, vlr);
}
/*
* An interrupt may have been disabled after being made pending on the
* CPU interface (the classic case is a timer running while we're
* rebooting the guest - the interrupt would kick as soon as the CPU
* interface gets enabled, with deadly consequences).
*
* The solution is to examine already active LRs, and check the
* interrupt is still enabled. If not, just retire it.
*/
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
u64 elrsr = vgic_get_elrsr(vcpu);
unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
int lr;
for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
if (!vgic_irq_is_enabled(vcpu, vlr.irq))
vgic_retire_lr(lr, vcpu);
}
}
static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
int lr_nr, struct vgic_lr vlr)
{
if (vgic_irq_is_active(vcpu, irq)) {
vlr.state |= LR_STATE_ACTIVE;
kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
vgic_irq_clear_active(vcpu, irq);
vgic_update_state(vcpu->kvm);
} else {
WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
vlr.state |= LR_STATE_PENDING;
kvm_debug("Set pending: 0x%x\n", vlr.state);
}
if (!vgic_irq_is_edge(vcpu, irq))
vlr.state |= LR_EOI_INT;
if (vlr.irq >= VGIC_NR_SGIS) {
struct irq_phys_map *map;
map = vgic_irq_map_search(vcpu, irq);
if (map) {
vlr.hwirq = map->phys_irq;
vlr.state |= LR_HW;
vlr.state &= ~LR_EOI_INT;
/*
* Make sure we're not going to sample this
* again, as a HW-backed interrupt cannot be
* in the PENDING_ACTIVE stage.
*/
vgic_irq_set_queued(vcpu, irq);
}
}
vgic_set_lr(vcpu, lr_nr, vlr);
}
/*
* Queue an interrupt to a CPU virtual interface. Return true on success,
* or false if it wasn't possible to queue it.
* sgi_source must be zero for any non-SGI interrupts.
*/
bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
u64 elrsr = vgic_get_elrsr(vcpu);
unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
struct vgic_lr vlr;
int lr;
/* Sanitize the input... */
BUG_ON(sgi_source_id & ~7);
BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
BUG_ON(irq >= dist->nr_irqs);
kvm_debug("Queue IRQ%d\n", irq);
/* Do we have an active interrupt for the same CPUID? */
for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
vlr = vgic_get_lr(vcpu, lr);
if (vlr.irq == irq && vlr.source == sgi_source_id) {
kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
return true;
}
}
/* Try to use another LR for this interrupt */
lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
if (lr >= vgic->nr_lr)
return false;
kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
vlr.irq = irq;
vlr.source = sgi_source_id;
vlr.state = 0;
vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
return true;
}
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
if (!vgic_can_sample_irq(vcpu, irq))
return true; /* level interrupt, already queued */
if (vgic_queue_irq(vcpu, 0, irq)) {
if (vgic_irq_is_edge(vcpu, irq)) {
vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq);
} else {
vgic_irq_set_queued(vcpu, irq);
}
return true;
}
return false;
}
/*
* Fill the list registers with pending interrupts before running the
* guest.
*/
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *pa_percpu, *pa_shared;
int i, vcpu_id;
int overflow = 0;
int nr_shared = vgic_nr_shared_irqs(dist);
vcpu_id = vcpu->vcpu_id;
pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
VGIC_NR_PRIVATE_IRQS);
bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
nr_shared);
/*
* We may not have any pending interrupt, or the interrupts
* may have been serviced from another vcpu. In all cases,
* move along.
*/
if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
goto epilog;
/* SGIs */
for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
if (!queue_sgi(vcpu, i))
overflow = 1;
}
/* PPIs */
for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
if (!vgic_queue_hwirq(vcpu, i))
overflow = 1;
}
/* SPIs */
for_each_set_bit(i, pa_shared, nr_shared) {
if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
overflow = 1;
}
epilog:
if (overflow) {
vgic_enable_underflow(vcpu);
} else {
vgic_disable_underflow(vcpu);
/*
* We're about to run this VCPU, and we've consumed
* everything the distributor had in store for
* us. Claim we don't have anything pending. We'll
* adjust that if needed while exiting.
*/
clear_bit(vcpu_id, dist->irq_pending_on_cpu);
}
}
static int process_queued_irq(struct kvm_vcpu *vcpu,
int lr, struct vgic_lr vlr)
{
int pending = 0;
/*
* If the IRQ was EOIed (called from vgic_process_maintenance) or it
* went from active to non-active (called from vgic_sync_hwirq) it was
* also ACKed and we we therefore assume we can clear the soft pending
* state (should it had been set) for this interrupt.
*
* Note: if the IRQ soft pending state was set after the IRQ was
* acked, it actually shouldn't be cleared, but we have no way of
* knowing that unless we start trapping ACKs when the soft-pending
* state is set.
*/
vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
/*
* Tell the gic to start sampling this interrupt again.
*/
vgic_irq_clear_queued(vcpu, vlr.irq);
/* Any additional pending interrupt? */
if (vgic_irq_is_edge(vcpu, vlr.irq)) {
BUG_ON(!(vlr.state & LR_HW));
pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
} else {
if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
vgic_cpu_irq_set(vcpu, vlr.irq);
pending = 1;
} else {
vgic_dist_irq_clear_pending(vcpu, vlr.irq);
vgic_cpu_irq_clear(vcpu, vlr.irq);
}
}
/*
* Despite being EOIed, the LR may not have
* been marked as empty.
*/
vlr.state = 0;
vlr.hwirq = 0;
vgic_set_lr(vcpu, lr, vlr);
return pending;
}
static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
u32 status = vgic_get_interrupt_status(vcpu);
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct kvm *kvm = vcpu->kvm;
int level_pending = 0;
kvm_debug("STATUS = %08x\n", status);
if (status & INT_STATUS_EOI) {
/*
* Some level interrupts have been EOIed. Clear their
* active bit.
*/
u64 eisr = vgic_get_eisr(vcpu);
unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
int lr;
for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
WARN_ON(vlr.state & LR_STATE_MASK);
/*
* kvm_notify_acked_irq calls kvm_set_irq()
* to reset the IRQ level, which grabs the dist->lock
* so we call this before taking the dist->lock.
*/
kvm_notify_acked_irq(kvm, 0,
vlr.irq - VGIC_NR_PRIVATE_IRQS);
spin_lock(&dist->lock);
level_pending |= process_queued_irq(vcpu, lr, vlr);
spin_unlock(&dist->lock);
}
}
if (status & INT_STATUS_UNDERFLOW)
vgic_disable_underflow(vcpu);
/*
* In the next iterations of the vcpu loop, if we sync the vgic state
* after flushing it, but before entering the guest (this happens for
* pending signals and vmid rollovers), then make sure we don't pick
* up any old maintenance interrupts here.
*/
vgic_clear_eisr(vcpu);
return level_pending;
}
/*
* Save the physical active state, and reset it to inactive.
*
* Return true if there's a pending forwarded interrupt to queue.
*/
static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct irq_phys_map *map;
bool phys_active;
bool level_pending;
int ret;
if (!(vlr.state & LR_HW))
return false;
map = vgic_irq_map_search(vcpu, vlr.irq);
BUG_ON(!map);
ret = irq_get_irqchip_state(map->irq,
IRQCHIP_STATE_ACTIVE,
&phys_active);
WARN_ON(ret);
if (phys_active)
return 0;
spin_lock(&dist->lock);
level_pending = process_queued_irq(vcpu, lr, vlr);
spin_unlock(&dist->lock);
return level_pending;
}
/* Sync back the VGIC state after a guest run */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
u64 elrsr;
unsigned long *elrsr_ptr;
int lr, pending;
bool level_pending;
level_pending = vgic_process_maintenance(vcpu);
/* Deal with HW interrupts, and clear mappings for empty LRs */
for (lr = 0; lr < vgic->nr_lr; lr++) {
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
BUG_ON(vlr.irq >= dist->nr_irqs);
}
/* Check if we still have something up our sleeve... */
elrsr = vgic_get_elrsr(vcpu);
elrsr_ptr = u64_to_bitmask(&elrsr);
pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
if (level_pending || pending < vgic->nr_lr)
set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return;
spin_lock(&dist->lock);
__kvm_vgic_flush_hwstate(vcpu);
spin_unlock(&dist->lock);
}
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
if (!irqchip_in_kernel(vcpu->kvm))
return;
__kvm_vgic_sync_hwstate(vcpu);
}
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return 0;
return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}
int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return 0;
return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
}
void vgic_kick_vcpus(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
int c;
/*
* We've injected an interrupt, time to find out who deserves
* a good kick...
*/
kvm_for_each_vcpu(c, vcpu, kvm) {
if (kvm_vgic_vcpu_pending_irq(vcpu))
kvm_vcpu_kick(vcpu);
}
}
static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
int edge_triggered = vgic_irq_is_edge(vcpu, irq);
/*
* Only inject an interrupt if:
* - edge triggered and we have a rising edge
* - level triggered and we change level
*/
if (edge_triggered) {
int state = vgic_dist_irq_is_pending(vcpu, irq);
return level > state;
} else {
int state = vgic_dist_irq_get_level(vcpu, irq);
return level != state;
}
}
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
struct irq_phys_map *map,
unsigned int irq_num, bool level)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int edge_triggered, level_triggered;
int enabled;
bool ret = true, can_inject = true;
trace_vgic_update_irq_pending(cpuid, irq_num, level);
if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
return -EINVAL;
spin_lock(&dist->lock);
vcpu = kvm_get_vcpu(kvm, cpuid);
edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
level_triggered = !edge_triggered;
if (!vgic_validate_injection(vcpu, irq_num, level)) {
ret = false;
goto out;
}
if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
if (cpuid == VCPU_NOT_ALLOCATED) {
/* Pretend we use CPU0, and prevent injection */
cpuid = 0;
can_inject = false;
}
vcpu = kvm_get_vcpu(kvm, cpuid);
}
kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
if (level) {
if (level_triggered)
vgic_dist_irq_set_level(vcpu, irq_num);
vgic_dist_irq_set_pending(vcpu, irq_num);
} else {
if (level_triggered) {
vgic_dist_irq_clear_level(vcpu, irq_num);
if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
vgic_dist_irq_clear_pending(vcpu, irq_num);
vgic_cpu_irq_clear(vcpu, irq_num);
if (!compute_pending_for_cpu(vcpu))
clear_bit(cpuid, dist->irq_pending_on_cpu);
}
}
ret = false;
goto out;
}
enabled = vgic_irq_is_enabled(vcpu, irq_num);
if (!enabled || !can_inject) {
ret = false;
goto out;
}
if (!vgic_can_sample_irq(vcpu, irq_num)) {
/*
* Level interrupt in progress, will be picked up
* when EOId.
*/
ret = false;
goto out;
}
if (level) {
vgic_cpu_irq_set(vcpu, irq_num);
set_bit(cpuid, dist->irq_pending_on_cpu);
}
out:
spin_unlock(&dist->lock);
if (ret) {
/* kick the specified vcpu */
kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
}
return 0;
}
static int vgic_lazy_init(struct kvm *kvm)
{
int ret = 0;
if (unlikely(!vgic_initialized(kvm))) {
/*
* We only provide the automatic initialization of the VGIC
* for the legacy case of a GICv2. Any other type must
* be explicitly initialized once setup with the respective
* KVM device call.
*/
if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
return -EBUSY;
mutex_lock(&kvm->lock);
ret = vgic_init(kvm);
mutex_unlock(&kvm->lock);
}
return ret;
}
/**
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
* @kvm: The VM structure pointer
* @cpuid: The CPU for PPIs
* @irq_num: The IRQ number that is assigned to the device. This IRQ
* must not be mapped to a HW interrupt.
* @level: Edge-triggered: true: to trigger the interrupt
* false: to ignore the call
* Level-sensitive true: raise the input signal
* false: lower the input signal
*
* The GIC is not concerned with devices being active-LOW or active-HIGH for
* level-sensitive interrupts. You can think of the level parameter as 1
* being HIGH and 0 being LOW and all devices being active-HIGH.
*/
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
bool level)
{
struct irq_phys_map *map;
int ret;
ret = vgic_lazy_init(kvm);
if (ret)
return ret;
map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
if (map)
return -EINVAL;
return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
}
/**
* kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
* @kvm: The VM structure pointer
* @cpuid: The CPU for PPIs
* @map: Pointer to a irq_phys_map structure describing the mapping
* @level: Edge-triggered: true: to trigger the interrupt
* false: to ignore the call
* Level-sensitive true: raise the input signal
* false: lower the input signal
*
* The GIC is not concerned with devices being active-LOW or active-HIGH for
* level-sensitive interrupts. You can think of the level parameter as 1
* being HIGH and 0 being LOW and all devices being active-HIGH.
*/
int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
struct irq_phys_map *map, bool level)
{
int ret;
ret = vgic_lazy_init(kvm);
if (ret)
return ret;
return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
}
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
/*
* We cannot rely on the vgic maintenance interrupt to be
* delivered synchronously. This means we can only use it to
* exit the VM, and we perform the handling of EOIed
* interrupts on the exit path (see vgic_process_maintenance).
*/
return IRQ_HANDLED;
}
static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
int virt_irq)
{
if (virt_irq < VGIC_NR_PRIVATE_IRQS)
return &vcpu->arch.vgic_cpu.irq_phys_map_list;
else
return &vcpu->kvm->arch.vgic.irq_phys_map_list;
}
/**
* kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
* @vcpu: The VCPU pointer
* @virt_irq: The virtual irq number
* @irq: The Linux IRQ number
*
* Establish a mapping between a guest visible irq (@virt_irq) and a
* Linux irq (@irq). On injection, @virt_irq will be associated with
* the physical interrupt represented by @irq. This mapping can be
* established multiple times as long as the parameters are the same.
*
* Returns a valid pointer on success, and an error pointer otherwise
*/
struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
int virt_irq, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
struct irq_phys_map *map;
struct irq_phys_map_entry *entry;
struct irq_desc *desc;
struct irq_data *data;
int phys_irq;
desc = irq_to_desc(irq);
if (!desc) {
kvm_err("%s: no interrupt descriptor\n", __func__);
return ERR_PTR(-EINVAL);
}
data = irq_desc_get_irq_data(desc);
while (data->parent_data)
data = data->parent_data;
phys_irq = data->hwirq;
/* Create a new mapping */
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return ERR_PTR(-ENOMEM);
spin_lock(&dist->irq_phys_map_lock);
/* Try to match an existing mapping */
map = vgic_irq_map_search(vcpu, virt_irq);
if (map) {
/* Make sure this mapping matches */
if (map->phys_irq != phys_irq ||
map->irq != irq)
map = ERR_PTR(-EINVAL);
/* Found an existing, valid mapping */
goto out;
}
map = &entry->map;
map->virt_irq = virt_irq;
map->phys_irq = phys_irq;
map->irq = irq;
list_add_tail_rcu(&entry->entry, root);
out:
spin_unlock(&dist->irq_phys_map_lock);
/* If we've found a hit in the existing list, free the useless
* entry */
if (IS_ERR(map) || map != &entry->map)
kfree(entry);
return map;
}
static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
int virt_irq)
{
struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
struct irq_phys_map_entry *entry;
struct irq_phys_map *map;
rcu_read_lock();
list_for_each_entry_rcu(entry, root, entry) {
map = &entry->map;
if (map->virt_irq == virt_irq) {
rcu_read_unlock();
return map;
}
}
rcu_read_unlock();
return NULL;
}
static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
{
struct irq_phys_map_entry *entry;
entry = container_of(rcu, struct irq_phys_map_entry, rcu);
kfree(entry);
}
/**
* kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
* @vcpu: The VCPU pointer
* @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
*
* Remove an existing mapping between virtual and physical interrupts.
*/
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct irq_phys_map_entry *entry;
struct list_head *root;
if (!map)
return -EINVAL;
root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
spin_lock(&dist->irq_phys_map_lock);
list_for_each_entry(entry, root, entry) {
if (&entry->map == map) {
list_del_rcu(&entry->entry);
call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
break;
}
}
spin_unlock(&dist->irq_phys_map_lock);
return 0;
}
static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct irq_phys_map_entry *entry;
spin_lock(&dist->irq_phys_map_lock);
list_for_each_entry(entry, root, entry) {
list_del_rcu(&entry->entry);
call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
}
spin_unlock(&dist->irq_phys_map_lock);
}
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
kfree(vgic_cpu->pending_shared);
kfree(vgic_cpu->active_shared);
kfree(vgic_cpu->pend_act_shared);
vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
vgic_cpu->pending_shared = NULL;
vgic_cpu->active_shared = NULL;
vgic_cpu->pend_act_shared = NULL;
}
static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
if (!vgic_cpu->pending_shared
|| !vgic_cpu->active_shared
|| !vgic_cpu->pend_act_shared) {
kvm_vgic_vcpu_destroy(vcpu);
return -ENOMEM;
}
/*
* Store the number of LRs per vcpu, so we don't have to go
* all the way to the distributor structure to find out. Only
* assembly code should use this one.
*/
vgic_cpu->nr_lr = vgic->nr_lr;
return 0;
}
/**
* kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
*
* No memory allocation should be performed here, only static init.
*/
void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
}
/**
* kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
*
* The host's GIC naturally limits the maximum amount of VCPUs a guest
* can use.
*/
int kvm_vgic_get_max_vcpus(void)
{
return vgic->max_gic_vcpus;
}
void kvm_vgic_destroy(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int i;
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vgic_vcpu_destroy(vcpu);
vgic_free_bitmap(&dist->irq_enabled);
vgic_free_bitmap(&dist->irq_level);
vgic_free_bitmap(&dist->irq_pending);
vgic_free_bitmap(&dist->irq_soft_pend);
vgic_free_bitmap(&dist->irq_queued);
vgic_free_bitmap(&dist->irq_cfg);
vgic_free_bytemap(&dist->irq_priority);
if (dist->irq_spi_target) {
for (i = 0; i < dist->nr_cpus; i++)
vgic_free_bitmap(&dist->irq_spi_target[i]);
}
kfree(dist->irq_sgi_sources);
kfree(dist->irq_spi_cpu);
kfree(dist->irq_spi_mpidr);
kfree(dist->irq_spi_target);
kfree(dist->irq_pending_on_cpu);
kfree(dist->irq_active_on_cpu);
vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
dist->irq_sgi_sources = NULL;
dist->irq_spi_cpu = NULL;
dist->irq_spi_target = NULL;
dist->irq_pending_on_cpu = NULL;
dist->irq_active_on_cpu = NULL;
dist->nr_cpus = 0;
}
/*
* Allocate and initialize the various data structures. Must be called
* with kvm->lock held!
*/
int vgic_init(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int nr_cpus, nr_irqs;
int ret, i, vcpu_id;
if (vgic_initialized(kvm))
return 0;
nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
if (!nr_cpus) /* No vcpus? Can't be good... */
return -ENODEV;
/*
* If nobody configured the number of interrupts, use the
* legacy one.
*/
if (!dist->nr_irqs)
dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
nr_irqs = dist->nr_irqs;
ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
if (ret)
goto out;
dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
GFP_KERNEL);
dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
GFP_KERNEL);
dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
GFP_KERNEL);
if (!dist->irq_sgi_sources ||
!dist->irq_spi_cpu ||
!dist->irq_spi_target ||
!dist->irq_pending_on_cpu ||
!dist->irq_active_on_cpu) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < nr_cpus; i++)
ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
nr_cpus, nr_irqs);
if (ret)
goto out;
ret = kvm->arch.vgic.vm_ops.init_model(kvm);
if (ret)
goto out;
kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
if (ret) {
kvm_err("VGIC: Failed to allocate vcpu memory\n");
break;
}
/*
* Enable and configure all SGIs to be edge-triggere and
* configure all PPIs as level-triggered.
*/
for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
if (i < VGIC_NR_SGIS) {
/* SGIs */
vgic_bitmap_set_irq_val(&dist->irq_enabled,
vcpu->vcpu_id, i, 1);
vgic_bitmap_set_irq_val(&dist->irq_cfg,
vcpu->vcpu_id, i,
VGIC_CFG_EDGE);
} else if (i < VGIC_NR_PRIVATE_IRQS) {
/* PPIs */
vgic_bitmap_set_irq_val(&dist->irq_cfg,
vcpu->vcpu_id, i,
VGIC_CFG_LEVEL);
}
}
vgic_enable(vcpu);
}
out:
if (ret)
kvm_vgic_destroy(kvm);
return ret;
}
static int init_vgic_model(struct kvm *kvm, int type)
{
switch (type) {
case KVM_DEV_TYPE_ARM_VGIC_V2:
vgic_v2_init_emulation(kvm);
break;
#ifdef CONFIG_KVM_ARM_VGIC_V3
case KVM_DEV_TYPE_ARM_VGIC_V3:
vgic_v3_init_emulation(kvm);
break;
#endif
default:
return -ENODEV;
}
if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
return -E2BIG;
return 0;
}
/**
* kvm_vgic_early_init - Earliest possible vgic initialization stage
*
* No memory allocation should be performed here, only static init.
*/
void kvm_vgic_early_init(struct kvm *kvm)
{
spin_lock_init(&kvm->arch.vgic.lock);
spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
}
int kvm_vgic_create(struct kvm *kvm, u32 type)
{
int i, vcpu_lock_idx = -1, ret;
struct kvm_vcpu *vcpu;
mutex_lock(&kvm->lock);
if (irqchip_in_kernel(kvm)) {
ret = -EEXIST;
goto out;
}
/*
* This function is also called by the KVM_CREATE_IRQCHIP handler,
* which had no chance yet to check the availability of the GICv2
* emulation. So check this here again. KVM_CREATE_DEVICE does
* the proper checks already.
*/
if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
ret = -ENODEV;
goto out;
}
/*
* Any time a vcpu is run, vcpu_load is called which tries to grab the
* vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
* that no other VCPUs are run while we create the vgic.
*/
ret = -EBUSY;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!mutex_trylock(&vcpu->mutex))
goto out_unlock;
vcpu_lock_idx = i;
}
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->arch.has_run_once)
goto out_unlock;
}
ret = 0;
ret = init_vgic_model(kvm, type);
if (ret)
goto out_unlock;
kvm->arch.vgic.in_kernel = true;
kvm->arch.vgic.vgic_model = type;
kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
out_unlock:
for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
mutex_unlock(&vcpu->mutex);
}
out:
mutex_unlock(&kvm->lock);
return ret;
}
static int vgic_ioaddr_overlap(struct kvm *kvm)
{
phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
return 0;
if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
(cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
return -EBUSY;
return 0;
}
static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
phys_addr_t addr, phys_addr_t size)
{
int ret;
if (addr & ~KVM_PHYS_MASK)
return -E2BIG;
if (addr & (SZ_4K - 1))
return -EINVAL;
if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
return -EEXIST;
if (addr + size < addr)
return -EINVAL;
*ioaddr = addr;
ret = vgic_ioaddr_overlap(kvm);
if (ret)
*ioaddr = VGIC_ADDR_UNDEF;
return ret;
}
/**
* kvm_vgic_addr - set or get vgic VM base addresses
* @kvm: pointer to the vm struct
* @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
* @addr: pointer to address value
* @write: if true set the address in the VM address space, if false read the
* address
*
* Set or get the vgic base addresses for the distributor and the virtual CPU
* interface in the VM physical address space. These addresses are properties
* of the emulated core/SoC and therefore user space initially knows this
* information.
*/
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
{
int r = 0;
struct vgic_dist *vgic = &kvm->arch.vgic;
int type_needed;
phys_addr_t *addr_ptr, block_size;
phys_addr_t alignment;
mutex_lock(&kvm->lock);
switch (type) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
addr_ptr = &vgic->vgic_dist_base;
block_size = KVM_VGIC_V2_DIST_SIZE;
alignment = SZ_4K;
break;
case KVM_VGIC_V2_ADDR_TYPE_CPU:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
addr_ptr = &vgic->vgic_cpu_base;
block_size = KVM_VGIC_V2_CPU_SIZE;
alignment = SZ_4K;
break;
#ifdef CONFIG_KVM_ARM_VGIC_V3
case KVM_VGIC_V3_ADDR_TYPE_DIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
addr_ptr = &vgic->vgic_dist_base;
block_size = KVM_VGIC_V3_DIST_SIZE;
alignment = SZ_64K;
break;
case KVM_VGIC_V3_ADDR_TYPE_REDIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
addr_ptr = &vgic->vgic_redist_base;
block_size = KVM_VGIC_V3_REDIST_SIZE;
alignment = SZ_64K;
break;
#endif
default:
r = -ENODEV;
goto out;
}
if (vgic->vgic_model != type_needed) {
r = -ENODEV;
goto out;
}
if (write) {
if (!IS_ALIGNED(*addr, alignment))
r = -EINVAL;
else
r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
block_size);
} else {
*addr = *addr_ptr;
}
out:
mutex_unlock(&kvm->lock);
return r;
}
int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
u64 addr;
unsigned long type = (unsigned long)attr->attr;
if (copy_from_user(&addr, uaddr, sizeof(addr)))
return -EFAULT;
r = kvm_vgic_addr(dev->kvm, type, &addr, true);
return (r == -ENODEV) ? -ENXIO : r;
}
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 val;
int ret = 0;
if (get_user(val, uaddr))
return -EFAULT;
/*
* We require:
* - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
* - at most 1024 interrupts
* - a multiple of 32 interrupts
*/
if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
val > VGIC_MAX_IRQS ||
(val & 31))
return -EINVAL;
mutex_lock(&dev->kvm->lock);
if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
ret = -EBUSY;
else
dev->kvm->arch.vgic.nr_irqs = val;
mutex_unlock(&dev->kvm->lock);
return ret;
}
case KVM_DEV_ARM_VGIC_GRP_CTRL: {
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
r = vgic_init(dev->kvm);
return r;
}
break;
}
}
return -ENXIO;
}
int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r = -ENXIO;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
u64 addr;
unsigned long type = (unsigned long)attr->attr;
r = kvm_vgic_addr(dev->kvm, type, &addr, false);
if (r)
return (r == -ENODEV) ? -ENXIO : r;
if (copy_to_user(uaddr, &addr, sizeof(addr)))
return -EFAULT;
break;
}
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
break;
}
}
return r;
}
int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
{
if (vgic_find_range(ranges, 4, offset))
return 0;
else
return -ENXIO;
}
static void vgic_init_maintenance_interrupt(void *info)
{
enable_percpu_irq(vgic->maint_irq, 0);
}
static int vgic_cpu_notify(struct notifier_block *self,
unsigned long action, void *cpu)
{
switch (action) {
case CPU_STARTING:
case CPU_STARTING_FROZEN:
vgic_init_maintenance_interrupt(NULL);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
disable_percpu_irq(vgic->maint_irq);
break;
}
return NOTIFY_OK;
}
static struct notifier_block vgic_cpu_nb = {
.notifier_call = vgic_cpu_notify,
};
static const struct of_device_id vgic_ids[] = {
{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
{ .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
{ .compatible = "arm,gic-400", .data = vgic_v2_probe, },
{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
{},
};
int kvm_vgic_hyp_init(void)
{
const struct of_device_id *matched_id;
const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
const struct vgic_params **);
struct device_node *vgic_node;
int ret;
vgic_node = of_find_matching_node_and_match(NULL,
vgic_ids, &matched_id);
if (!vgic_node) {
kvm_err("error: no compatible GIC node found\n");
return -ENODEV;
}
vgic_probe = matched_id->data;
ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
if (ret)
return ret;
ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
"vgic", kvm_get_running_vcpus());
if (ret) {
kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
return ret;
}
ret = __register_cpu_notifier(&vgic_cpu_nb);
if (ret) {
kvm_err("Cannot register vgic CPU notifier\n");
goto out_free_irq;
}
on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
return 0;
out_free_irq:
free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
return ret;
}
int kvm_irq_map_gsi(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *entries,
int gsi)
{
return 0;
}
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
{
return pin;
}
int kvm_set_irq(struct kvm *kvm, int irq_source_id,
u32 irq, int level, bool line_status)
{
unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
trace_kvm_set_irq(irq, level, irq_source_id);
BUG_ON(!vgic_initialized(kvm));
return kvm_vgic_inject_irq(kvm, 0, spi, level);
}
/* MSI not implemented yet */
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id,
int level, bool line_status)
{
return 0;
}