mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 04:19:08 +00:00
36ed2176fe
The doorbell reset initially appears to work correctly, the controller resets, comes up, some i/o can even be done, but on at least some Smart Arrays in some servers, it eventually causes a subsequent controller lockup due to some kind of PCIe error, and kdump can end up leaving the root filesystem in an unbootable state. For this reason, until the problem is fixed, or at least isolated to certain hardware enough to be avoided, the doorbell reset should not be used at all. Signed-off-by: Stephen M. Cameron <scameron@beardog.cce.hp.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de>
4123 lines
114 KiB
C
4123 lines
114 KiB
C
/*
|
|
* Disk Array driver for HP Smart Array SAS controllers
|
|
* Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/blktrace_api.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_tcq.h>
|
|
#include <linux/cciss_ioctl.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bitmap.h>
|
|
#include <asm/atomic.h>
|
|
#include <linux/kthread.h>
|
|
#include "hpsa_cmd.h"
|
|
#include "hpsa.h"
|
|
|
|
/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
|
|
#define HPSA_DRIVER_VERSION "2.0.2-1"
|
|
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
|
|
|
|
/* How long to wait (in milliseconds) for board to go into simple mode */
|
|
#define MAX_CONFIG_WAIT 30000
|
|
#define MAX_IOCTL_CONFIG_WAIT 1000
|
|
|
|
/*define how many times we will try a command because of bus resets */
|
|
#define MAX_CMD_RETRIES 3
|
|
|
|
/* Embedded module documentation macros - see modules.h */
|
|
MODULE_AUTHOR("Hewlett-Packard Company");
|
|
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
|
|
HPSA_DRIVER_VERSION);
|
|
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
|
|
MODULE_VERSION(HPSA_DRIVER_VERSION);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int hpsa_allow_any;
|
|
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(hpsa_allow_any,
|
|
"Allow hpsa driver to access unknown HP Smart Array hardware");
|
|
|
|
/* define the PCI info for the cards we can control */
|
|
static const struct pci_device_id hpsa_pci_device_id[] = {
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
|
|
#define PCI_DEVICE_ID_HP_CISSF 0x333f
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x333F},
|
|
{PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
|
|
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
|
|
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
|
|
{0,}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
|
|
|
|
/* board_id = Subsystem Device ID & Vendor ID
|
|
* product = Marketing Name for the board
|
|
* access = Address of the struct of function pointers
|
|
*/
|
|
static struct board_type products[] = {
|
|
{0x3241103C, "Smart Array P212", &SA5_access},
|
|
{0x3243103C, "Smart Array P410", &SA5_access},
|
|
{0x3245103C, "Smart Array P410i", &SA5_access},
|
|
{0x3247103C, "Smart Array P411", &SA5_access},
|
|
{0x3249103C, "Smart Array P812", &SA5_access},
|
|
{0x324a103C, "Smart Array P712m", &SA5_access},
|
|
{0x324b103C, "Smart Array P711m", &SA5_access},
|
|
{0x3233103C, "StorageWorks P1210m", &SA5_access},
|
|
{0x333F103C, "StorageWorks P1210m", &SA5_access},
|
|
{0x3250103C, "Smart Array", &SA5_access},
|
|
{0x3250113C, "Smart Array", &SA5_access},
|
|
{0x3250123C, "Smart Array", &SA5_access},
|
|
{0x3250133C, "Smart Array", &SA5_access},
|
|
{0x3250143C, "Smart Array", &SA5_access},
|
|
{0xFFFF103C, "Unknown Smart Array", &SA5_access},
|
|
};
|
|
|
|
static int number_of_controllers;
|
|
|
|
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
|
|
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
|
|
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
|
|
static void start_io(struct ctlr_info *h);
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
|
|
#endif
|
|
|
|
static void cmd_free(struct ctlr_info *h, struct CommandList *c);
|
|
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
|
|
static struct CommandList *cmd_alloc(struct ctlr_info *h);
|
|
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
|
|
static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
|
|
void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
|
|
int cmd_type);
|
|
|
|
static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
|
|
void (*done)(struct scsi_cmnd *));
|
|
static void hpsa_scan_start(struct Scsi_Host *);
|
|
static int hpsa_scan_finished(struct Scsi_Host *sh,
|
|
unsigned long elapsed_time);
|
|
static int hpsa_change_queue_depth(struct scsi_device *sdev,
|
|
int qdepth, int reason);
|
|
|
|
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
|
|
static int hpsa_slave_alloc(struct scsi_device *sdev);
|
|
static void hpsa_slave_destroy(struct scsi_device *sdev);
|
|
|
|
static ssize_t raid_level_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf);
|
|
static ssize_t lunid_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf);
|
|
static ssize_t unique_id_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf);
|
|
static ssize_t host_show_firmware_revision(struct device *dev,
|
|
struct device_attribute *attr, char *buf);
|
|
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
|
|
static ssize_t host_store_rescan(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count);
|
|
static int check_for_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c);
|
|
static void check_ioctl_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c);
|
|
/* performant mode helper functions */
|
|
static void calc_bucket_map(int *bucket, int num_buckets,
|
|
int nsgs, int *bucket_map);
|
|
static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
|
|
static inline u32 next_command(struct ctlr_info *h);
|
|
static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
|
|
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
|
|
u64 *cfg_offset);
|
|
static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
|
|
unsigned long *memory_bar);
|
|
static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
|
|
|
|
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
|
|
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
|
|
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
|
|
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
|
|
static DEVICE_ATTR(firmware_revision, S_IRUGO,
|
|
host_show_firmware_revision, NULL);
|
|
|
|
static struct device_attribute *hpsa_sdev_attrs[] = {
|
|
&dev_attr_raid_level,
|
|
&dev_attr_lunid,
|
|
&dev_attr_unique_id,
|
|
NULL,
|
|
};
|
|
|
|
static struct device_attribute *hpsa_shost_attrs[] = {
|
|
&dev_attr_rescan,
|
|
&dev_attr_firmware_revision,
|
|
NULL,
|
|
};
|
|
|
|
static struct scsi_host_template hpsa_driver_template = {
|
|
.module = THIS_MODULE,
|
|
.name = "hpsa",
|
|
.proc_name = "hpsa",
|
|
.queuecommand = hpsa_scsi_queue_command,
|
|
.scan_start = hpsa_scan_start,
|
|
.scan_finished = hpsa_scan_finished,
|
|
.change_queue_depth = hpsa_change_queue_depth,
|
|
.this_id = -1,
|
|
.use_clustering = ENABLE_CLUSTERING,
|
|
.eh_device_reset_handler = hpsa_eh_device_reset_handler,
|
|
.ioctl = hpsa_ioctl,
|
|
.slave_alloc = hpsa_slave_alloc,
|
|
.slave_destroy = hpsa_slave_destroy,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = hpsa_compat_ioctl,
|
|
#endif
|
|
.sdev_attrs = hpsa_sdev_attrs,
|
|
.shost_attrs = hpsa_shost_attrs,
|
|
};
|
|
|
|
static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
|
|
{
|
|
unsigned long *priv = shost_priv(sdev->host);
|
|
return (struct ctlr_info *) *priv;
|
|
}
|
|
|
|
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
|
|
{
|
|
unsigned long *priv = shost_priv(sh);
|
|
return (struct ctlr_info *) *priv;
|
|
}
|
|
|
|
static int check_for_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
|
|
return 0;
|
|
|
|
switch (c->err_info->SenseInfo[12]) {
|
|
case STATE_CHANGED:
|
|
dev_warn(&h->pdev->dev, "hpsa%d: a state change "
|
|
"detected, command retried\n", h->ctlr);
|
|
break;
|
|
case LUN_FAILED:
|
|
dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
|
|
"detected, action required\n", h->ctlr);
|
|
break;
|
|
case REPORT_LUNS_CHANGED:
|
|
dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
|
|
"changed, action required\n", h->ctlr);
|
|
/*
|
|
* Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
|
|
*/
|
|
break;
|
|
case POWER_OR_RESET:
|
|
dev_warn(&h->pdev->dev, "hpsa%d: a power on "
|
|
"or device reset detected\n", h->ctlr);
|
|
break;
|
|
case UNIT_ATTENTION_CLEARED:
|
|
dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
|
|
"cleared by another initiator\n", h->ctlr);
|
|
break;
|
|
default:
|
|
dev_warn(&h->pdev->dev, "hpsa%d: unknown "
|
|
"unit attention detected\n", h->ctlr);
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static ssize_t host_store_rescan(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
h = shost_to_hba(shost);
|
|
hpsa_scan_start(h->scsi_host);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t host_show_firmware_revision(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct Scsi_Host *shost = class_to_shost(dev);
|
|
unsigned char *fwrev;
|
|
|
|
h = shost_to_hba(shost);
|
|
if (!h->hba_inquiry_data)
|
|
return 0;
|
|
fwrev = &h->hba_inquiry_data[32];
|
|
return snprintf(buf, 20, "%c%c%c%c\n",
|
|
fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
|
|
}
|
|
|
|
/* Enqueuing and dequeuing functions for cmdlists. */
|
|
static inline void addQ(struct hlist_head *list, struct CommandList *c)
|
|
{
|
|
hlist_add_head(&c->list, list);
|
|
}
|
|
|
|
static inline u32 next_command(struct ctlr_info *h)
|
|
{
|
|
u32 a;
|
|
|
|
if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
|
|
return h->access.command_completed(h);
|
|
|
|
if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
|
|
a = *(h->reply_pool_head); /* Next cmd in ring buffer */
|
|
(h->reply_pool_head)++;
|
|
h->commands_outstanding--;
|
|
} else {
|
|
a = FIFO_EMPTY;
|
|
}
|
|
/* Check for wraparound */
|
|
if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
|
|
h->reply_pool_head = h->reply_pool;
|
|
h->reply_pool_wraparound ^= 1;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/* set_performant_mode: Modify the tag for cciss performant
|
|
* set bit 0 for pull model, bits 3-1 for block fetch
|
|
* register number
|
|
*/
|
|
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
|
|
{
|
|
if (likely(h->transMethod == CFGTBL_Trans_Performant))
|
|
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
|
|
}
|
|
|
|
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
unsigned long flags;
|
|
|
|
set_performant_mode(h, c);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
addQ(&h->reqQ, c);
|
|
h->Qdepth++;
|
|
start_io(h);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
static inline void removeQ(struct CommandList *c)
|
|
{
|
|
if (WARN_ON(hlist_unhashed(&c->list)))
|
|
return;
|
|
hlist_del_init(&c->list);
|
|
}
|
|
|
|
static inline int is_hba_lunid(unsigned char scsi3addr[])
|
|
{
|
|
return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
|
|
}
|
|
|
|
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
|
|
{
|
|
return (scsi3addr[3] & 0xC0) == 0x40;
|
|
}
|
|
|
|
static inline int is_scsi_rev_5(struct ctlr_info *h)
|
|
{
|
|
if (!h->hba_inquiry_data)
|
|
return 0;
|
|
if ((h->hba_inquiry_data[2] & 0x07) == 5)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
|
|
"UNKNOWN"
|
|
};
|
|
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
|
|
|
|
static ssize_t raid_level_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
ssize_t l = 0;
|
|
unsigned char rlevel;
|
|
struct ctlr_info *h;
|
|
struct scsi_device *sdev;
|
|
struct hpsa_scsi_dev_t *hdev;
|
|
unsigned long flags;
|
|
|
|
sdev = to_scsi_device(dev);
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
hdev = sdev->hostdata;
|
|
if (!hdev) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Is this even a logical drive? */
|
|
if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
l = snprintf(buf, PAGE_SIZE, "N/A\n");
|
|
return l;
|
|
}
|
|
|
|
rlevel = hdev->raid_level;
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (rlevel > RAID_UNKNOWN)
|
|
rlevel = RAID_UNKNOWN;
|
|
l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
|
|
return l;
|
|
}
|
|
|
|
static ssize_t lunid_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct scsi_device *sdev;
|
|
struct hpsa_scsi_dev_t *hdev;
|
|
unsigned long flags;
|
|
unsigned char lunid[8];
|
|
|
|
sdev = to_scsi_device(dev);
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
hdev = sdev->hostdata;
|
|
if (!hdev) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
lunid[0], lunid[1], lunid[2], lunid[3],
|
|
lunid[4], lunid[5], lunid[6], lunid[7]);
|
|
}
|
|
|
|
static ssize_t unique_id_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct ctlr_info *h;
|
|
struct scsi_device *sdev;
|
|
struct hpsa_scsi_dev_t *hdev;
|
|
unsigned long flags;
|
|
unsigned char sn[16];
|
|
|
|
sdev = to_scsi_device(dev);
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
hdev = sdev->hostdata;
|
|
if (!hdev) {
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
memcpy(sn, hdev->device_id, sizeof(sn));
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return snprintf(buf, 16 * 2 + 2,
|
|
"%02X%02X%02X%02X%02X%02X%02X%02X"
|
|
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
|
|
sn[0], sn[1], sn[2], sn[3],
|
|
sn[4], sn[5], sn[6], sn[7],
|
|
sn[8], sn[9], sn[10], sn[11],
|
|
sn[12], sn[13], sn[14], sn[15]);
|
|
}
|
|
|
|
static int hpsa_find_target_lun(struct ctlr_info *h,
|
|
unsigned char scsi3addr[], int bus, int *target, int *lun)
|
|
{
|
|
/* finds an unused bus, target, lun for a new physical device
|
|
* assumes h->devlock is held
|
|
*/
|
|
int i, found = 0;
|
|
DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
|
|
|
|
memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
|
|
|
|
for (i = 0; i < h->ndevices; i++) {
|
|
if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
|
|
set_bit(h->dev[i]->target, lun_taken);
|
|
}
|
|
|
|
for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
|
|
if (!test_bit(i, lun_taken)) {
|
|
/* *bus = 1; */
|
|
*target = i;
|
|
*lun = 0;
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
return !found;
|
|
}
|
|
|
|
/* Add an entry into h->dev[] array. */
|
|
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
|
|
struct hpsa_scsi_dev_t *device,
|
|
struct hpsa_scsi_dev_t *added[], int *nadded)
|
|
{
|
|
/* assumes h->devlock is held */
|
|
int n = h->ndevices;
|
|
int i;
|
|
unsigned char addr1[8], addr2[8];
|
|
struct hpsa_scsi_dev_t *sd;
|
|
|
|
if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
|
|
dev_err(&h->pdev->dev, "too many devices, some will be "
|
|
"inaccessible.\n");
|
|
return -1;
|
|
}
|
|
|
|
/* physical devices do not have lun or target assigned until now. */
|
|
if (device->lun != -1)
|
|
/* Logical device, lun is already assigned. */
|
|
goto lun_assigned;
|
|
|
|
/* If this device a non-zero lun of a multi-lun device
|
|
* byte 4 of the 8-byte LUN addr will contain the logical
|
|
* unit no, zero otherise.
|
|
*/
|
|
if (device->scsi3addr[4] == 0) {
|
|
/* This is not a non-zero lun of a multi-lun device */
|
|
if (hpsa_find_target_lun(h, device->scsi3addr,
|
|
device->bus, &device->target, &device->lun) != 0)
|
|
return -1;
|
|
goto lun_assigned;
|
|
}
|
|
|
|
/* This is a non-zero lun of a multi-lun device.
|
|
* Search through our list and find the device which
|
|
* has the same 8 byte LUN address, excepting byte 4.
|
|
* Assign the same bus and target for this new LUN.
|
|
* Use the logical unit number from the firmware.
|
|
*/
|
|
memcpy(addr1, device->scsi3addr, 8);
|
|
addr1[4] = 0;
|
|
for (i = 0; i < n; i++) {
|
|
sd = h->dev[i];
|
|
memcpy(addr2, sd->scsi3addr, 8);
|
|
addr2[4] = 0;
|
|
/* differ only in byte 4? */
|
|
if (memcmp(addr1, addr2, 8) == 0) {
|
|
device->bus = sd->bus;
|
|
device->target = sd->target;
|
|
device->lun = device->scsi3addr[4];
|
|
break;
|
|
}
|
|
}
|
|
if (device->lun == -1) {
|
|
dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
|
|
" suspect firmware bug or unsupported hardware "
|
|
"configuration.\n");
|
|
return -1;
|
|
}
|
|
|
|
lun_assigned:
|
|
|
|
h->dev[n] = device;
|
|
h->ndevices++;
|
|
added[*nadded] = device;
|
|
(*nadded)++;
|
|
|
|
/* initially, (before registering with scsi layer) we don't
|
|
* know our hostno and we don't want to print anything first
|
|
* time anyway (the scsi layer's inquiries will show that info)
|
|
*/
|
|
/* if (hostno != -1) */
|
|
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
|
|
scsi_device_type(device->devtype), hostno,
|
|
device->bus, device->target, device->lun);
|
|
return 0;
|
|
}
|
|
|
|
/* Replace an entry from h->dev[] array. */
|
|
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
|
|
int entry, struct hpsa_scsi_dev_t *new_entry,
|
|
struct hpsa_scsi_dev_t *added[], int *nadded,
|
|
struct hpsa_scsi_dev_t *removed[], int *nremoved)
|
|
{
|
|
/* assumes h->devlock is held */
|
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
|
|
removed[*nremoved] = h->dev[entry];
|
|
(*nremoved)++;
|
|
h->dev[entry] = new_entry;
|
|
added[*nadded] = new_entry;
|
|
(*nadded)++;
|
|
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
|
|
scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
|
|
new_entry->target, new_entry->lun);
|
|
}
|
|
|
|
/* Remove an entry from h->dev[] array. */
|
|
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
|
|
struct hpsa_scsi_dev_t *removed[], int *nremoved)
|
|
{
|
|
/* assumes h->devlock is held */
|
|
int i;
|
|
struct hpsa_scsi_dev_t *sd;
|
|
|
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
|
|
|
|
sd = h->dev[entry];
|
|
removed[*nremoved] = h->dev[entry];
|
|
(*nremoved)++;
|
|
|
|
for (i = entry; i < h->ndevices-1; i++)
|
|
h->dev[i] = h->dev[i+1];
|
|
h->ndevices--;
|
|
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
|
|
scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
|
|
sd->lun);
|
|
}
|
|
|
|
#define SCSI3ADDR_EQ(a, b) ( \
|
|
(a)[7] == (b)[7] && \
|
|
(a)[6] == (b)[6] && \
|
|
(a)[5] == (b)[5] && \
|
|
(a)[4] == (b)[4] && \
|
|
(a)[3] == (b)[3] && \
|
|
(a)[2] == (b)[2] && \
|
|
(a)[1] == (b)[1] && \
|
|
(a)[0] == (b)[0])
|
|
|
|
static void fixup_botched_add(struct ctlr_info *h,
|
|
struct hpsa_scsi_dev_t *added)
|
|
{
|
|
/* called when scsi_add_device fails in order to re-adjust
|
|
* h->dev[] to match the mid layer's view.
|
|
*/
|
|
unsigned long flags;
|
|
int i, j;
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
for (i = 0; i < h->ndevices; i++) {
|
|
if (h->dev[i] == added) {
|
|
for (j = i; j < h->ndevices-1; j++)
|
|
h->dev[j] = h->dev[j+1];
|
|
h->ndevices--;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
kfree(added);
|
|
}
|
|
|
|
static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
|
|
struct hpsa_scsi_dev_t *dev2)
|
|
{
|
|
if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
|
|
(dev1->lun != -1 && dev2->lun != -1)) &&
|
|
dev1->devtype != 0x0C)
|
|
return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
|
|
|
|
/* we compare everything except lun and target as these
|
|
* are not yet assigned. Compare parts likely
|
|
* to differ first
|
|
*/
|
|
if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
|
|
sizeof(dev1->scsi3addr)) != 0)
|
|
return 0;
|
|
if (memcmp(dev1->device_id, dev2->device_id,
|
|
sizeof(dev1->device_id)) != 0)
|
|
return 0;
|
|
if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
|
|
return 0;
|
|
if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
|
|
return 0;
|
|
if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
|
|
return 0;
|
|
if (dev1->devtype != dev2->devtype)
|
|
return 0;
|
|
if (dev1->raid_level != dev2->raid_level)
|
|
return 0;
|
|
if (dev1->bus != dev2->bus)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Find needle in haystack. If exact match found, return DEVICE_SAME,
|
|
* and return needle location in *index. If scsi3addr matches, but not
|
|
* vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
|
|
* location in *index. If needle not found, return DEVICE_NOT_FOUND.
|
|
*/
|
|
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
|
|
struct hpsa_scsi_dev_t *haystack[], int haystack_size,
|
|
int *index)
|
|
{
|
|
int i;
|
|
#define DEVICE_NOT_FOUND 0
|
|
#define DEVICE_CHANGED 1
|
|
#define DEVICE_SAME 2
|
|
for (i = 0; i < haystack_size; i++) {
|
|
if (haystack[i] == NULL) /* previously removed. */
|
|
continue;
|
|
if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
|
|
*index = i;
|
|
if (device_is_the_same(needle, haystack[i]))
|
|
return DEVICE_SAME;
|
|
else
|
|
return DEVICE_CHANGED;
|
|
}
|
|
}
|
|
*index = -1;
|
|
return DEVICE_NOT_FOUND;
|
|
}
|
|
|
|
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
|
|
struct hpsa_scsi_dev_t *sd[], int nsds)
|
|
{
|
|
/* sd contains scsi3 addresses and devtypes, and inquiry
|
|
* data. This function takes what's in sd to be the current
|
|
* reality and updates h->dev[] to reflect that reality.
|
|
*/
|
|
int i, entry, device_change, changes = 0;
|
|
struct hpsa_scsi_dev_t *csd;
|
|
unsigned long flags;
|
|
struct hpsa_scsi_dev_t **added, **removed;
|
|
int nadded, nremoved;
|
|
struct Scsi_Host *sh = NULL;
|
|
|
|
added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
|
|
GFP_KERNEL);
|
|
removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
|
|
GFP_KERNEL);
|
|
|
|
if (!added || !removed) {
|
|
dev_warn(&h->pdev->dev, "out of memory in "
|
|
"adjust_hpsa_scsi_table\n");
|
|
goto free_and_out;
|
|
}
|
|
|
|
spin_lock_irqsave(&h->devlock, flags);
|
|
|
|
/* find any devices in h->dev[] that are not in
|
|
* sd[] and remove them from h->dev[], and for any
|
|
* devices which have changed, remove the old device
|
|
* info and add the new device info.
|
|
*/
|
|
i = 0;
|
|
nremoved = 0;
|
|
nadded = 0;
|
|
while (i < h->ndevices) {
|
|
csd = h->dev[i];
|
|
device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
|
|
if (device_change == DEVICE_NOT_FOUND) {
|
|
changes++;
|
|
hpsa_scsi_remove_entry(h, hostno, i,
|
|
removed, &nremoved);
|
|
continue; /* remove ^^^, hence i not incremented */
|
|
} else if (device_change == DEVICE_CHANGED) {
|
|
changes++;
|
|
hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
|
|
added, &nadded, removed, &nremoved);
|
|
/* Set it to NULL to prevent it from being freed
|
|
* at the bottom of hpsa_update_scsi_devices()
|
|
*/
|
|
sd[entry] = NULL;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
/* Now, make sure every device listed in sd[] is also
|
|
* listed in h->dev[], adding them if they aren't found
|
|
*/
|
|
|
|
for (i = 0; i < nsds; i++) {
|
|
if (!sd[i]) /* if already added above. */
|
|
continue;
|
|
device_change = hpsa_scsi_find_entry(sd[i], h->dev,
|
|
h->ndevices, &entry);
|
|
if (device_change == DEVICE_NOT_FOUND) {
|
|
changes++;
|
|
if (hpsa_scsi_add_entry(h, hostno, sd[i],
|
|
added, &nadded) != 0)
|
|
break;
|
|
sd[i] = NULL; /* prevent from being freed later. */
|
|
} else if (device_change == DEVICE_CHANGED) {
|
|
/* should never happen... */
|
|
changes++;
|
|
dev_warn(&h->pdev->dev,
|
|
"device unexpectedly changed.\n");
|
|
/* but if it does happen, we just ignore that device */
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->devlock, flags);
|
|
|
|
/* Don't notify scsi mid layer of any changes the first time through
|
|
* (or if there are no changes) scsi_scan_host will do it later the
|
|
* first time through.
|
|
*/
|
|
if (hostno == -1 || !changes)
|
|
goto free_and_out;
|
|
|
|
sh = h->scsi_host;
|
|
/* Notify scsi mid layer of any removed devices */
|
|
for (i = 0; i < nremoved; i++) {
|
|
struct scsi_device *sdev =
|
|
scsi_device_lookup(sh, removed[i]->bus,
|
|
removed[i]->target, removed[i]->lun);
|
|
if (sdev != NULL) {
|
|
scsi_remove_device(sdev);
|
|
scsi_device_put(sdev);
|
|
} else {
|
|
/* We don't expect to get here.
|
|
* future cmds to this device will get selection
|
|
* timeout as if the device was gone.
|
|
*/
|
|
dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
|
|
" for removal.", hostno, removed[i]->bus,
|
|
removed[i]->target, removed[i]->lun);
|
|
}
|
|
kfree(removed[i]);
|
|
removed[i] = NULL;
|
|
}
|
|
|
|
/* Notify scsi mid layer of any added devices */
|
|
for (i = 0; i < nadded; i++) {
|
|
if (scsi_add_device(sh, added[i]->bus,
|
|
added[i]->target, added[i]->lun) == 0)
|
|
continue;
|
|
dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
|
|
"device not added.\n", hostno, added[i]->bus,
|
|
added[i]->target, added[i]->lun);
|
|
/* now we have to remove it from h->dev,
|
|
* since it didn't get added to scsi mid layer
|
|
*/
|
|
fixup_botched_add(h, added[i]);
|
|
}
|
|
|
|
free_and_out:
|
|
kfree(added);
|
|
kfree(removed);
|
|
}
|
|
|
|
/*
|
|
* Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
|
|
* Assume's h->devlock is held.
|
|
*/
|
|
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
|
|
int bus, int target, int lun)
|
|
{
|
|
int i;
|
|
struct hpsa_scsi_dev_t *sd;
|
|
|
|
for (i = 0; i < h->ndevices; i++) {
|
|
sd = h->dev[i];
|
|
if (sd->bus == bus && sd->target == target && sd->lun == lun)
|
|
return sd;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* link sdev->hostdata to our per-device structure. */
|
|
static int hpsa_slave_alloc(struct scsi_device *sdev)
|
|
{
|
|
struct hpsa_scsi_dev_t *sd;
|
|
unsigned long flags;
|
|
struct ctlr_info *h;
|
|
|
|
h = sdev_to_hba(sdev);
|
|
spin_lock_irqsave(&h->devlock, flags);
|
|
sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
|
|
sdev_id(sdev), sdev->lun);
|
|
if (sd != NULL)
|
|
sdev->hostdata = sd;
|
|
spin_unlock_irqrestore(&h->devlock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static void hpsa_slave_destroy(struct scsi_device *sdev)
|
|
{
|
|
/* nothing to do. */
|
|
}
|
|
|
|
static void hpsa_scsi_setup(struct ctlr_info *h)
|
|
{
|
|
h->ndevices = 0;
|
|
h->scsi_host = NULL;
|
|
spin_lock_init(&h->devlock);
|
|
}
|
|
|
|
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
if (!h->cmd_sg_list)
|
|
return;
|
|
for (i = 0; i < h->nr_cmds; i++) {
|
|
kfree(h->cmd_sg_list[i]);
|
|
h->cmd_sg_list[i] = NULL;
|
|
}
|
|
kfree(h->cmd_sg_list);
|
|
h->cmd_sg_list = NULL;
|
|
}
|
|
|
|
static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
if (h->chainsize <= 0)
|
|
return 0;
|
|
|
|
h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
|
|
GFP_KERNEL);
|
|
if (!h->cmd_sg_list)
|
|
return -ENOMEM;
|
|
for (i = 0; i < h->nr_cmds; i++) {
|
|
h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
|
|
h->chainsize, GFP_KERNEL);
|
|
if (!h->cmd_sg_list[i])
|
|
goto clean;
|
|
}
|
|
return 0;
|
|
|
|
clean:
|
|
hpsa_free_sg_chain_blocks(h);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void hpsa_map_sg_chain_block(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct SGDescriptor *chain_sg, *chain_block;
|
|
u64 temp64;
|
|
|
|
chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
|
|
chain_block = h->cmd_sg_list[c->cmdindex];
|
|
chain_sg->Ext = HPSA_SG_CHAIN;
|
|
chain_sg->Len = sizeof(*chain_sg) *
|
|
(c->Header.SGTotal - h->max_cmd_sg_entries);
|
|
temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
|
|
PCI_DMA_TODEVICE);
|
|
chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
|
|
chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
|
|
}
|
|
|
|
static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
struct SGDescriptor *chain_sg;
|
|
union u64bit temp64;
|
|
|
|
if (c->Header.SGTotal <= h->max_cmd_sg_entries)
|
|
return;
|
|
|
|
chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
|
|
temp64.val32.lower = chain_sg->Addr.lower;
|
|
temp64.val32.upper = chain_sg->Addr.upper;
|
|
pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
static void complete_scsi_command(struct CommandList *cp,
|
|
int timeout, u32 tag)
|
|
{
|
|
struct scsi_cmnd *cmd;
|
|
struct ctlr_info *h;
|
|
struct ErrorInfo *ei;
|
|
|
|
unsigned char sense_key;
|
|
unsigned char asc; /* additional sense code */
|
|
unsigned char ascq; /* additional sense code qualifier */
|
|
|
|
ei = cp->err_info;
|
|
cmd = (struct scsi_cmnd *) cp->scsi_cmd;
|
|
h = cp->h;
|
|
|
|
scsi_dma_unmap(cmd); /* undo the DMA mappings */
|
|
if (cp->Header.SGTotal > h->max_cmd_sg_entries)
|
|
hpsa_unmap_sg_chain_block(h, cp);
|
|
|
|
cmd->result = (DID_OK << 16); /* host byte */
|
|
cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
|
|
cmd->result |= ei->ScsiStatus;
|
|
|
|
/* copy the sense data whether we need to or not. */
|
|
memcpy(cmd->sense_buffer, ei->SenseInfo,
|
|
ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
|
|
SCSI_SENSE_BUFFERSIZE :
|
|
ei->SenseLen);
|
|
scsi_set_resid(cmd, ei->ResidualCnt);
|
|
|
|
if (ei->CommandStatus == 0) {
|
|
cmd->scsi_done(cmd);
|
|
cmd_free(h, cp);
|
|
return;
|
|
}
|
|
|
|
/* an error has occurred */
|
|
switch (ei->CommandStatus) {
|
|
|
|
case CMD_TARGET_STATUS:
|
|
if (ei->ScsiStatus) {
|
|
/* Get sense key */
|
|
sense_key = 0xf & ei->SenseInfo[2];
|
|
/* Get additional sense code */
|
|
asc = ei->SenseInfo[12];
|
|
/* Get addition sense code qualifier */
|
|
ascq = ei->SenseInfo[13];
|
|
}
|
|
|
|
if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
|
|
if (check_for_unit_attention(h, cp)) {
|
|
cmd->result = DID_SOFT_ERROR << 16;
|
|
break;
|
|
}
|
|
if (sense_key == ILLEGAL_REQUEST) {
|
|
/*
|
|
* SCSI REPORT_LUNS is commonly unsupported on
|
|
* Smart Array. Suppress noisy complaint.
|
|
*/
|
|
if (cp->Request.CDB[0] == REPORT_LUNS)
|
|
break;
|
|
|
|
/* If ASC/ASCQ indicate Logical Unit
|
|
* Not Supported condition,
|
|
*/
|
|
if ((asc == 0x25) && (ascq == 0x0)) {
|
|
dev_warn(&h->pdev->dev, "cp %p "
|
|
"has check condition\n", cp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sense_key == NOT_READY) {
|
|
/* If Sense is Not Ready, Logical Unit
|
|
* Not ready, Manual Intervention
|
|
* required
|
|
*/
|
|
if ((asc == 0x04) && (ascq == 0x03)) {
|
|
dev_warn(&h->pdev->dev, "cp %p "
|
|
"has check condition: unit "
|
|
"not ready, manual "
|
|
"intervention required\n", cp);
|
|
break;
|
|
}
|
|
}
|
|
if (sense_key == ABORTED_COMMAND) {
|
|
/* Aborted command is retryable */
|
|
dev_warn(&h->pdev->dev, "cp %p "
|
|
"has check condition: aborted command: "
|
|
"ASC: 0x%x, ASCQ: 0x%x\n",
|
|
cp, asc, ascq);
|
|
cmd->result = DID_SOFT_ERROR << 16;
|
|
break;
|
|
}
|
|
/* Must be some other type of check condition */
|
|
dev_warn(&h->pdev->dev, "cp %p has check condition: "
|
|
"unknown type: "
|
|
"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
|
|
"Returning result: 0x%x, "
|
|
"cmd=[%02x %02x %02x %02x %02x "
|
|
"%02x %02x %02x %02x %02x %02x "
|
|
"%02x %02x %02x %02x %02x]\n",
|
|
cp, sense_key, asc, ascq,
|
|
cmd->result,
|
|
cmd->cmnd[0], cmd->cmnd[1],
|
|
cmd->cmnd[2], cmd->cmnd[3],
|
|
cmd->cmnd[4], cmd->cmnd[5],
|
|
cmd->cmnd[6], cmd->cmnd[7],
|
|
cmd->cmnd[8], cmd->cmnd[9],
|
|
cmd->cmnd[10], cmd->cmnd[11],
|
|
cmd->cmnd[12], cmd->cmnd[13],
|
|
cmd->cmnd[14], cmd->cmnd[15]);
|
|
break;
|
|
}
|
|
|
|
|
|
/* Problem was not a check condition
|
|
* Pass it up to the upper layers...
|
|
*/
|
|
if (ei->ScsiStatus) {
|
|
dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
|
|
"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
|
|
"Returning result: 0x%x\n",
|
|
cp, ei->ScsiStatus,
|
|
sense_key, asc, ascq,
|
|
cmd->result);
|
|
} else { /* scsi status is zero??? How??? */
|
|
dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
|
|
"Returning no connection.\n", cp),
|
|
|
|
/* Ordinarily, this case should never happen,
|
|
* but there is a bug in some released firmware
|
|
* revisions that allows it to happen if, for
|
|
* example, a 4100 backplane loses power and
|
|
* the tape drive is in it. We assume that
|
|
* it's a fatal error of some kind because we
|
|
* can't show that it wasn't. We will make it
|
|
* look like selection timeout since that is
|
|
* the most common reason for this to occur,
|
|
* and it's severe enough.
|
|
*/
|
|
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
}
|
|
break;
|
|
|
|
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
|
|
break;
|
|
case CMD_DATA_OVERRUN:
|
|
dev_warn(&h->pdev->dev, "cp %p has"
|
|
" completed with data overrun "
|
|
"reported\n", cp);
|
|
break;
|
|
case CMD_INVALID: {
|
|
/* print_bytes(cp, sizeof(*cp), 1, 0);
|
|
print_cmd(cp); */
|
|
/* We get CMD_INVALID if you address a non-existent device
|
|
* instead of a selection timeout (no response). You will
|
|
* see this if you yank out a drive, then try to access it.
|
|
* This is kind of a shame because it means that any other
|
|
* CMD_INVALID (e.g. driver bug) will get interpreted as a
|
|
* missing target. */
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
}
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
dev_warn(&h->pdev->dev, "cp %p has "
|
|
"protocol error \n", cp);
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
|
|
break;
|
|
case CMD_ABORTED:
|
|
cmd->result = DID_ABORT << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
|
|
cp, ei->ScsiStatus);
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
cmd->result = DID_RESET << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
|
|
"abort\n", cp);
|
|
break;
|
|
case CMD_TIMEOUT:
|
|
cmd->result = DID_TIME_OUT << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
|
|
break;
|
|
default:
|
|
cmd->result = DID_ERROR << 16;
|
|
dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
|
|
cp, ei->CommandStatus);
|
|
}
|
|
cmd->scsi_done(cmd);
|
|
cmd_free(h, cp);
|
|
}
|
|
|
|
static int hpsa_scsi_detect(struct ctlr_info *h)
|
|
{
|
|
struct Scsi_Host *sh;
|
|
int error;
|
|
|
|
sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
|
|
if (sh == NULL)
|
|
goto fail;
|
|
|
|
sh->io_port = 0;
|
|
sh->n_io_port = 0;
|
|
sh->this_id = -1;
|
|
sh->max_channel = 3;
|
|
sh->max_cmd_len = MAX_COMMAND_SIZE;
|
|
sh->max_lun = HPSA_MAX_LUN;
|
|
sh->max_id = HPSA_MAX_LUN;
|
|
sh->can_queue = h->nr_cmds;
|
|
sh->cmd_per_lun = h->nr_cmds;
|
|
sh->sg_tablesize = h->maxsgentries;
|
|
h->scsi_host = sh;
|
|
sh->hostdata[0] = (unsigned long) h;
|
|
sh->irq = h->intr[PERF_MODE_INT];
|
|
sh->unique_id = sh->irq;
|
|
error = scsi_add_host(sh, &h->pdev->dev);
|
|
if (error)
|
|
goto fail_host_put;
|
|
scsi_scan_host(sh);
|
|
return 0;
|
|
|
|
fail_host_put:
|
|
dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
|
|
" failed for controller %d\n", h->ctlr);
|
|
scsi_host_put(sh);
|
|
return error;
|
|
fail:
|
|
dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
|
|
" failed for controller %d\n", h->ctlr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void hpsa_pci_unmap(struct pci_dev *pdev,
|
|
struct CommandList *c, int sg_used, int data_direction)
|
|
{
|
|
int i;
|
|
union u64bit addr64;
|
|
|
|
for (i = 0; i < sg_used; i++) {
|
|
addr64.val32.lower = c->SG[i].Addr.lower;
|
|
addr64.val32.upper = c->SG[i].Addr.upper;
|
|
pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
|
|
data_direction);
|
|
}
|
|
}
|
|
|
|
static void hpsa_map_one(struct pci_dev *pdev,
|
|
struct CommandList *cp,
|
|
unsigned char *buf,
|
|
size_t buflen,
|
|
int data_direction)
|
|
{
|
|
u64 addr64;
|
|
|
|
if (buflen == 0 || data_direction == PCI_DMA_NONE) {
|
|
cp->Header.SGList = 0;
|
|
cp->Header.SGTotal = 0;
|
|
return;
|
|
}
|
|
|
|
addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
|
|
cp->SG[0].Addr.lower =
|
|
(u32) (addr64 & (u64) 0x00000000FFFFFFFF);
|
|
cp->SG[0].Addr.upper =
|
|
(u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
|
|
cp->SG[0].Len = buflen;
|
|
cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
|
|
cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
|
|
}
|
|
|
|
static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
|
|
c->waiting = &wait;
|
|
enqueue_cmd_and_start_io(h, c);
|
|
wait_for_completion(&wait);
|
|
}
|
|
|
|
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
|
|
struct CommandList *c, int data_direction)
|
|
{
|
|
int retry_count = 0;
|
|
|
|
do {
|
|
memset(c->err_info, 0, sizeof(c->err_info));
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
retry_count++;
|
|
} while (check_for_unit_attention(h, c) && retry_count <= 3);
|
|
hpsa_pci_unmap(h->pdev, c, 1, data_direction);
|
|
}
|
|
|
|
static void hpsa_scsi_interpret_error(struct CommandList *cp)
|
|
{
|
|
struct ErrorInfo *ei;
|
|
struct device *d = &cp->h->pdev->dev;
|
|
|
|
ei = cp->err_info;
|
|
switch (ei->CommandStatus) {
|
|
case CMD_TARGET_STATUS:
|
|
dev_warn(d, "cmd %p has completed with errors\n", cp);
|
|
dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
|
|
ei->ScsiStatus);
|
|
if (ei->ScsiStatus == 0)
|
|
dev_warn(d, "SCSI status is abnormally zero. "
|
|
"(probably indicates selection timeout "
|
|
"reported incorrectly due to a known "
|
|
"firmware bug, circa July, 2001.)\n");
|
|
break;
|
|
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
|
|
dev_info(d, "UNDERRUN\n");
|
|
break;
|
|
case CMD_DATA_OVERRUN:
|
|
dev_warn(d, "cp %p has completed with data overrun\n", cp);
|
|
break;
|
|
case CMD_INVALID: {
|
|
/* controller unfortunately reports SCSI passthru's
|
|
* to non-existent targets as invalid commands.
|
|
*/
|
|
dev_warn(d, "cp %p is reported invalid (probably means "
|
|
"target device no longer present)\n", cp);
|
|
/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
|
|
print_cmd(cp); */
|
|
}
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
dev_warn(d, "cp %p has protocol error \n", cp);
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
/* cmd->result = DID_ERROR << 16; */
|
|
dev_warn(d, "cp %p had hardware error\n", cp);
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
dev_warn(d, "cp %p had connection lost\n", cp);
|
|
break;
|
|
case CMD_ABORTED:
|
|
dev_warn(d, "cp %p was aborted\n", cp);
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
dev_warn(d, "cp %p reports abort failed\n", cp);
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
|
|
break;
|
|
case CMD_TIMEOUT:
|
|
dev_warn(d, "cp %p timed out\n", cp);
|
|
break;
|
|
default:
|
|
dev_warn(d, "cp %p returned unknown status %x\n", cp,
|
|
ei->CommandStatus);
|
|
}
|
|
}
|
|
|
|
static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
|
|
unsigned char page, unsigned char *buf,
|
|
unsigned char bufsize)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
|
|
if (c == NULL) { /* trouble... */
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
|
|
hpsa_scsi_interpret_error(c);
|
|
rc = -1;
|
|
}
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
|
|
if (c == NULL) { /* trouble... */
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
/* no unmap needed here because no data xfer. */
|
|
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0) {
|
|
hpsa_scsi_interpret_error(c);
|
|
rc = -1;
|
|
}
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
static void hpsa_get_raid_level(struct ctlr_info *h,
|
|
unsigned char *scsi3addr, unsigned char *raid_level)
|
|
{
|
|
int rc;
|
|
unsigned char *buf;
|
|
|
|
*raid_level = RAID_UNKNOWN;
|
|
buf = kzalloc(64, GFP_KERNEL);
|
|
if (!buf)
|
|
return;
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
|
|
if (rc == 0)
|
|
*raid_level = buf[8];
|
|
if (*raid_level > RAID_UNKNOWN)
|
|
*raid_level = RAID_UNKNOWN;
|
|
kfree(buf);
|
|
return;
|
|
}
|
|
|
|
/* Get the device id from inquiry page 0x83 */
|
|
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
|
|
unsigned char *device_id, int buflen)
|
|
{
|
|
int rc;
|
|
unsigned char *buf;
|
|
|
|
if (buflen > 16)
|
|
buflen = 16;
|
|
buf = kzalloc(64, GFP_KERNEL);
|
|
if (!buf)
|
|
return -1;
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
|
|
if (rc == 0)
|
|
memcpy(device_id, &buf[8], buflen);
|
|
kfree(buf);
|
|
return rc != 0;
|
|
}
|
|
|
|
static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
|
|
struct ReportLUNdata *buf, int bufsize,
|
|
int extended_response)
|
|
{
|
|
int rc = IO_OK;
|
|
struct CommandList *c;
|
|
unsigned char scsi3addr[8];
|
|
struct ErrorInfo *ei;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) { /* trouble... */
|
|
dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
return -1;
|
|
}
|
|
/* address the controller */
|
|
memset(scsi3addr, 0, sizeof(scsi3addr));
|
|
fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
|
|
buf, bufsize, 0, scsi3addr, TYPE_CMD);
|
|
if (extended_response)
|
|
c->Request.CDB[1] = extended_response;
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
|
|
ei = c->err_info;
|
|
if (ei->CommandStatus != 0 &&
|
|
ei->CommandStatus != CMD_DATA_UNDERRUN) {
|
|
hpsa_scsi_interpret_error(c);
|
|
rc = -1;
|
|
}
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
|
|
struct ReportLUNdata *buf,
|
|
int bufsize, int extended_response)
|
|
{
|
|
return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
|
|
}
|
|
|
|
static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
|
|
struct ReportLUNdata *buf, int bufsize)
|
|
{
|
|
return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
|
|
}
|
|
|
|
static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
|
|
int bus, int target, int lun)
|
|
{
|
|
device->bus = bus;
|
|
device->target = target;
|
|
device->lun = lun;
|
|
}
|
|
|
|
static int hpsa_update_device_info(struct ctlr_info *h,
|
|
unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
|
|
{
|
|
#define OBDR_TAPE_INQ_SIZE 49
|
|
unsigned char *inq_buff;
|
|
|
|
inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
|
|
if (!inq_buff)
|
|
goto bail_out;
|
|
|
|
/* Do an inquiry to the device to see what it is. */
|
|
if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
|
|
(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
|
|
/* Inquiry failed (msg printed already) */
|
|
dev_err(&h->pdev->dev,
|
|
"hpsa_update_device_info: inquiry failed\n");
|
|
goto bail_out;
|
|
}
|
|
|
|
this_device->devtype = (inq_buff[0] & 0x1f);
|
|
memcpy(this_device->scsi3addr, scsi3addr, 8);
|
|
memcpy(this_device->vendor, &inq_buff[8],
|
|
sizeof(this_device->vendor));
|
|
memcpy(this_device->model, &inq_buff[16],
|
|
sizeof(this_device->model));
|
|
memcpy(this_device->revision, &inq_buff[32],
|
|
sizeof(this_device->revision));
|
|
memset(this_device->device_id, 0,
|
|
sizeof(this_device->device_id));
|
|
hpsa_get_device_id(h, scsi3addr, this_device->device_id,
|
|
sizeof(this_device->device_id));
|
|
|
|
if (this_device->devtype == TYPE_DISK &&
|
|
is_logical_dev_addr_mode(scsi3addr))
|
|
hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
|
|
else
|
|
this_device->raid_level = RAID_UNKNOWN;
|
|
|
|
kfree(inq_buff);
|
|
return 0;
|
|
|
|
bail_out:
|
|
kfree(inq_buff);
|
|
return 1;
|
|
}
|
|
|
|
static unsigned char *msa2xxx_model[] = {
|
|
"MSA2012",
|
|
"MSA2024",
|
|
"MSA2312",
|
|
"MSA2324",
|
|
NULL,
|
|
};
|
|
|
|
static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; msa2xxx_model[i]; i++)
|
|
if (strncmp(device->model, msa2xxx_model[i],
|
|
strlen(msa2xxx_model[i])) == 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Helper function to assign bus, target, lun mapping of devices.
|
|
* Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
|
|
* volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
|
|
* Logical drive target and lun are assigned at this time, but
|
|
* physical device lun and target assignment are deferred (assigned
|
|
* in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
|
|
*/
|
|
static void figure_bus_target_lun(struct ctlr_info *h,
|
|
u8 *lunaddrbytes, int *bus, int *target, int *lun,
|
|
struct hpsa_scsi_dev_t *device)
|
|
{
|
|
u32 lunid;
|
|
|
|
if (is_logical_dev_addr_mode(lunaddrbytes)) {
|
|
/* logical device */
|
|
if (unlikely(is_scsi_rev_5(h))) {
|
|
/* p1210m, logical drives lun assignments
|
|
* match SCSI REPORT LUNS data.
|
|
*/
|
|
lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
|
|
*bus = 0;
|
|
*target = 0;
|
|
*lun = (lunid & 0x3fff) + 1;
|
|
} else {
|
|
/* not p1210m... */
|
|
lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
|
|
if (is_msa2xxx(h, device)) {
|
|
/* msa2xxx way, put logicals on bus 1
|
|
* and match target/lun numbers box
|
|
* reports.
|
|
*/
|
|
*bus = 1;
|
|
*target = (lunid >> 16) & 0x3fff;
|
|
*lun = lunid & 0x00ff;
|
|
} else {
|
|
/* Traditional smart array way. */
|
|
*bus = 0;
|
|
*lun = 0;
|
|
*target = lunid & 0x3fff;
|
|
}
|
|
}
|
|
} else {
|
|
/* physical device */
|
|
if (is_hba_lunid(lunaddrbytes))
|
|
if (unlikely(is_scsi_rev_5(h))) {
|
|
*bus = 0; /* put p1210m ctlr at 0,0,0 */
|
|
*target = 0;
|
|
*lun = 0;
|
|
return;
|
|
} else
|
|
*bus = 3; /* traditional smartarray */
|
|
else
|
|
*bus = 2; /* physical disk */
|
|
*target = -1;
|
|
*lun = -1; /* we will fill these in later. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is no lun 0 on a target, linux won't find any devices.
|
|
* For the MSA2xxx boxes, we have to manually detect the enclosure
|
|
* which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
|
|
* it for some reason. *tmpdevice is the target we're adding,
|
|
* this_device is a pointer into the current element of currentsd[]
|
|
* that we're building up in update_scsi_devices(), below.
|
|
* lunzerobits is a bitmap that tracks which targets already have a
|
|
* lun 0 assigned.
|
|
* Returns 1 if an enclosure was added, 0 if not.
|
|
*/
|
|
static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
|
|
struct hpsa_scsi_dev_t *tmpdevice,
|
|
struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
|
|
int bus, int target, int lun, unsigned long lunzerobits[],
|
|
int *nmsa2xxx_enclosures)
|
|
{
|
|
unsigned char scsi3addr[8];
|
|
|
|
if (test_bit(target, lunzerobits))
|
|
return 0; /* There is already a lun 0 on this target. */
|
|
|
|
if (!is_logical_dev_addr_mode(lunaddrbytes))
|
|
return 0; /* It's the logical targets that may lack lun 0. */
|
|
|
|
if (!is_msa2xxx(h, tmpdevice))
|
|
return 0; /* It's only the MSA2xxx that have this problem. */
|
|
|
|
if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
|
|
return 0;
|
|
|
|
if (is_hba_lunid(scsi3addr))
|
|
return 0; /* Don't add the RAID controller here. */
|
|
|
|
if (is_scsi_rev_5(h))
|
|
return 0; /* p1210m doesn't need to do this. */
|
|
|
|
#define MAX_MSA2XXX_ENCLOSURES 32
|
|
if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
|
|
dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
|
|
"enclosures exceeded. Check your hardware "
|
|
"configuration.");
|
|
return 0;
|
|
}
|
|
|
|
memset(scsi3addr, 0, 8);
|
|
scsi3addr[3] = target;
|
|
if (hpsa_update_device_info(h, scsi3addr, this_device))
|
|
return 0;
|
|
(*nmsa2xxx_enclosures)++;
|
|
hpsa_set_bus_target_lun(this_device, bus, target, 0);
|
|
set_bit(target, lunzerobits);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
|
|
* logdev. The number of luns in physdev and logdev are returned in
|
|
* *nphysicals and *nlogicals, respectively.
|
|
* Returns 0 on success, -1 otherwise.
|
|
*/
|
|
static int hpsa_gather_lun_info(struct ctlr_info *h,
|
|
int reportlunsize,
|
|
struct ReportLUNdata *physdev, u32 *nphysicals,
|
|
struct ReportLUNdata *logdev, u32 *nlogicals)
|
|
{
|
|
if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
|
|
dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
|
|
return -1;
|
|
}
|
|
*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
|
|
if (*nphysicals > HPSA_MAX_PHYS_LUN) {
|
|
dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
|
|
" %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
|
|
*nphysicals - HPSA_MAX_PHYS_LUN);
|
|
*nphysicals = HPSA_MAX_PHYS_LUN;
|
|
}
|
|
if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
|
|
dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
|
|
return -1;
|
|
}
|
|
*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
|
|
/* Reject Logicals in excess of our max capability. */
|
|
if (*nlogicals > HPSA_MAX_LUN) {
|
|
dev_warn(&h->pdev->dev,
|
|
"maximum logical LUNs (%d) exceeded. "
|
|
"%d LUNs ignored.\n", HPSA_MAX_LUN,
|
|
*nlogicals - HPSA_MAX_LUN);
|
|
*nlogicals = HPSA_MAX_LUN;
|
|
}
|
|
if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
|
|
dev_warn(&h->pdev->dev,
|
|
"maximum logical + physical LUNs (%d) exceeded. "
|
|
"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
|
|
*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
|
|
*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
|
|
int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
|
|
struct ReportLUNdata *logdev_list)
|
|
{
|
|
/* Helper function, figure out where the LUN ID info is coming from
|
|
* given index i, lists of physical and logical devices, where in
|
|
* the list the raid controller is supposed to appear (first or last)
|
|
*/
|
|
|
|
int logicals_start = nphysicals + (raid_ctlr_position == 0);
|
|
int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
|
|
|
|
if (i == raid_ctlr_position)
|
|
return RAID_CTLR_LUNID;
|
|
|
|
if (i < logicals_start)
|
|
return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
|
|
|
|
if (i < last_device)
|
|
return &logdev_list->LUN[i - nphysicals -
|
|
(raid_ctlr_position == 0)][0];
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
|
|
{
|
|
/* the idea here is we could get notified
|
|
* that some devices have changed, so we do a report
|
|
* physical luns and report logical luns cmd, and adjust
|
|
* our list of devices accordingly.
|
|
*
|
|
* The scsi3addr's of devices won't change so long as the
|
|
* adapter is not reset. That means we can rescan and
|
|
* tell which devices we already know about, vs. new
|
|
* devices, vs. disappearing devices.
|
|
*/
|
|
struct ReportLUNdata *physdev_list = NULL;
|
|
struct ReportLUNdata *logdev_list = NULL;
|
|
unsigned char *inq_buff = NULL;
|
|
u32 nphysicals = 0;
|
|
u32 nlogicals = 0;
|
|
u32 ndev_allocated = 0;
|
|
struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
|
|
int ncurrent = 0;
|
|
int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
|
|
int i, nmsa2xxx_enclosures, ndevs_to_allocate;
|
|
int bus, target, lun;
|
|
int raid_ctlr_position;
|
|
DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
|
|
|
|
currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
|
|
GFP_KERNEL);
|
|
physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
|
|
logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
|
|
inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
|
|
tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
|
|
|
|
if (!currentsd || !physdev_list || !logdev_list ||
|
|
!inq_buff || !tmpdevice) {
|
|
dev_err(&h->pdev->dev, "out of memory\n");
|
|
goto out;
|
|
}
|
|
memset(lunzerobits, 0, sizeof(lunzerobits));
|
|
|
|
if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
|
|
logdev_list, &nlogicals))
|
|
goto out;
|
|
|
|
/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
|
|
* but each of them 4 times through different paths. The plus 1
|
|
* is for the RAID controller.
|
|
*/
|
|
ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
|
|
|
|
/* Allocate the per device structures */
|
|
for (i = 0; i < ndevs_to_allocate; i++) {
|
|
currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
|
|
if (!currentsd[i]) {
|
|
dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
|
|
__FILE__, __LINE__);
|
|
goto out;
|
|
}
|
|
ndev_allocated++;
|
|
}
|
|
|
|
if (unlikely(is_scsi_rev_5(h)))
|
|
raid_ctlr_position = 0;
|
|
else
|
|
raid_ctlr_position = nphysicals + nlogicals;
|
|
|
|
/* adjust our table of devices */
|
|
nmsa2xxx_enclosures = 0;
|
|
for (i = 0; i < nphysicals + nlogicals + 1; i++) {
|
|
u8 *lunaddrbytes;
|
|
|
|
/* Figure out where the LUN ID info is coming from */
|
|
lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
|
|
i, nphysicals, nlogicals, physdev_list, logdev_list);
|
|
/* skip masked physical devices. */
|
|
if (lunaddrbytes[3] & 0xC0 &&
|
|
i < nphysicals + (raid_ctlr_position == 0))
|
|
continue;
|
|
|
|
/* Get device type, vendor, model, device id */
|
|
if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
|
|
continue; /* skip it if we can't talk to it. */
|
|
figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
|
|
tmpdevice);
|
|
this_device = currentsd[ncurrent];
|
|
|
|
/*
|
|
* For the msa2xxx boxes, we have to insert a LUN 0 which
|
|
* doesn't show up in CCISS_REPORT_PHYSICAL data, but there
|
|
* is nonetheless an enclosure device there. We have to
|
|
* present that otherwise linux won't find anything if
|
|
* there is no lun 0.
|
|
*/
|
|
if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
|
|
lunaddrbytes, bus, target, lun, lunzerobits,
|
|
&nmsa2xxx_enclosures)) {
|
|
ncurrent++;
|
|
this_device = currentsd[ncurrent];
|
|
}
|
|
|
|
*this_device = *tmpdevice;
|
|
hpsa_set_bus_target_lun(this_device, bus, target, lun);
|
|
|
|
switch (this_device->devtype) {
|
|
case TYPE_ROM: {
|
|
/* We don't *really* support actual CD-ROM devices,
|
|
* just "One Button Disaster Recovery" tape drive
|
|
* which temporarily pretends to be a CD-ROM drive.
|
|
* So we check that the device is really an OBDR tape
|
|
* device by checking for "$DR-10" in bytes 43-48 of
|
|
* the inquiry data.
|
|
*/
|
|
char obdr_sig[7];
|
|
#define OBDR_TAPE_SIG "$DR-10"
|
|
strncpy(obdr_sig, &inq_buff[43], 6);
|
|
obdr_sig[6] = '\0';
|
|
if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
|
|
/* Not OBDR device, ignore it. */
|
|
break;
|
|
}
|
|
ncurrent++;
|
|
break;
|
|
case TYPE_DISK:
|
|
if (i < nphysicals)
|
|
break;
|
|
ncurrent++;
|
|
break;
|
|
case TYPE_TAPE:
|
|
case TYPE_MEDIUM_CHANGER:
|
|
ncurrent++;
|
|
break;
|
|
case TYPE_RAID:
|
|
/* Only present the Smartarray HBA as a RAID controller.
|
|
* If it's a RAID controller other than the HBA itself
|
|
* (an external RAID controller, MSA500 or similar)
|
|
* don't present it.
|
|
*/
|
|
if (!is_hba_lunid(lunaddrbytes))
|
|
break;
|
|
ncurrent++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
|
|
break;
|
|
}
|
|
adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
|
|
out:
|
|
kfree(tmpdevice);
|
|
for (i = 0; i < ndev_allocated; i++)
|
|
kfree(currentsd[i]);
|
|
kfree(currentsd);
|
|
kfree(inq_buff);
|
|
kfree(physdev_list);
|
|
kfree(logdev_list);
|
|
}
|
|
|
|
/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
|
|
* dma mapping and fills in the scatter gather entries of the
|
|
* hpsa command, cp.
|
|
*/
|
|
static int hpsa_scatter_gather(struct ctlr_info *h,
|
|
struct CommandList *cp,
|
|
struct scsi_cmnd *cmd)
|
|
{
|
|
unsigned int len;
|
|
struct scatterlist *sg;
|
|
u64 addr64;
|
|
int use_sg, i, sg_index, chained;
|
|
struct SGDescriptor *curr_sg;
|
|
|
|
BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
|
|
|
|
use_sg = scsi_dma_map(cmd);
|
|
if (use_sg < 0)
|
|
return use_sg;
|
|
|
|
if (!use_sg)
|
|
goto sglist_finished;
|
|
|
|
curr_sg = cp->SG;
|
|
chained = 0;
|
|
sg_index = 0;
|
|
scsi_for_each_sg(cmd, sg, use_sg, i) {
|
|
if (i == h->max_cmd_sg_entries - 1 &&
|
|
use_sg > h->max_cmd_sg_entries) {
|
|
chained = 1;
|
|
curr_sg = h->cmd_sg_list[cp->cmdindex];
|
|
sg_index = 0;
|
|
}
|
|
addr64 = (u64) sg_dma_address(sg);
|
|
len = sg_dma_len(sg);
|
|
curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
|
|
curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
|
|
curr_sg->Len = len;
|
|
curr_sg->Ext = 0; /* we are not chaining */
|
|
curr_sg++;
|
|
}
|
|
|
|
if (use_sg + chained > h->maxSG)
|
|
h->maxSG = use_sg + chained;
|
|
|
|
if (chained) {
|
|
cp->Header.SGList = h->max_cmd_sg_entries;
|
|
cp->Header.SGTotal = (u16) (use_sg + 1);
|
|
hpsa_map_sg_chain_block(h, cp);
|
|
return 0;
|
|
}
|
|
|
|
sglist_finished:
|
|
|
|
cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
|
|
cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
|
|
void (*done)(struct scsi_cmnd *))
|
|
{
|
|
struct ctlr_info *h;
|
|
struct hpsa_scsi_dev_t *dev;
|
|
unsigned char scsi3addr[8];
|
|
struct CommandList *c;
|
|
unsigned long flags;
|
|
|
|
/* Get the ptr to our adapter structure out of cmd->host. */
|
|
h = sdev_to_hba(cmd->device);
|
|
dev = cmd->device->hostdata;
|
|
if (!dev) {
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
done(cmd);
|
|
return 0;
|
|
}
|
|
memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
|
|
|
|
/* Need a lock as this is being allocated from the pool */
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
c = cmd_alloc(h);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
if (c == NULL) { /* trouble... */
|
|
dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
|
|
return SCSI_MLQUEUE_HOST_BUSY;
|
|
}
|
|
|
|
/* Fill in the command list header */
|
|
|
|
cmd->scsi_done = done; /* save this for use by completion code */
|
|
|
|
/* save c in case we have to abort it */
|
|
cmd->host_scribble = (unsigned char *) c;
|
|
|
|
c->cmd_type = CMD_SCSI;
|
|
c->scsi_cmd = cmd;
|
|
c->Header.ReplyQueue = 0; /* unused in simple mode */
|
|
memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
|
|
c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
|
|
c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
|
|
|
|
/* Fill in the request block... */
|
|
|
|
c->Request.Timeout = 0;
|
|
memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
|
|
BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
|
|
c->Request.CDBLen = cmd->cmd_len;
|
|
memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
|
|
c->Request.Type.Type = TYPE_CMD;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
switch (cmd->sc_data_direction) {
|
|
case DMA_TO_DEVICE:
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
break;
|
|
case DMA_FROM_DEVICE:
|
|
c->Request.Type.Direction = XFER_READ;
|
|
break;
|
|
case DMA_NONE:
|
|
c->Request.Type.Direction = XFER_NONE;
|
|
break;
|
|
case DMA_BIDIRECTIONAL:
|
|
/* This can happen if a buggy application does a scsi passthru
|
|
* and sets both inlen and outlen to non-zero. ( see
|
|
* ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
|
|
*/
|
|
|
|
c->Request.Type.Direction = XFER_RSVD;
|
|
/* This is technically wrong, and hpsa controllers should
|
|
* reject it with CMD_INVALID, which is the most correct
|
|
* response, but non-fibre backends appear to let it
|
|
* slide by, and give the same results as if this field
|
|
* were set correctly. Either way is acceptable for
|
|
* our purposes here.
|
|
*/
|
|
|
|
break;
|
|
|
|
default:
|
|
dev_err(&h->pdev->dev, "unknown data direction: %d\n",
|
|
cmd->sc_data_direction);
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
|
|
cmd_free(h, c);
|
|
return SCSI_MLQUEUE_HOST_BUSY;
|
|
}
|
|
enqueue_cmd_and_start_io(h, c);
|
|
/* the cmd'll come back via intr handler in complete_scsi_command() */
|
|
return 0;
|
|
}
|
|
|
|
static void hpsa_scan_start(struct Scsi_Host *sh)
|
|
{
|
|
struct ctlr_info *h = shost_to_hba(sh);
|
|
unsigned long flags;
|
|
|
|
/* wait until any scan already in progress is finished. */
|
|
while (1) {
|
|
spin_lock_irqsave(&h->scan_lock, flags);
|
|
if (h->scan_finished)
|
|
break;
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
wait_event(h->scan_wait_queue, h->scan_finished);
|
|
/* Note: We don't need to worry about a race between this
|
|
* thread and driver unload because the midlayer will
|
|
* have incremented the reference count, so unload won't
|
|
* happen if we're in here.
|
|
*/
|
|
}
|
|
h->scan_finished = 0; /* mark scan as in progress */
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
|
|
hpsa_update_scsi_devices(h, h->scsi_host->host_no);
|
|
|
|
spin_lock_irqsave(&h->scan_lock, flags);
|
|
h->scan_finished = 1; /* mark scan as finished. */
|
|
wake_up_all(&h->scan_wait_queue);
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
}
|
|
|
|
static int hpsa_scan_finished(struct Scsi_Host *sh,
|
|
unsigned long elapsed_time)
|
|
{
|
|
struct ctlr_info *h = shost_to_hba(sh);
|
|
unsigned long flags;
|
|
int finished;
|
|
|
|
spin_lock_irqsave(&h->scan_lock, flags);
|
|
finished = h->scan_finished;
|
|
spin_unlock_irqrestore(&h->scan_lock, flags);
|
|
return finished;
|
|
}
|
|
|
|
static int hpsa_change_queue_depth(struct scsi_device *sdev,
|
|
int qdepth, int reason)
|
|
{
|
|
struct ctlr_info *h = sdev_to_hba(sdev);
|
|
|
|
if (reason != SCSI_QDEPTH_DEFAULT)
|
|
return -ENOTSUPP;
|
|
|
|
if (qdepth < 1)
|
|
qdepth = 1;
|
|
else
|
|
if (qdepth > h->nr_cmds)
|
|
qdepth = h->nr_cmds;
|
|
scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
|
|
return sdev->queue_depth;
|
|
}
|
|
|
|
static void hpsa_unregister_scsi(struct ctlr_info *h)
|
|
{
|
|
/* we are being forcibly unloaded, and may not refuse. */
|
|
scsi_remove_host(h->scsi_host);
|
|
scsi_host_put(h->scsi_host);
|
|
h->scsi_host = NULL;
|
|
}
|
|
|
|
static int hpsa_register_scsi(struct ctlr_info *h)
|
|
{
|
|
int rc;
|
|
|
|
rc = hpsa_scsi_detect(h);
|
|
if (rc != 0)
|
|
dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
|
|
" hpsa_scsi_detect(), rc is %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int wait_for_device_to_become_ready(struct ctlr_info *h,
|
|
unsigned char lunaddr[])
|
|
{
|
|
int rc = 0;
|
|
int count = 0;
|
|
int waittime = 1; /* seconds */
|
|
struct CommandList *c;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (!c) {
|
|
dev_warn(&h->pdev->dev, "out of memory in "
|
|
"wait_for_device_to_become_ready.\n");
|
|
return IO_ERROR;
|
|
}
|
|
|
|
/* Send test unit ready until device ready, or give up. */
|
|
while (count < HPSA_TUR_RETRY_LIMIT) {
|
|
|
|
/* Wait for a bit. do this first, because if we send
|
|
* the TUR right away, the reset will just abort it.
|
|
*/
|
|
msleep(1000 * waittime);
|
|
count++;
|
|
|
|
/* Increase wait time with each try, up to a point. */
|
|
if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
|
|
waittime = waittime * 2;
|
|
|
|
/* Send the Test Unit Ready */
|
|
fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
/* no unmap needed here because no data xfer. */
|
|
|
|
if (c->err_info->CommandStatus == CMD_SUCCESS)
|
|
break;
|
|
|
|
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
|
|
c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
|
|
(c->err_info->SenseInfo[2] == NO_SENSE ||
|
|
c->err_info->SenseInfo[2] == UNIT_ATTENTION))
|
|
break;
|
|
|
|
dev_warn(&h->pdev->dev, "waiting %d secs "
|
|
"for device to become ready.\n", waittime);
|
|
rc = 1; /* device not ready. */
|
|
}
|
|
|
|
if (rc)
|
|
dev_warn(&h->pdev->dev, "giving up on device.\n");
|
|
else
|
|
dev_warn(&h->pdev->dev, "device is ready.\n");
|
|
|
|
cmd_special_free(h, c);
|
|
return rc;
|
|
}
|
|
|
|
/* Need at least one of these error handlers to keep ../scsi/hosts.c from
|
|
* complaining. Doing a host- or bus-reset can't do anything good here.
|
|
*/
|
|
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
|
|
{
|
|
int rc;
|
|
struct ctlr_info *h;
|
|
struct hpsa_scsi_dev_t *dev;
|
|
|
|
/* find the controller to which the command to be aborted was sent */
|
|
h = sdev_to_hba(scsicmd->device);
|
|
if (h == NULL) /* paranoia */
|
|
return FAILED;
|
|
dev = scsicmd->device->hostdata;
|
|
if (!dev) {
|
|
dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
|
|
"device lookup failed.\n");
|
|
return FAILED;
|
|
}
|
|
dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
|
|
h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
|
|
/* send a reset to the SCSI LUN which the command was sent to */
|
|
rc = hpsa_send_reset(h, dev->scsi3addr);
|
|
if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
|
|
return SUCCESS;
|
|
|
|
dev_warn(&h->pdev->dev, "resetting device failed.\n");
|
|
return FAILED;
|
|
}
|
|
|
|
/*
|
|
* For operations that cannot sleep, a command block is allocated at init,
|
|
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
|
|
* which ones are free or in use. Lock must be held when calling this.
|
|
* cmd_free() is the complement.
|
|
*/
|
|
static struct CommandList *cmd_alloc(struct ctlr_info *h)
|
|
{
|
|
struct CommandList *c;
|
|
int i;
|
|
union u64bit temp64;
|
|
dma_addr_t cmd_dma_handle, err_dma_handle;
|
|
|
|
do {
|
|
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
|
|
if (i == h->nr_cmds)
|
|
return NULL;
|
|
} while (test_and_set_bit
|
|
(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
|
|
c = h->cmd_pool + i;
|
|
memset(c, 0, sizeof(*c));
|
|
cmd_dma_handle = h->cmd_pool_dhandle
|
|
+ i * sizeof(*c);
|
|
c->err_info = h->errinfo_pool + i;
|
|
memset(c->err_info, 0, sizeof(*c->err_info));
|
|
err_dma_handle = h->errinfo_pool_dhandle
|
|
+ i * sizeof(*c->err_info);
|
|
h->nr_allocs++;
|
|
|
|
c->cmdindex = i;
|
|
|
|
INIT_HLIST_NODE(&c->list);
|
|
c->busaddr = (u32) cmd_dma_handle;
|
|
temp64.val = (u64) err_dma_handle;
|
|
c->ErrDesc.Addr.lower = temp64.val32.lower;
|
|
c->ErrDesc.Addr.upper = temp64.val32.upper;
|
|
c->ErrDesc.Len = sizeof(*c->err_info);
|
|
|
|
c->h = h;
|
|
return c;
|
|
}
|
|
|
|
/* For operations that can wait for kmalloc to possibly sleep,
|
|
* this routine can be called. Lock need not be held to call
|
|
* cmd_special_alloc. cmd_special_free() is the complement.
|
|
*/
|
|
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
|
|
{
|
|
struct CommandList *c;
|
|
union u64bit temp64;
|
|
dma_addr_t cmd_dma_handle, err_dma_handle;
|
|
|
|
c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
|
|
if (c == NULL)
|
|
return NULL;
|
|
memset(c, 0, sizeof(*c));
|
|
|
|
c->cmdindex = -1;
|
|
|
|
c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
|
|
&err_dma_handle);
|
|
|
|
if (c->err_info == NULL) {
|
|
pci_free_consistent(h->pdev,
|
|
sizeof(*c), c, cmd_dma_handle);
|
|
return NULL;
|
|
}
|
|
memset(c->err_info, 0, sizeof(*c->err_info));
|
|
|
|
INIT_HLIST_NODE(&c->list);
|
|
c->busaddr = (u32) cmd_dma_handle;
|
|
temp64.val = (u64) err_dma_handle;
|
|
c->ErrDesc.Addr.lower = temp64.val32.lower;
|
|
c->ErrDesc.Addr.upper = temp64.val32.upper;
|
|
c->ErrDesc.Len = sizeof(*c->err_info);
|
|
|
|
c->h = h;
|
|
return c;
|
|
}
|
|
|
|
static void cmd_free(struct ctlr_info *h, struct CommandList *c)
|
|
{
|
|
int i;
|
|
|
|
i = c - h->cmd_pool;
|
|
clear_bit(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG));
|
|
h->nr_frees++;
|
|
}
|
|
|
|
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
|
|
{
|
|
union u64bit temp64;
|
|
|
|
temp64.val32.lower = c->ErrDesc.Addr.lower;
|
|
temp64.val32.upper = c->ErrDesc.Addr.upper;
|
|
pci_free_consistent(h->pdev, sizeof(*c->err_info),
|
|
c->err_info, (dma_addr_t) temp64.val);
|
|
pci_free_consistent(h->pdev, sizeof(*c),
|
|
c, (dma_addr_t) c->busaddr);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
|
|
{
|
|
IOCTL32_Command_struct __user *arg32 =
|
|
(IOCTL32_Command_struct __user *) arg;
|
|
IOCTL_Command_struct arg64;
|
|
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
err = 0;
|
|
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |= copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |= copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
|
|
if (err)
|
|
return err;
|
|
err |= copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
|
|
int cmd, void *arg)
|
|
{
|
|
BIG_IOCTL32_Command_struct __user *arg32 =
|
|
(BIG_IOCTL32_Command_struct __user *) arg;
|
|
BIG_IOCTL_Command_struct arg64;
|
|
BIG_IOCTL_Command_struct __user *p =
|
|
compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
err = 0;
|
|
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |= copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |= copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
|
|
if (err)
|
|
return err;
|
|
err |= copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
|
|
{
|
|
switch (cmd) {
|
|
case CCISS_GETPCIINFO:
|
|
case CCISS_GETINTINFO:
|
|
case CCISS_SETINTINFO:
|
|
case CCISS_GETNODENAME:
|
|
case CCISS_SETNODENAME:
|
|
case CCISS_GETHEARTBEAT:
|
|
case CCISS_GETBUSTYPES:
|
|
case CCISS_GETFIRMVER:
|
|
case CCISS_GETDRIVVER:
|
|
case CCISS_REVALIDVOLS:
|
|
case CCISS_DEREGDISK:
|
|
case CCISS_REGNEWDISK:
|
|
case CCISS_REGNEWD:
|
|
case CCISS_RESCANDISK:
|
|
case CCISS_GETLUNINFO:
|
|
return hpsa_ioctl(dev, cmd, arg);
|
|
|
|
case CCISS_PASSTHRU32:
|
|
return hpsa_ioctl32_passthru(dev, cmd, arg);
|
|
case CCISS_BIG_PASSTHRU32:
|
|
return hpsa_ioctl32_big_passthru(dev, cmd, arg);
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
struct hpsa_pci_info pciinfo;
|
|
|
|
if (!argp)
|
|
return -EINVAL;
|
|
pciinfo.domain = pci_domain_nr(h->pdev->bus);
|
|
pciinfo.bus = h->pdev->bus->number;
|
|
pciinfo.dev_fn = h->pdev->devfn;
|
|
pciinfo.board_id = h->board_id;
|
|
if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
DriverVer_type DriverVer;
|
|
unsigned char vmaj, vmin, vsubmin;
|
|
int rc;
|
|
|
|
rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
|
|
&vmaj, &vmin, &vsubmin);
|
|
if (rc != 3) {
|
|
dev_info(&h->pdev->dev, "driver version string '%s' "
|
|
"unrecognized.", HPSA_DRIVER_VERSION);
|
|
vmaj = 0;
|
|
vmin = 0;
|
|
vsubmin = 0;
|
|
}
|
|
DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
|
|
if (!argp)
|
|
return -EINVAL;
|
|
if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
IOCTL_Command_struct iocommand;
|
|
struct CommandList *c;
|
|
char *buff = NULL;
|
|
union u64bit temp64;
|
|
|
|
if (!argp)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
|
|
return -EFAULT;
|
|
if ((iocommand.buf_size < 1) &&
|
|
(iocommand.Request.Type.Direction != XFER_NONE)) {
|
|
return -EINVAL;
|
|
}
|
|
if (iocommand.buf_size > 0) {
|
|
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
|
|
if (buff == NULL)
|
|
return -EFAULT;
|
|
}
|
|
if (iocommand.Request.Type.Direction == XFER_WRITE) {
|
|
/* Copy the data into the buffer we created */
|
|
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
|
|
kfree(buff);
|
|
return -EFAULT;
|
|
}
|
|
} else
|
|
memset(buff, 0, iocommand.buf_size);
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) {
|
|
kfree(buff);
|
|
return -ENOMEM;
|
|
}
|
|
/* Fill in the command type */
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
/* Fill in Command Header */
|
|
c->Header.ReplyQueue = 0; /* unused in simple mode */
|
|
if (iocommand.buf_size > 0) { /* buffer to fill */
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = 1;
|
|
} else { /* no buffers to fill */
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
|
|
/* use the kernel address the cmd block for tag */
|
|
c->Header.Tag.lower = c->busaddr;
|
|
|
|
/* Fill in Request block */
|
|
memcpy(&c->Request, &iocommand.Request,
|
|
sizeof(c->Request));
|
|
|
|
/* Fill in the scatter gather information */
|
|
if (iocommand.buf_size > 0) {
|
|
temp64.val = pci_map_single(h->pdev, buff,
|
|
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[0].Addr.lower = temp64.val32.lower;
|
|
c->SG[0].Addr.upper = temp64.val32.upper;
|
|
c->SG[0].Len = iocommand.buf_size;
|
|
c->SG[0].Ext = 0; /* we are not chaining*/
|
|
}
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
|
|
check_ioctl_unit_attention(h, c);
|
|
|
|
/* Copy the error information out */
|
|
memcpy(&iocommand.error_info, c->err_info,
|
|
sizeof(iocommand.error_info));
|
|
if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
|
|
kfree(buff);
|
|
cmd_special_free(h, c);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (iocommand.Request.Type.Direction == XFER_READ) {
|
|
/* Copy the data out of the buffer we created */
|
|
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
|
|
kfree(buff);
|
|
cmd_special_free(h, c);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
kfree(buff);
|
|
cmd_special_free(h, c);
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
|
|
{
|
|
BIG_IOCTL_Command_struct *ioc;
|
|
struct CommandList *c;
|
|
unsigned char **buff = NULL;
|
|
int *buff_size = NULL;
|
|
union u64bit temp64;
|
|
BYTE sg_used = 0;
|
|
int status = 0;
|
|
int i;
|
|
u32 left;
|
|
u32 sz;
|
|
BYTE __user *data_ptr;
|
|
|
|
if (!argp)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
ioc = (BIG_IOCTL_Command_struct *)
|
|
kmalloc(sizeof(*ioc), GFP_KERNEL);
|
|
if (!ioc) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
if ((ioc->buf_size < 1) &&
|
|
(ioc->Request.Type.Direction != XFER_NONE)) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
/* Check kmalloc limits using all SGs */
|
|
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
|
|
if (!buff) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
|
|
if (!buff_size) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
left = ioc->buf_size;
|
|
data_ptr = ioc->buf;
|
|
while (left) {
|
|
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
|
|
buff_size[sg_used] = sz;
|
|
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
|
|
if (buff[sg_used] == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->Request.Type.Direction == XFER_WRITE) {
|
|
if (copy_from_user(buff[sg_used], data_ptr, sz)) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
} else
|
|
memset(buff[sg_used], 0, sz);
|
|
left -= sz;
|
|
data_ptr += sz;
|
|
sg_used++;
|
|
}
|
|
c = cmd_special_alloc(h);
|
|
if (c == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
|
|
if (ioc->buf_size > 0) {
|
|
c->Header.SGList = sg_used;
|
|
c->Header.SGTotal = sg_used;
|
|
} else {
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
|
|
c->Header.Tag.lower = c->busaddr;
|
|
memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
|
|
if (ioc->buf_size > 0) {
|
|
int i;
|
|
for (i = 0; i < sg_used; i++) {
|
|
temp64.val = pci_map_single(h->pdev, buff[i],
|
|
buff_size[i], PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[i].Addr.lower = temp64.val32.lower;
|
|
c->SG[i].Addr.upper = temp64.val32.upper;
|
|
c->SG[i].Len = buff_size[i];
|
|
/* we are not chaining */
|
|
c->SG[i].Ext = 0;
|
|
}
|
|
}
|
|
hpsa_scsi_do_simple_cmd_core(h, c);
|
|
hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
|
|
check_ioctl_unit_attention(h, c);
|
|
/* Copy the error information out */
|
|
memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
|
|
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
|
|
cmd_special_free(h, c);
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->Request.Type.Direction == XFER_READ) {
|
|
/* Copy the data out of the buffer we created */
|
|
BYTE __user *ptr = ioc->buf;
|
|
for (i = 0; i < sg_used; i++) {
|
|
if (copy_to_user(ptr, buff[i], buff_size[i])) {
|
|
cmd_special_free(h, c);
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
ptr += buff_size[i];
|
|
}
|
|
}
|
|
cmd_special_free(h, c);
|
|
status = 0;
|
|
cleanup1:
|
|
if (buff) {
|
|
for (i = 0; i < sg_used; i++)
|
|
kfree(buff[i]);
|
|
kfree(buff);
|
|
}
|
|
kfree(buff_size);
|
|
kfree(ioc);
|
|
return status;
|
|
}
|
|
|
|
static void check_ioctl_unit_attention(struct ctlr_info *h,
|
|
struct CommandList *c)
|
|
{
|
|
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
|
|
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
|
|
(void) check_for_unit_attention(h, c);
|
|
}
|
|
/*
|
|
* ioctl
|
|
*/
|
|
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
|
|
{
|
|
struct ctlr_info *h;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
h = sdev_to_hba(dev);
|
|
|
|
switch (cmd) {
|
|
case CCISS_DEREGDISK:
|
|
case CCISS_REGNEWDISK:
|
|
case CCISS_REGNEWD:
|
|
hpsa_scan_start(h->scsi_host);
|
|
return 0;
|
|
case CCISS_GETPCIINFO:
|
|
return hpsa_getpciinfo_ioctl(h, argp);
|
|
case CCISS_GETDRIVVER:
|
|
return hpsa_getdrivver_ioctl(h, argp);
|
|
case CCISS_PASSTHRU:
|
|
return hpsa_passthru_ioctl(h, argp);
|
|
case CCISS_BIG_PASSTHRU:
|
|
return hpsa_big_passthru_ioctl(h, argp);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
|
|
void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
|
|
int cmd_type)
|
|
{
|
|
int pci_dir = XFER_NONE;
|
|
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
if (buff != NULL && size > 0) {
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = 1;
|
|
} else {
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
c->Header.Tag.lower = c->busaddr;
|
|
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
|
|
|
|
c->Request.Type.Type = cmd_type;
|
|
if (cmd_type == TYPE_CMD) {
|
|
switch (cmd) {
|
|
case HPSA_INQUIRY:
|
|
/* are we trying to read a vital product page */
|
|
if (page_code != 0) {
|
|
c->Request.CDB[1] = 0x01;
|
|
c->Request.CDB[2] = page_code;
|
|
}
|
|
c->Request.CDBLen = 6;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = HPSA_INQUIRY;
|
|
c->Request.CDB[4] = size & 0xFF;
|
|
break;
|
|
case HPSA_REPORT_LOG:
|
|
case HPSA_REPORT_PHYS:
|
|
/* Talking to controller so It's a physical command
|
|
mode = 00 target = 0. Nothing to write.
|
|
*/
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
|
|
c->Request.CDB[7] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[8] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[9] = size & 0xFF;
|
|
break;
|
|
case HPSA_CACHE_FLUSH:
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = BMIC_WRITE;
|
|
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
|
|
break;
|
|
case TEST_UNIT_READY:
|
|
c->Request.CDBLen = 6;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_NONE;
|
|
c->Request.Timeout = 0;
|
|
break;
|
|
default:
|
|
dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
|
|
BUG();
|
|
return;
|
|
}
|
|
} else if (cmd_type == TYPE_MSG) {
|
|
switch (cmd) {
|
|
|
|
case HPSA_DEVICE_RESET_MSG:
|
|
c->Request.CDBLen = 16;
|
|
c->Request.Type.Type = 1; /* It is a MSG not a CMD */
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_NONE;
|
|
c->Request.Timeout = 0; /* Don't time out */
|
|
c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
|
|
c->Request.CDB[1] = 0x03; /* Reset target above */
|
|
/* If bytes 4-7 are zero, it means reset the */
|
|
/* LunID device */
|
|
c->Request.CDB[4] = 0x00;
|
|
c->Request.CDB[5] = 0x00;
|
|
c->Request.CDB[6] = 0x00;
|
|
c->Request.CDB[7] = 0x00;
|
|
break;
|
|
|
|
default:
|
|
dev_warn(&h->pdev->dev, "unknown message type %d\n",
|
|
cmd);
|
|
BUG();
|
|
}
|
|
} else {
|
|
dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
|
|
BUG();
|
|
}
|
|
|
|
switch (c->Request.Type.Direction) {
|
|
case XFER_READ:
|
|
pci_dir = PCI_DMA_FROMDEVICE;
|
|
break;
|
|
case XFER_WRITE:
|
|
pci_dir = PCI_DMA_TODEVICE;
|
|
break;
|
|
case XFER_NONE:
|
|
pci_dir = PCI_DMA_NONE;
|
|
break;
|
|
default:
|
|
pci_dir = PCI_DMA_BIDIRECTIONAL;
|
|
}
|
|
|
|
hpsa_map_one(h->pdev, c, buff, size, pci_dir);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map (physical) PCI mem into (virtual) kernel space
|
|
*/
|
|
static void __iomem *remap_pci_mem(ulong base, ulong size)
|
|
{
|
|
ulong page_base = ((ulong) base) & PAGE_MASK;
|
|
ulong page_offs = ((ulong) base) - page_base;
|
|
void __iomem *page_remapped = ioremap(page_base, page_offs + size);
|
|
|
|
return page_remapped ? (page_remapped + page_offs) : NULL;
|
|
}
|
|
|
|
/* Takes cmds off the submission queue and sends them to the hardware,
|
|
* then puts them on the queue of cmds waiting for completion.
|
|
*/
|
|
static void start_io(struct ctlr_info *h)
|
|
{
|
|
struct CommandList *c;
|
|
|
|
while (!hlist_empty(&h->reqQ)) {
|
|
c = hlist_entry(h->reqQ.first, struct CommandList, list);
|
|
/* can't do anything if fifo is full */
|
|
if ((h->access.fifo_full(h))) {
|
|
dev_warn(&h->pdev->dev, "fifo full\n");
|
|
break;
|
|
}
|
|
|
|
/* Get the first entry from the Request Q */
|
|
removeQ(c);
|
|
h->Qdepth--;
|
|
|
|
/* Tell the controller execute command */
|
|
h->access.submit_command(h, c);
|
|
|
|
/* Put job onto the completed Q */
|
|
addQ(&h->cmpQ, c);
|
|
}
|
|
}
|
|
|
|
static inline unsigned long get_next_completion(struct ctlr_info *h)
|
|
{
|
|
return h->access.command_completed(h);
|
|
}
|
|
|
|
static inline bool interrupt_pending(struct ctlr_info *h)
|
|
{
|
|
return h->access.intr_pending(h);
|
|
}
|
|
|
|
static inline long interrupt_not_for_us(struct ctlr_info *h)
|
|
{
|
|
return (h->access.intr_pending(h) == 0) ||
|
|
(h->interrupts_enabled == 0);
|
|
}
|
|
|
|
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
|
|
u32 raw_tag)
|
|
{
|
|
if (unlikely(tag_index >= h->nr_cmds)) {
|
|
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
|
|
{
|
|
removeQ(c);
|
|
if (likely(c->cmd_type == CMD_SCSI))
|
|
complete_scsi_command(c, 0, raw_tag);
|
|
else if (c->cmd_type == CMD_IOCTL_PEND)
|
|
complete(c->waiting);
|
|
}
|
|
|
|
static inline u32 hpsa_tag_contains_index(u32 tag)
|
|
{
|
|
#define DIRECT_LOOKUP_BIT 0x10
|
|
return tag & DIRECT_LOOKUP_BIT;
|
|
}
|
|
|
|
static inline u32 hpsa_tag_to_index(u32 tag)
|
|
{
|
|
#define DIRECT_LOOKUP_SHIFT 5
|
|
return tag >> DIRECT_LOOKUP_SHIFT;
|
|
}
|
|
|
|
static inline u32 hpsa_tag_discard_error_bits(u32 tag)
|
|
{
|
|
#define HPSA_ERROR_BITS 0x03
|
|
return tag & ~HPSA_ERROR_BITS;
|
|
}
|
|
|
|
/* process completion of an indexed ("direct lookup") command */
|
|
static inline u32 process_indexed_cmd(struct ctlr_info *h,
|
|
u32 raw_tag)
|
|
{
|
|
u32 tag_index;
|
|
struct CommandList *c;
|
|
|
|
tag_index = hpsa_tag_to_index(raw_tag);
|
|
if (bad_tag(h, tag_index, raw_tag))
|
|
return next_command(h);
|
|
c = h->cmd_pool + tag_index;
|
|
finish_cmd(c, raw_tag);
|
|
return next_command(h);
|
|
}
|
|
|
|
/* process completion of a non-indexed command */
|
|
static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
|
|
u32 raw_tag)
|
|
{
|
|
u32 tag;
|
|
struct CommandList *c = NULL;
|
|
struct hlist_node *tmp;
|
|
|
|
tag = hpsa_tag_discard_error_bits(raw_tag);
|
|
hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
|
|
if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
|
|
finish_cmd(c, raw_tag);
|
|
return next_command(h);
|
|
}
|
|
}
|
|
bad_tag(h, h->nr_cmds + 1, raw_tag);
|
|
return next_command(h);
|
|
}
|
|
|
|
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
|
|
{
|
|
struct ctlr_info *h = dev_id;
|
|
unsigned long flags;
|
|
u32 raw_tag;
|
|
|
|
if (interrupt_not_for_us(h))
|
|
return IRQ_NONE;
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
while (interrupt_pending(h)) {
|
|
raw_tag = get_next_completion(h);
|
|
while (raw_tag != FIFO_EMPTY) {
|
|
if (hpsa_tag_contains_index(raw_tag))
|
|
raw_tag = process_indexed_cmd(h, raw_tag);
|
|
else
|
|
raw_tag = process_nonindexed_cmd(h, raw_tag);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
|
|
{
|
|
struct ctlr_info *h = dev_id;
|
|
unsigned long flags;
|
|
u32 raw_tag;
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
raw_tag = get_next_completion(h);
|
|
while (raw_tag != FIFO_EMPTY) {
|
|
if (hpsa_tag_contains_index(raw_tag))
|
|
raw_tag = process_indexed_cmd(h, raw_tag);
|
|
else
|
|
raw_tag = process_nonindexed_cmd(h, raw_tag);
|
|
}
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Send a message CDB to the firmware. */
|
|
static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
|
|
unsigned char type)
|
|
{
|
|
struct Command {
|
|
struct CommandListHeader CommandHeader;
|
|
struct RequestBlock Request;
|
|
struct ErrDescriptor ErrorDescriptor;
|
|
};
|
|
struct Command *cmd;
|
|
static const size_t cmd_sz = sizeof(*cmd) +
|
|
sizeof(cmd->ErrorDescriptor);
|
|
dma_addr_t paddr64;
|
|
uint32_t paddr32, tag;
|
|
void __iomem *vaddr;
|
|
int i, err;
|
|
|
|
vaddr = pci_ioremap_bar(pdev, 0);
|
|
if (vaddr == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* The Inbound Post Queue only accepts 32-bit physical addresses for the
|
|
* CCISS commands, so they must be allocated from the lower 4GiB of
|
|
* memory.
|
|
*/
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (err) {
|
|
iounmap(vaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
|
|
if (cmd == NULL) {
|
|
iounmap(vaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* This must fit, because of the 32-bit consistent DMA mask. Also,
|
|
* although there's no guarantee, we assume that the address is at
|
|
* least 4-byte aligned (most likely, it's page-aligned).
|
|
*/
|
|
paddr32 = paddr64;
|
|
|
|
cmd->CommandHeader.ReplyQueue = 0;
|
|
cmd->CommandHeader.SGList = 0;
|
|
cmd->CommandHeader.SGTotal = 0;
|
|
cmd->CommandHeader.Tag.lower = paddr32;
|
|
cmd->CommandHeader.Tag.upper = 0;
|
|
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
|
|
|
|
cmd->Request.CDBLen = 16;
|
|
cmd->Request.Type.Type = TYPE_MSG;
|
|
cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
|
|
cmd->Request.Type.Direction = XFER_NONE;
|
|
cmd->Request.Timeout = 0; /* Don't time out */
|
|
cmd->Request.CDB[0] = opcode;
|
|
cmd->Request.CDB[1] = type;
|
|
memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
|
|
cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
|
|
cmd->ErrorDescriptor.Addr.upper = 0;
|
|
cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
|
|
|
|
writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
|
|
|
|
for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
|
|
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
|
|
if (hpsa_tag_discard_error_bits(tag) == paddr32)
|
|
break;
|
|
msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
|
|
}
|
|
|
|
iounmap(vaddr);
|
|
|
|
/* we leak the DMA buffer here ... no choice since the controller could
|
|
* still complete the command.
|
|
*/
|
|
if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
|
|
dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
|
|
opcode, type);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
|
|
|
|
if (tag & HPSA_ERROR_BIT) {
|
|
dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
|
|
opcode, type);
|
|
return -EIO;
|
|
}
|
|
|
|
dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
|
|
opcode, type);
|
|
return 0;
|
|
}
|
|
|
|
#define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
|
|
#define hpsa_noop(p) hpsa_message(p, 3, 0)
|
|
|
|
static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
|
|
{
|
|
/* the #defines are stolen from drivers/pci/msi.h. */
|
|
#define msi_control_reg(base) (base + PCI_MSI_FLAGS)
|
|
#define PCI_MSIX_FLAGS_ENABLE (1 << 15)
|
|
|
|
int pos;
|
|
u16 control = 0;
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
|
|
if (pos) {
|
|
pci_read_config_word(pdev, msi_control_reg(pos), &control);
|
|
if (control & PCI_MSI_FLAGS_ENABLE) {
|
|
dev_info(&pdev->dev, "resetting MSI\n");
|
|
pci_write_config_word(pdev, msi_control_reg(pos),
|
|
control & ~PCI_MSI_FLAGS_ENABLE);
|
|
}
|
|
}
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
|
|
if (pos) {
|
|
pci_read_config_word(pdev, msi_control_reg(pos), &control);
|
|
if (control & PCI_MSIX_FLAGS_ENABLE) {
|
|
dev_info(&pdev->dev, "resetting MSI-X\n");
|
|
pci_write_config_word(pdev, msi_control_reg(pos),
|
|
control & ~PCI_MSIX_FLAGS_ENABLE);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
|
|
void * __iomem vaddr, bool use_doorbell)
|
|
{
|
|
u16 pmcsr;
|
|
int pos;
|
|
|
|
if (use_doorbell) {
|
|
/* For everything after the P600, the PCI power state method
|
|
* of resetting the controller doesn't work, so we have this
|
|
* other way using the doorbell register.
|
|
*/
|
|
dev_info(&pdev->dev, "using doorbell to reset controller\n");
|
|
writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
|
|
msleep(1000);
|
|
} else { /* Try to do it the PCI power state way */
|
|
|
|
/* Quoting from the Open CISS Specification: "The Power
|
|
* Management Control/Status Register (CSR) controls the power
|
|
* state of the device. The normal operating state is D0,
|
|
* CSR=00h. The software off state is D3, CSR=03h. To reset
|
|
* the controller, place the interface device in D3 then to D0,
|
|
* this causes a secondary PCI reset which will reset the
|
|
* controller." */
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
|
|
if (pos == 0) {
|
|
dev_err(&pdev->dev,
|
|
"hpsa_reset_controller: "
|
|
"PCI PM not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
dev_info(&pdev->dev, "using PCI PM to reset controller\n");
|
|
/* enter the D3hot power management state */
|
|
pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
pmcsr |= PCI_D3hot;
|
|
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
|
|
|
|
msleep(500);
|
|
|
|
/* enter the D0 power management state */
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
pmcsr |= PCI_D0;
|
|
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
|
|
|
|
msleep(500);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* This does a hard reset of the controller using PCI power management
|
|
* states or the using the doorbell register.
|
|
*/
|
|
static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
|
|
{
|
|
u16 saved_config_space[32];
|
|
u64 cfg_offset;
|
|
u32 cfg_base_addr;
|
|
u64 cfg_base_addr_index;
|
|
void __iomem *vaddr;
|
|
unsigned long paddr;
|
|
u32 misc_fw_support, active_transport;
|
|
int rc, i;
|
|
struct CfgTable __iomem *cfgtable;
|
|
bool use_doorbell;
|
|
u32 board_id;
|
|
|
|
/* For controllers as old as the P600, this is very nearly
|
|
* the same thing as
|
|
*
|
|
* pci_save_state(pci_dev);
|
|
* pci_set_power_state(pci_dev, PCI_D3hot);
|
|
* pci_set_power_state(pci_dev, PCI_D0);
|
|
* pci_restore_state(pci_dev);
|
|
*
|
|
* but we can't use these nice canned kernel routines on
|
|
* kexec, because they also check the MSI/MSI-X state in PCI
|
|
* configuration space and do the wrong thing when it is
|
|
* set/cleared. Also, the pci_save/restore_state functions
|
|
* violate the ordering requirements for restoring the
|
|
* configuration space from the CCISS document (see the
|
|
* comment below). So we roll our own ....
|
|
*
|
|
* For controllers newer than the P600, the pci power state
|
|
* method of resetting doesn't work so we have another way
|
|
* using the doorbell register.
|
|
*/
|
|
|
|
/* Exclude 640x boards. These are two pci devices in one slot
|
|
* which share a battery backed cache module. One controls the
|
|
* cache, the other accesses the cache through the one that controls
|
|
* it. If we reset the one controlling the cache, the other will
|
|
* likely not be happy. Just forbid resetting this conjoined mess.
|
|
* The 640x isn't really supported by hpsa anyway.
|
|
*/
|
|
hpsa_lookup_board_id(pdev, &board_id);
|
|
if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
|
|
return -ENOTSUPP;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
|
|
|
|
|
|
/* find the first memory BAR, so we can find the cfg table */
|
|
rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
|
|
if (rc)
|
|
return rc;
|
|
vaddr = remap_pci_mem(paddr, 0x250);
|
|
if (!vaddr)
|
|
return -ENOMEM;
|
|
|
|
/* find cfgtable in order to check if reset via doorbell is supported */
|
|
rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
|
|
&cfg_base_addr_index, &cfg_offset);
|
|
if (rc)
|
|
goto unmap_vaddr;
|
|
cfgtable = remap_pci_mem(pci_resource_start(pdev,
|
|
cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
|
|
if (!cfgtable) {
|
|
rc = -ENOMEM;
|
|
goto unmap_vaddr;
|
|
}
|
|
|
|
/* If reset via doorbell register is supported, use that. */
|
|
misc_fw_support = readl(&cfgtable->misc_fw_support);
|
|
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
|
|
|
|
/* The doorbell reset seems to cause lockups on some Smart
|
|
* Arrays (e.g. P410, P410i, maybe others). Until this is
|
|
* fixed or at least isolated, avoid the doorbell reset.
|
|
*/
|
|
use_doorbell = 0;
|
|
|
|
rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
|
|
if (rc)
|
|
goto unmap_cfgtable;
|
|
|
|
/* Restore the PCI configuration space. The Open CISS
|
|
* Specification says, "Restore the PCI Configuration
|
|
* Registers, offsets 00h through 60h. It is important to
|
|
* restore the command register, 16-bits at offset 04h,
|
|
* last. Do not restore the configuration status register,
|
|
* 16-bits at offset 06h." Note that the offset is 2*i.
|
|
*/
|
|
for (i = 0; i < 32; i++) {
|
|
if (i == 2 || i == 3)
|
|
continue;
|
|
pci_write_config_word(pdev, 2*i, saved_config_space[i]);
|
|
}
|
|
wmb();
|
|
pci_write_config_word(pdev, 4, saved_config_space[2]);
|
|
|
|
/* Some devices (notably the HP Smart Array 5i Controller)
|
|
need a little pause here */
|
|
msleep(HPSA_POST_RESET_PAUSE_MSECS);
|
|
|
|
/* Controller should be in simple mode at this point. If it's not,
|
|
* It means we're on one of those controllers which doesn't support
|
|
* the doorbell reset method and on which the PCI power management reset
|
|
* method doesn't work (P800, for example.)
|
|
* In those cases, pretend the reset worked and hope for the best.
|
|
*/
|
|
active_transport = readl(&cfgtable->TransportActive);
|
|
if (active_transport & PERFORMANT_MODE) {
|
|
dev_warn(&pdev->dev, "Unable to successfully reset controller,"
|
|
" proceeding anyway.\n");
|
|
rc = -ENOTSUPP;
|
|
}
|
|
|
|
unmap_cfgtable:
|
|
iounmap(cfgtable);
|
|
|
|
unmap_vaddr:
|
|
iounmap(vaddr);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* We cannot read the structure directly, for portability we must use
|
|
* the io functions.
|
|
* This is for debug only.
|
|
*/
|
|
static void print_cfg_table(struct device *dev, struct CfgTable *tb)
|
|
{
|
|
#ifdef HPSA_DEBUG
|
|
int i;
|
|
char temp_name[17];
|
|
|
|
dev_info(dev, "Controller Configuration information\n");
|
|
dev_info(dev, "------------------------------------\n");
|
|
for (i = 0; i < 4; i++)
|
|
temp_name[i] = readb(&(tb->Signature[i]));
|
|
temp_name[4] = '\0';
|
|
dev_info(dev, " Signature = %s\n", temp_name);
|
|
dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
|
|
dev_info(dev, " Transport methods supported = 0x%x\n",
|
|
readl(&(tb->TransportSupport)));
|
|
dev_info(dev, " Transport methods active = 0x%x\n",
|
|
readl(&(tb->TransportActive)));
|
|
dev_info(dev, " Requested transport Method = 0x%x\n",
|
|
readl(&(tb->HostWrite.TransportRequest)));
|
|
dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntDelay)));
|
|
dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntCount)));
|
|
dev_info(dev, " Max outstanding commands = 0x%d\n",
|
|
readl(&(tb->CmdsOutMax)));
|
|
dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
|
|
for (i = 0; i < 16; i++)
|
|
temp_name[i] = readb(&(tb->ServerName[i]));
|
|
temp_name[16] = '\0';
|
|
dev_info(dev, " Server Name = %s\n", temp_name);
|
|
dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
|
|
readl(&(tb->HeartBeat)));
|
|
#endif /* HPSA_DEBUG */
|
|
}
|
|
|
|
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
|
|
{
|
|
int i, offset, mem_type, bar_type;
|
|
|
|
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
|
|
return 0;
|
|
offset = 0;
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
|
|
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
|
|
offset += 4;
|
|
else {
|
|
mem_type = pci_resource_flags(pdev, i) &
|
|
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
|
|
switch (mem_type) {
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_32:
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
|
|
offset += 4; /* 32 bit */
|
|
break;
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_64:
|
|
offset += 8;
|
|
break;
|
|
default: /* reserved in PCI 2.2 */
|
|
dev_warn(&pdev->dev,
|
|
"base address is invalid\n");
|
|
return -1;
|
|
break;
|
|
}
|
|
}
|
|
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
|
|
return i + 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
|
|
* controllers that are capable. If not, we use IO-APIC mode.
|
|
*/
|
|
|
|
static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
|
|
{
|
|
#ifdef CONFIG_PCI_MSI
|
|
int err;
|
|
struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
|
|
{0, 2}, {0, 3}
|
|
};
|
|
|
|
/* Some boards advertise MSI but don't really support it */
|
|
if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
|
|
(h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
|
|
goto default_int_mode;
|
|
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
|
|
dev_info(&h->pdev->dev, "MSIX\n");
|
|
err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
|
|
if (!err) {
|
|
h->intr[0] = hpsa_msix_entries[0].vector;
|
|
h->intr[1] = hpsa_msix_entries[1].vector;
|
|
h->intr[2] = hpsa_msix_entries[2].vector;
|
|
h->intr[3] = hpsa_msix_entries[3].vector;
|
|
h->msix_vector = 1;
|
|
return;
|
|
}
|
|
if (err > 0) {
|
|
dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
|
|
"available\n", err);
|
|
goto default_int_mode;
|
|
} else {
|
|
dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
|
|
err);
|
|
goto default_int_mode;
|
|
}
|
|
}
|
|
if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
|
|
dev_info(&h->pdev->dev, "MSI\n");
|
|
if (!pci_enable_msi(h->pdev))
|
|
h->msi_vector = 1;
|
|
else
|
|
dev_warn(&h->pdev->dev, "MSI init failed\n");
|
|
}
|
|
default_int_mode:
|
|
#endif /* CONFIG_PCI_MSI */
|
|
/* if we get here we're going to use the default interrupt mode */
|
|
h->intr[PERF_MODE_INT] = h->pdev->irq;
|
|
}
|
|
|
|
static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
|
|
{
|
|
int i;
|
|
u32 subsystem_vendor_id, subsystem_device_id;
|
|
|
|
subsystem_vendor_id = pdev->subsystem_vendor;
|
|
subsystem_device_id = pdev->subsystem_device;
|
|
*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
|
|
subsystem_vendor_id;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(products); i++)
|
|
if (*board_id == products[i].board_id)
|
|
return i;
|
|
|
|
if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
|
|
subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
|
|
!hpsa_allow_any) {
|
|
dev_warn(&pdev->dev, "unrecognized board ID: "
|
|
"0x%08x, ignoring.\n", *board_id);
|
|
return -ENODEV;
|
|
}
|
|
return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
|
|
}
|
|
|
|
static inline bool hpsa_board_disabled(struct pci_dev *pdev)
|
|
{
|
|
u16 command;
|
|
|
|
(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
|
|
return ((command & PCI_COMMAND_MEMORY) == 0);
|
|
}
|
|
|
|
static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
|
|
unsigned long *memory_bar)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
|
|
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
|
|
/* addressing mode bits already removed */
|
|
*memory_bar = pci_resource_start(pdev, i);
|
|
dev_dbg(&pdev->dev, "memory BAR = %lx\n",
|
|
*memory_bar);
|
|
return 0;
|
|
}
|
|
dev_warn(&pdev->dev, "no memory BAR found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
u32 scratchpad;
|
|
|
|
for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
|
|
scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
|
|
if (scratchpad == HPSA_FIRMWARE_READY)
|
|
return 0;
|
|
msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
|
|
}
|
|
dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
|
|
void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
|
|
u64 *cfg_offset)
|
|
{
|
|
*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
|
|
*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
|
|
*cfg_base_addr &= (u32) 0x0000ffff;
|
|
*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
|
|
if (*cfg_base_addr_index == -1) {
|
|
dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
|
|
{
|
|
u64 cfg_offset;
|
|
u32 cfg_base_addr;
|
|
u64 cfg_base_addr_index;
|
|
u32 trans_offset;
|
|
int rc;
|
|
|
|
rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
|
|
&cfg_base_addr_index, &cfg_offset);
|
|
if (rc)
|
|
return rc;
|
|
h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
|
|
cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
|
|
if (!h->cfgtable)
|
|
return -ENOMEM;
|
|
/* Find performant mode table. */
|
|
trans_offset = readl(&h->cfgtable->TransMethodOffset);
|
|
h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
|
|
cfg_base_addr_index)+cfg_offset+trans_offset,
|
|
sizeof(*h->transtable));
|
|
if (!h->transtable)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
|
|
{
|
|
h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
|
|
if (h->max_commands < 16) {
|
|
dev_warn(&h->pdev->dev, "Controller reports "
|
|
"max supported commands of %d, an obvious lie. "
|
|
"Using 16. Ensure that firmware is up to date.\n",
|
|
h->max_commands);
|
|
h->max_commands = 16;
|
|
}
|
|
}
|
|
|
|
/* Interrogate the hardware for some limits:
|
|
* max commands, max SG elements without chaining, and with chaining,
|
|
* SG chain block size, etc.
|
|
*/
|
|
static void __devinit hpsa_find_board_params(struct ctlr_info *h)
|
|
{
|
|
hpsa_get_max_perf_mode_cmds(h);
|
|
h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
|
|
h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
|
|
/*
|
|
* Limit in-command s/g elements to 32 save dma'able memory.
|
|
* Howvever spec says if 0, use 31
|
|
*/
|
|
h->max_cmd_sg_entries = 31;
|
|
if (h->maxsgentries > 512) {
|
|
h->max_cmd_sg_entries = 32;
|
|
h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
|
|
h->maxsgentries--; /* save one for chain pointer */
|
|
} else {
|
|
h->maxsgentries = 31; /* default to traditional values */
|
|
h->chainsize = 0;
|
|
}
|
|
}
|
|
|
|
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
|
|
{
|
|
if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
|
|
(readb(&h->cfgtable->Signature[1]) != 'I') ||
|
|
(readb(&h->cfgtable->Signature[2]) != 'S') ||
|
|
(readb(&h->cfgtable->Signature[3]) != 'S')) {
|
|
dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
|
|
static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
|
|
{
|
|
#ifdef CONFIG_X86
|
|
u32 prefetch;
|
|
|
|
prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
|
|
prefetch |= 0x100;
|
|
writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
|
|
#endif
|
|
}
|
|
|
|
/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
|
|
* in a prefetch beyond physical memory.
|
|
*/
|
|
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
|
|
{
|
|
u32 dma_prefetch;
|
|
|
|
if (h->board_id != 0x3225103C)
|
|
return;
|
|
dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
|
|
dma_prefetch |= 0x8000;
|
|
writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
|
|
}
|
|
|
|
static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
|
|
/* under certain very rare conditions, this can take awhile.
|
|
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
|
|
* as we enter this code.)
|
|
*/
|
|
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
|
|
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
msleep(10);
|
|
}
|
|
}
|
|
|
|
static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
|
|
{
|
|
u32 trans_support;
|
|
|
|
trans_support = readl(&(h->cfgtable->TransportSupport));
|
|
if (!(trans_support & SIMPLE_MODE))
|
|
return -ENOTSUPP;
|
|
|
|
h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
|
|
/* Update the field, and then ring the doorbell */
|
|
writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
|
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
|
|
hpsa_wait_for_mode_change_ack(h);
|
|
print_cfg_table(&h->pdev->dev, h->cfgtable);
|
|
if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
|
|
dev_warn(&h->pdev->dev,
|
|
"unable to get board into simple mode\n");
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit hpsa_pci_init(struct ctlr_info *h)
|
|
{
|
|
int prod_index, err;
|
|
|
|
prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
|
|
if (prod_index < 0)
|
|
return -ENODEV;
|
|
h->product_name = products[prod_index].product_name;
|
|
h->access = *(products[prod_index].access);
|
|
|
|
if (hpsa_board_disabled(h->pdev)) {
|
|
dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
|
|
return -ENODEV;
|
|
}
|
|
err = pci_enable_device(h->pdev);
|
|
if (err) {
|
|
dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
|
|
return err;
|
|
}
|
|
|
|
err = pci_request_regions(h->pdev, "hpsa");
|
|
if (err) {
|
|
dev_err(&h->pdev->dev,
|
|
"cannot obtain PCI resources, aborting\n");
|
|
return err;
|
|
}
|
|
hpsa_interrupt_mode(h);
|
|
err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
h->vaddr = remap_pci_mem(h->paddr, 0x250);
|
|
if (!h->vaddr) {
|
|
err = -ENOMEM;
|
|
goto err_out_free_res;
|
|
}
|
|
err = hpsa_wait_for_board_ready(h);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
err = hpsa_find_cfgtables(h);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
hpsa_find_board_params(h);
|
|
|
|
if (!hpsa_CISS_signature_present(h)) {
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
hpsa_enable_scsi_prefetch(h);
|
|
hpsa_p600_dma_prefetch_quirk(h);
|
|
err = hpsa_enter_simple_mode(h);
|
|
if (err)
|
|
goto err_out_free_res;
|
|
return 0;
|
|
|
|
err_out_free_res:
|
|
if (h->transtable)
|
|
iounmap(h->transtable);
|
|
if (h->cfgtable)
|
|
iounmap(h->cfgtable);
|
|
if (h->vaddr)
|
|
iounmap(h->vaddr);
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_release_regions(h->pdev);
|
|
return err;
|
|
}
|
|
|
|
static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
|
|
{
|
|
int rc;
|
|
|
|
#define HBA_INQUIRY_BYTE_COUNT 64
|
|
h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
|
|
if (!h->hba_inquiry_data)
|
|
return;
|
|
rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
|
|
h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
|
|
if (rc != 0) {
|
|
kfree(h->hba_inquiry_data);
|
|
h->hba_inquiry_data = NULL;
|
|
}
|
|
}
|
|
|
|
static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
|
|
{
|
|
int rc, i;
|
|
|
|
if (!reset_devices)
|
|
return 0;
|
|
|
|
/* Reset the controller with a PCI power-cycle or via doorbell */
|
|
rc = hpsa_kdump_hard_reset_controller(pdev);
|
|
|
|
/* -ENOTSUPP here means we cannot reset the controller
|
|
* but it's already (and still) up and running in
|
|
* "performant mode". Or, it might be 640x, which can't reset
|
|
* due to concerns about shared bbwc between 6402/6404 pair.
|
|
*/
|
|
if (rc == -ENOTSUPP)
|
|
return 0; /* just try to do the kdump anyhow. */
|
|
if (rc)
|
|
return -ENODEV;
|
|
if (hpsa_reset_msi(pdev))
|
|
return -ENODEV;
|
|
|
|
/* Now try to get the controller to respond to a no-op */
|
|
for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
|
|
if (hpsa_noop(pdev) == 0)
|
|
break;
|
|
else
|
|
dev_warn(&pdev->dev, "no-op failed%s\n",
|
|
(i < 11 ? "; re-trying" : ""));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit hpsa_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
int dac, rc;
|
|
struct ctlr_info *h;
|
|
|
|
if (number_of_controllers == 0)
|
|
printk(KERN_INFO DRIVER_NAME "\n");
|
|
|
|
rc = hpsa_init_reset_devices(pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Command structures must be aligned on a 32-byte boundary because
|
|
* the 5 lower bits of the address are used by the hardware. and by
|
|
* the driver. See comments in hpsa.h for more info.
|
|
*/
|
|
#define COMMANDLIST_ALIGNMENT 32
|
|
BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
|
|
h = kzalloc(sizeof(*h), GFP_KERNEL);
|
|
if (!h)
|
|
return -ENOMEM;
|
|
|
|
h->pdev = pdev;
|
|
h->busy_initializing = 1;
|
|
INIT_HLIST_HEAD(&h->cmpQ);
|
|
INIT_HLIST_HEAD(&h->reqQ);
|
|
rc = hpsa_pci_init(h);
|
|
if (rc != 0)
|
|
goto clean1;
|
|
|
|
sprintf(h->devname, "hpsa%d", number_of_controllers);
|
|
h->ctlr = number_of_controllers;
|
|
number_of_controllers++;
|
|
|
|
/* configure PCI DMA stuff */
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
|
|
if (rc == 0) {
|
|
dac = 1;
|
|
} else {
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (rc == 0) {
|
|
dac = 0;
|
|
} else {
|
|
dev_err(&pdev->dev, "no suitable DMA available\n");
|
|
goto clean1;
|
|
}
|
|
}
|
|
|
|
/* make sure the board interrupts are off */
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF);
|
|
|
|
if (h->msix_vector || h->msi_vector)
|
|
rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
|
|
IRQF_DISABLED, h->devname, h);
|
|
else
|
|
rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
|
|
IRQF_DISABLED, h->devname, h);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "unable to get irq %d for %s\n",
|
|
h->intr[PERF_MODE_INT], h->devname);
|
|
goto clean2;
|
|
}
|
|
|
|
dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
|
|
h->devname, pdev->device,
|
|
h->intr[PERF_MODE_INT], dac ? "" : " not");
|
|
|
|
h->cmd_pool_bits =
|
|
kmalloc(((h->nr_cmds + BITS_PER_LONG -
|
|
1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
|
|
h->cmd_pool = pci_alloc_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->cmd_pool),
|
|
&(h->cmd_pool_dhandle));
|
|
h->errinfo_pool = pci_alloc_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(*h->errinfo_pool),
|
|
&(h->errinfo_pool_dhandle));
|
|
if ((h->cmd_pool_bits == NULL)
|
|
|| (h->cmd_pool == NULL)
|
|
|| (h->errinfo_pool == NULL)) {
|
|
dev_err(&pdev->dev, "out of memory");
|
|
rc = -ENOMEM;
|
|
goto clean4;
|
|
}
|
|
if (hpsa_allocate_sg_chain_blocks(h))
|
|
goto clean4;
|
|
spin_lock_init(&h->lock);
|
|
spin_lock_init(&h->scan_lock);
|
|
init_waitqueue_head(&h->scan_wait_queue);
|
|
h->scan_finished = 1; /* no scan currently in progress */
|
|
|
|
pci_set_drvdata(pdev, h);
|
|
memset(h->cmd_pool_bits, 0,
|
|
((h->nr_cmds + BITS_PER_LONG -
|
|
1) / BITS_PER_LONG) * sizeof(unsigned long));
|
|
|
|
hpsa_scsi_setup(h);
|
|
|
|
/* Turn the interrupts on so we can service requests */
|
|
h->access.set_intr_mask(h, HPSA_INTR_ON);
|
|
|
|
hpsa_put_ctlr_into_performant_mode(h);
|
|
hpsa_hba_inquiry(h);
|
|
hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
|
|
h->busy_initializing = 0;
|
|
return 1;
|
|
|
|
clean4:
|
|
hpsa_free_sg_chain_blocks(h);
|
|
kfree(h->cmd_pool_bits);
|
|
if (h->cmd_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct CommandList),
|
|
h->cmd_pool, h->cmd_pool_dhandle);
|
|
if (h->errinfo_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct ErrorInfo),
|
|
h->errinfo_pool,
|
|
h->errinfo_pool_dhandle);
|
|
free_irq(h->intr[PERF_MODE_INT], h);
|
|
clean2:
|
|
clean1:
|
|
h->busy_initializing = 0;
|
|
kfree(h);
|
|
return rc;
|
|
}
|
|
|
|
static void hpsa_flush_cache(struct ctlr_info *h)
|
|
{
|
|
char *flush_buf;
|
|
struct CommandList *c;
|
|
|
|
flush_buf = kzalloc(4, GFP_KERNEL);
|
|
if (!flush_buf)
|
|
return;
|
|
|
|
c = cmd_special_alloc(h);
|
|
if (!c) {
|
|
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
|
|
goto out_of_memory;
|
|
}
|
|
fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
|
|
RAID_CTLR_LUNID, TYPE_CMD);
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
|
|
if (c->err_info->CommandStatus != 0)
|
|
dev_warn(&h->pdev->dev,
|
|
"error flushing cache on controller\n");
|
|
cmd_special_free(h, c);
|
|
out_of_memory:
|
|
kfree(flush_buf);
|
|
}
|
|
|
|
static void hpsa_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct ctlr_info *h;
|
|
|
|
h = pci_get_drvdata(pdev);
|
|
/* Turn board interrupts off and send the flush cache command
|
|
* sendcmd will turn off interrupt, and send the flush...
|
|
* To write all data in the battery backed cache to disks
|
|
*/
|
|
hpsa_flush_cache(h);
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF);
|
|
free_irq(h->intr[PERF_MODE_INT], h);
|
|
#ifdef CONFIG_PCI_MSI
|
|
if (h->msix_vector)
|
|
pci_disable_msix(h->pdev);
|
|
else if (h->msi_vector)
|
|
pci_disable_msi(h->pdev);
|
|
#endif /* CONFIG_PCI_MSI */
|
|
}
|
|
|
|
static void __devexit hpsa_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct ctlr_info *h;
|
|
|
|
if (pci_get_drvdata(pdev) == NULL) {
|
|
dev_err(&pdev->dev, "unable to remove device \n");
|
|
return;
|
|
}
|
|
h = pci_get_drvdata(pdev);
|
|
hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
|
|
hpsa_shutdown(pdev);
|
|
iounmap(h->vaddr);
|
|
iounmap(h->transtable);
|
|
iounmap(h->cfgtable);
|
|
hpsa_free_sg_chain_blocks(h);
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct CommandList),
|
|
h->cmd_pool, h->cmd_pool_dhandle);
|
|
pci_free_consistent(h->pdev,
|
|
h->nr_cmds * sizeof(struct ErrorInfo),
|
|
h->errinfo_pool, h->errinfo_pool_dhandle);
|
|
pci_free_consistent(h->pdev, h->reply_pool_size,
|
|
h->reply_pool, h->reply_pool_dhandle);
|
|
kfree(h->cmd_pool_bits);
|
|
kfree(h->blockFetchTable);
|
|
kfree(h->hba_inquiry_data);
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_release_regions(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
kfree(h);
|
|
}
|
|
|
|
static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
|
|
__attribute__((unused)) pm_message_t state)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static struct pci_driver hpsa_pci_driver = {
|
|
.name = "hpsa",
|
|
.probe = hpsa_init_one,
|
|
.remove = __devexit_p(hpsa_remove_one),
|
|
.id_table = hpsa_pci_device_id, /* id_table */
|
|
.shutdown = hpsa_shutdown,
|
|
.suspend = hpsa_suspend,
|
|
.resume = hpsa_resume,
|
|
};
|
|
|
|
/* Fill in bucket_map[], given nsgs (the max number of
|
|
* scatter gather elements supported) and bucket[],
|
|
* which is an array of 8 integers. The bucket[] array
|
|
* contains 8 different DMA transfer sizes (in 16
|
|
* byte increments) which the controller uses to fetch
|
|
* commands. This function fills in bucket_map[], which
|
|
* maps a given number of scatter gather elements to one of
|
|
* the 8 DMA transfer sizes. The point of it is to allow the
|
|
* controller to only do as much DMA as needed to fetch the
|
|
* command, with the DMA transfer size encoded in the lower
|
|
* bits of the command address.
|
|
*/
|
|
static void calc_bucket_map(int bucket[], int num_buckets,
|
|
int nsgs, int *bucket_map)
|
|
{
|
|
int i, j, b, size;
|
|
|
|
/* even a command with 0 SGs requires 4 blocks */
|
|
#define MINIMUM_TRANSFER_BLOCKS 4
|
|
#define NUM_BUCKETS 8
|
|
/* Note, bucket_map must have nsgs+1 entries. */
|
|
for (i = 0; i <= nsgs; i++) {
|
|
/* Compute size of a command with i SG entries */
|
|
size = i + MINIMUM_TRANSFER_BLOCKS;
|
|
b = num_buckets; /* Assume the biggest bucket */
|
|
/* Find the bucket that is just big enough */
|
|
for (j = 0; j < 8; j++) {
|
|
if (bucket[j] >= size) {
|
|
b = j;
|
|
break;
|
|
}
|
|
}
|
|
/* for a command with i SG entries, use bucket b. */
|
|
bucket_map[i] = b;
|
|
}
|
|
}
|
|
|
|
static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
|
|
{
|
|
int i;
|
|
unsigned long register_value;
|
|
|
|
/* This is a bit complicated. There are 8 registers on
|
|
* the controller which we write to to tell it 8 different
|
|
* sizes of commands which there may be. It's a way of
|
|
* reducing the DMA done to fetch each command. Encoded into
|
|
* each command's tag are 3 bits which communicate to the controller
|
|
* which of the eight sizes that command fits within. The size of
|
|
* each command depends on how many scatter gather entries there are.
|
|
* Each SG entry requires 16 bytes. The eight registers are programmed
|
|
* with the number of 16-byte blocks a command of that size requires.
|
|
* The smallest command possible requires 5 such 16 byte blocks.
|
|
* the largest command possible requires MAXSGENTRIES + 4 16-byte
|
|
* blocks. Note, this only extends to the SG entries contained
|
|
* within the command block, and does not extend to chained blocks
|
|
* of SG elements. bft[] contains the eight values we write to
|
|
* the registers. They are not evenly distributed, but have more
|
|
* sizes for small commands, and fewer sizes for larger commands.
|
|
*/
|
|
int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
|
|
BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
|
|
/* 5 = 1 s/g entry or 4k
|
|
* 6 = 2 s/g entry or 8k
|
|
* 8 = 4 s/g entry or 16k
|
|
* 10 = 6 s/g entry or 24k
|
|
*/
|
|
|
|
h->reply_pool_wraparound = 1; /* spec: init to 1 */
|
|
|
|
/* Controller spec: zero out this buffer. */
|
|
memset(h->reply_pool, 0, h->reply_pool_size);
|
|
h->reply_pool_head = h->reply_pool;
|
|
|
|
bft[7] = h->max_sg_entries + 4;
|
|
calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
|
|
for (i = 0; i < 8; i++)
|
|
writel(bft[i], &h->transtable->BlockFetch[i]);
|
|
|
|
/* size of controller ring buffer */
|
|
writel(h->max_commands, &h->transtable->RepQSize);
|
|
writel(1, &h->transtable->RepQCount);
|
|
writel(0, &h->transtable->RepQCtrAddrLow32);
|
|
writel(0, &h->transtable->RepQCtrAddrHigh32);
|
|
writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
|
|
writel(0, &h->transtable->RepQAddr0High32);
|
|
writel(CFGTBL_Trans_Performant,
|
|
&(h->cfgtable->HostWrite.TransportRequest));
|
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
|
|
hpsa_wait_for_mode_change_ack(h);
|
|
register_value = readl(&(h->cfgtable->TransportActive));
|
|
if (!(register_value & CFGTBL_Trans_Performant)) {
|
|
dev_warn(&h->pdev->dev, "unable to get board into"
|
|
" performant mode\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
|
|
{
|
|
u32 trans_support;
|
|
|
|
trans_support = readl(&(h->cfgtable->TransportSupport));
|
|
if (!(trans_support & PERFORMANT_MODE))
|
|
return;
|
|
|
|
hpsa_get_max_perf_mode_cmds(h);
|
|
h->max_sg_entries = 32;
|
|
/* Performant mode ring buffer and supporting data structures */
|
|
h->reply_pool_size = h->max_commands * sizeof(u64);
|
|
h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
|
|
&(h->reply_pool_dhandle));
|
|
|
|
/* Need a block fetch table for performant mode */
|
|
h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
|
|
sizeof(u32)), GFP_KERNEL);
|
|
|
|
if ((h->reply_pool == NULL)
|
|
|| (h->blockFetchTable == NULL))
|
|
goto clean_up;
|
|
|
|
hpsa_enter_performant_mode(h);
|
|
|
|
/* Change the access methods to the performant access methods */
|
|
h->access = SA5_performant_access;
|
|
h->transMethod = CFGTBL_Trans_Performant;
|
|
|
|
return;
|
|
|
|
clean_up:
|
|
if (h->reply_pool)
|
|
pci_free_consistent(h->pdev, h->reply_pool_size,
|
|
h->reply_pool, h->reply_pool_dhandle);
|
|
kfree(h->blockFetchTable);
|
|
}
|
|
|
|
/*
|
|
* This is it. Register the PCI driver information for the cards we control
|
|
* the OS will call our registered routines when it finds one of our cards.
|
|
*/
|
|
static int __init hpsa_init(void)
|
|
{
|
|
return pci_register_driver(&hpsa_pci_driver);
|
|
}
|
|
|
|
static void __exit hpsa_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&hpsa_pci_driver);
|
|
}
|
|
|
|
module_init(hpsa_init);
|
|
module_exit(hpsa_cleanup);
|