Anirban Chakraborty 73208dfd7a [SCSI] qla2xxx: add support for multi-queue adapter
Following changes have been made.
1. qla_hw_data structure holds an array for request queue pointers,
and an array for response queue pointers.
2. The base request and response queues are created by default.
3. Additional request and response queues are created at the time of vport
creation. If queue resources are exhausted during vport creation, newly
created vports use the default queue.
4. Requests are sent to the request queue that the vport was assigned
in the beginning.
5. Responses are completed on the response queue with which the request queue
is associated with.

[fixup memcpy argument reversal spotted by davej@redhat.com]
Signed-off-by: Anirban Chakraborty <anirban.chakraborty@qlogic.com>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2008-12-29 11:24:33 -06:00

2756 lines
71 KiB
C

/*
* QLogic Fibre Channel HBA Driver
* Copyright (c) 2003-2008 QLogic Corporation
*
* See LICENSE.qla2xxx for copyright and licensing details.
*/
#include "qla_def.h"
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
/*
* NVRAM support routines
*/
/**
* qla2x00_lock_nvram_access() -
* @ha: HA context
*/
static void
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
data = RD_REG_WORD(&reg->nvram);
while (data & NVR_BUSY) {
udelay(100);
data = RD_REG_WORD(&reg->nvram);
}
/* Lock resource */
WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
RD_REG_WORD(&reg->u.isp2300.host_semaphore);
udelay(5);
data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
while ((data & BIT_0) == 0) {
/* Lock failed */
udelay(100);
WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
RD_REG_WORD(&reg->u.isp2300.host_semaphore);
udelay(5);
data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
}
}
}
/**
* qla2x00_unlock_nvram_access() -
* @ha: HA context
*/
static void
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
RD_REG_WORD(&reg->u.isp2300.host_semaphore);
}
}
/**
* qla2x00_nv_write() - Prepare for NVRAM read/write operation.
* @ha: HA context
* @data: Serial interface selector
*/
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
NVR_WRT_ENABLE);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/**
* qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
* NVRAM.
* @ha: HA context
* @nv_cmd: NVRAM command
*
* Bit definitions for NVRAM command:
*
* Bit 26 = start bit
* Bit 25, 24 = opcode
* Bit 23-16 = address
* Bit 15-0 = write data
*
* Returns the word read from nvram @addr.
*/
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
uint8_t cnt;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint16_t data = 0;
uint16_t reg_data;
/* Send command to NVRAM. */
nv_cmd <<= 5;
for (cnt = 0; cnt < 11; cnt++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
/* Read data from NVRAM. */
for (cnt = 0; cnt < 16; cnt++) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
data <<= 1;
reg_data = RD_REG_WORD(&reg->nvram);
if (reg_data & NVR_DATA_IN)
data |= BIT_0;
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/* Deselect chip. */
WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
return data;
}
/**
* qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
* request routine to get the word from NVRAM.
* @ha: HA context
* @addr: Address in NVRAM to read
*
* Returns the word read from nvram @addr.
*/
static uint16_t
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
{
uint16_t data;
uint32_t nv_cmd;
nv_cmd = addr << 16;
nv_cmd |= NV_READ_OP;
data = qla2x00_nvram_request(ha, nv_cmd);
return (data);
}
/**
* qla2x00_nv_deselect() - Deselect NVRAM operations.
* @ha: HA context
*/
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/**
* qla2x00_write_nvram_word() - Write NVRAM data.
* @ha: HA context
* @addr: Address in NVRAM to write
* @data: word to program
*/
static void
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
{
int count;
uint16_t word;
uint32_t nv_cmd, wait_cnt;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Write data */
nv_cmd = (addr << 16) | NV_WRITE_OP;
nv_cmd |= data;
nv_cmd <<= 5;
for (count = 0; count < 27; count++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
__func__, vha->host_no));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
} while ((word & NVR_DATA_IN) == 0);
qla2x00_nv_deselect(ha);
/* Disable writes */
qla2x00_nv_write(ha, NVR_DATA_OUT);
for (count = 0; count < 10; count++)
qla2x00_nv_write(ha, 0);
qla2x00_nv_deselect(ha);
}
static int
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
uint16_t data, uint32_t tmo)
{
int ret, count;
uint16_t word;
uint32_t nv_cmd;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
ret = QLA_SUCCESS;
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Write data */
nv_cmd = (addr << 16) | NV_WRITE_OP;
nv_cmd |= data;
nv_cmd <<= 5;
for (count = 0; count < 27; count++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
do {
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
if (!--tmo) {
ret = QLA_FUNCTION_FAILED;
break;
}
} while ((word & NVR_DATA_IN) == 0);
qla2x00_nv_deselect(ha);
/* Disable writes */
qla2x00_nv_write(ha, NVR_DATA_OUT);
for (count = 0; count < 10; count++)
qla2x00_nv_write(ha, 0);
qla2x00_nv_deselect(ha);
return ret;
}
/**
* qla2x00_clear_nvram_protection() -
* @ha: HA context
*/
static int
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
{
int ret, stat;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t word, wait_cnt;
uint16_t wprot, wprot_old;
/* Clear NVRAM write protection. */
ret = QLA_FUNCTION_FAILED;
wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
__constant_cpu_to_le16(0x1234), 100000);
wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
if (stat != QLA_SUCCESS || wprot != 0x1234) {
/* Write enable. */
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Clear protection register (ffff is cleared). */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready. */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(qla_printk(
"NVRAM didn't go ready...\n"));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
} while ((word & NVR_DATA_IN) == 0);
if (wait_cnt)
ret = QLA_SUCCESS;
} else
qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
return ret;
}
static void
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t word, wait_cnt;
if (stat != QLA_SUCCESS)
return;
/* Set NVRAM write protection. */
/* Write enable. */
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready. */
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(qla_printk("NVRAM didn't go ready...\n"));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(&reg->nvram);
} while ((word & NVR_DATA_IN) == 0);
}
/*****************************************************************************/
/* Flash Manipulation Routines */
/*****************************************************************************/
#define OPTROM_BURST_SIZE 0x1000
#define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
static inline uint32_t
flash_conf_to_access_addr(uint32_t faddr)
{
return FARX_ACCESS_FLASH_CONF | faddr;
}
static inline uint32_t
flash_data_to_access_addr(uint32_t faddr)
{
return FARX_ACCESS_FLASH_DATA | faddr;
}
static inline uint32_t
nvram_conf_to_access_addr(uint32_t naddr)
{
return FARX_ACCESS_NVRAM_CONF | naddr;
}
static inline uint32_t
nvram_data_to_access_addr(uint32_t naddr)
{
return FARX_ACCESS_NVRAM_DATA | naddr;
}
static uint32_t
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
{
int rval;
uint32_t cnt, data;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
/* Wait for READ cycle to complete. */
rval = QLA_SUCCESS;
for (cnt = 3000;
(RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
rval == QLA_SUCCESS; cnt--) {
if (cnt)
udelay(10);
else
rval = QLA_FUNCTION_TIMEOUT;
cond_resched();
}
/* TODO: What happens if we time out? */
data = 0xDEADDEAD;
if (rval == QLA_SUCCESS)
data = RD_REG_DWORD(&reg->flash_data);
return data;
}
uint32_t *
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
uint32_t dwords)
{
uint32_t i;
/* Dword reads to flash. */
for (i = 0; i < dwords; i++, faddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(vha->hw,
flash_data_to_access_addr(faddr)));
return dwptr;
}
static int
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
{
int rval;
uint32_t cnt;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
WRT_REG_DWORD(&reg->flash_data, data);
RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
/* Wait for Write cycle to complete. */
rval = QLA_SUCCESS;
for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
rval == QLA_SUCCESS; cnt--) {
if (cnt)
udelay(10);
else
rval = QLA_FUNCTION_TIMEOUT;
cond_resched();
}
return rval;
}
static void
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
uint8_t *flash_id)
{
uint32_t ids;
ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
*man_id = LSB(ids);
*flash_id = MSB(ids);
/* Check if man_id and flash_id are valid. */
if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
/* Read information using 0x9f opcode
* Device ID, Mfg ID would be read in the format:
* <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
* Example: ATMEL 0x00 01 45 1F
* Extract MFG and Dev ID from last two bytes.
*/
ids = qla24xx_read_flash_dword(ha,
flash_data_to_access_addr(0xd009f));
*man_id = LSB(ids);
*flash_id = MSB(ids);
}
}
static int
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
{
const char *loc, *locations[] = { "DEF", "PCI" };
uint32_t pcihdr, pcids;
uint32_t *dcode;
uint8_t *buf, *bcode, last_image;
uint16_t cnt, chksum, *wptr;
struct qla_flt_location *fltl;
struct qla_hw_data *ha = vha->hw;
struct req_que *req = ha->req_q_map[0];
/*
* FLT-location structure resides after the last PCI region.
*/
/* Begin with sane defaults. */
loc = locations[0];
*start = IS_QLA24XX_TYPE(ha) ? FA_FLASH_LAYOUT_ADDR_24:
FA_FLASH_LAYOUT_ADDR;
/* Begin with first PCI expansion ROM header. */
buf = (uint8_t *)req->ring;
dcode = (uint32_t *)req->ring;
pcihdr = 0;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
bcode = buf + (pcihdr % 4);
if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
goto end;
/* Locate PCI data structure. */
pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
bcode = buf + (pcihdr % 4);
/* Validate signature of PCI data structure. */
if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
bcode[0x2] != 'I' || bcode[0x3] != 'R')
goto end;
last_image = bcode[0x15] & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
} while (!last_image);
/* Now verify FLT-location structure. */
fltl = (struct qla_flt_location *)req->ring;
qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
sizeof(struct qla_flt_location) >> 2);
if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
goto end;
wptr = (uint16_t *)req->ring;
cnt = sizeof(struct qla_flt_location) >> 1;
for (chksum = 0; cnt; cnt--)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
qla_printk(KERN_ERR, ha,
"Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
return QLA_FUNCTION_FAILED;
}
/* Good data. Use specified location. */
loc = locations[1];
*start = le16_to_cpu(fltl->start_hi) << 16 |
le16_to_cpu(fltl->start_lo);
end:
DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
return QLA_SUCCESS;
}
static void
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
{
const char *loc, *locations[] = { "DEF", "FLT" };
uint16_t *wptr;
uint16_t cnt, chksum;
uint32_t start;
struct qla_flt_header *flt;
struct qla_flt_region *region;
struct qla_hw_data *ha = vha->hw;
struct req_que *req = ha->req_q_map[0];
ha->flt_region_flt = flt_addr;
wptr = (uint16_t *)req->ring;
flt = (struct qla_flt_header *)req->ring;
region = (struct qla_flt_region *)&flt[1];
ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
flt_addr << 2, OPTROM_BURST_SIZE);
if (*wptr == __constant_cpu_to_le16(0xffff))
goto no_flash_data;
if (flt->version != __constant_cpu_to_le16(1)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
"version=0x%x length=0x%x checksum=0x%x.\n",
le16_to_cpu(flt->version), le16_to_cpu(flt->length),
le16_to_cpu(flt->checksum)));
goto no_flash_data;
}
cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
for (chksum = 0; cnt; cnt--)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
"version=0x%x length=0x%x checksum=0x%x.\n",
le16_to_cpu(flt->version), le16_to_cpu(flt->length),
chksum));
goto no_flash_data;
}
loc = locations[1];
cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
for ( ; cnt; cnt--, region++) {
/* Store addresses as DWORD offsets. */
start = le32_to_cpu(region->start) >> 2;
DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
"end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
switch (le32_to_cpu(region->code)) {
case FLT_REG_FW:
ha->flt_region_fw = start;
break;
case FLT_REG_BOOT_CODE:
ha->flt_region_boot = start;
break;
case FLT_REG_VPD_0:
ha->flt_region_vpd_nvram = start;
break;
case FLT_REG_FDT:
ha->flt_region_fdt = start;
break;
case FLT_REG_HW_EVENT_0:
if (!PCI_FUNC(ha->pdev->devfn))
ha->flt_region_hw_event = start;
break;
case FLT_REG_HW_EVENT_1:
if (PCI_FUNC(ha->pdev->devfn))
ha->flt_region_hw_event = start;
break;
case FLT_REG_NPIV_CONF_0:
if (!PCI_FUNC(ha->pdev->devfn))
ha->flt_region_npiv_conf = start;
break;
case FLT_REG_NPIV_CONF_1:
if (PCI_FUNC(ha->pdev->devfn))
ha->flt_region_npiv_conf = start;
break;
}
}
goto done;
no_flash_data:
/* Use hardcoded defaults. */
loc = locations[0];
ha->flt_region_fw = FA_RISC_CODE_ADDR;
ha->flt_region_boot = FA_BOOT_CODE_ADDR;
ha->flt_region_vpd_nvram = FA_VPD_NVRAM_ADDR;
ha->flt_region_fdt = IS_QLA24XX_TYPE(ha) ? FA_FLASH_DESCR_ADDR_24:
FA_FLASH_DESCR_ADDR;
ha->flt_region_hw_event = !PCI_FUNC(ha->pdev->devfn) ?
FA_HW_EVENT0_ADDR: FA_HW_EVENT1_ADDR;
ha->flt_region_npiv_conf = !PCI_FUNC(ha->pdev->devfn) ?
(IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF0_ADDR_24: FA_NPIV_CONF0_ADDR):
(IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF1_ADDR_24: FA_NPIV_CONF1_ADDR);
done:
DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
"vpd_nvram=0x%x fdt=0x%x flt=0x%x hwe=0x%x npiv=0x%x.\n", loc,
ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_hw_event,
ha->flt_region_npiv_conf));
}
static void
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
{
#define FLASH_BLK_SIZE_4K 0x1000
#define FLASH_BLK_SIZE_32K 0x8000
#define FLASH_BLK_SIZE_64K 0x10000
const char *loc, *locations[] = { "MID", "FDT" };
uint16_t cnt, chksum;
uint16_t *wptr;
struct qla_fdt_layout *fdt;
uint8_t man_id, flash_id;
uint16_t mid, fid;
struct qla_hw_data *ha = vha->hw;
struct req_que *req = ha->req_q_map[0];
wptr = (uint16_t *)req->ring;
fdt = (struct qla_fdt_layout *)req->ring;
ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
if (*wptr == __constant_cpu_to_le16(0xffff))
goto no_flash_data;
if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
fdt->sig[3] != 'D')
goto no_flash_data;
for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
cnt++)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
"checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
le16_to_cpu(fdt->version)));
DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
goto no_flash_data;
}
loc = locations[1];
mid = le16_to_cpu(fdt->man_id);
fid = le16_to_cpu(fdt->id);
ha->fdt_wrt_disable = fdt->wrt_disable_bits;
ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
ha->fdt_block_size = le32_to_cpu(fdt->block_size);
if (fdt->unprotect_sec_cmd) {
ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
fdt->unprotect_sec_cmd);
ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
flash_conf_to_access_addr(0x0336);
}
goto done;
no_flash_data:
loc = locations[0];
qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
mid = man_id;
fid = flash_id;
ha->fdt_wrt_disable = 0x9c;
ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
switch (man_id) {
case 0xbf: /* STT flash. */
if (flash_id == 0x8e)
ha->fdt_block_size = FLASH_BLK_SIZE_64K;
else
ha->fdt_block_size = FLASH_BLK_SIZE_32K;
if (flash_id == 0x80)
ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
break;
case 0x13: /* ST M25P80. */
ha->fdt_block_size = FLASH_BLK_SIZE_64K;
break;
case 0x1f: /* Atmel 26DF081A. */
ha->fdt_block_size = FLASH_BLK_SIZE_4K;
ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
break;
default:
/* Default to 64 kb sector size. */
ha->fdt_block_size = FLASH_BLK_SIZE_64K;
break;
}
done:
DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
"pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
ha->fdt_block_size));
}
int
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
{
int ret;
uint32_t flt_addr;
struct qla_hw_data *ha = vha->hw;
if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
return QLA_SUCCESS;
ret = qla2xxx_find_flt_start(vha, &flt_addr);
if (ret != QLA_SUCCESS)
return ret;
qla2xxx_get_flt_info(vha, flt_addr);
qla2xxx_get_fdt_info(vha);
return QLA_SUCCESS;
}
void
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
{
#define NPIV_CONFIG_SIZE (16*1024)
void *data;
uint16_t *wptr;
uint16_t cnt, chksum;
int i;
struct qla_npiv_header hdr;
struct qla_npiv_entry *entry;
struct qla_hw_data *ha = vha->hw;
if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
return;
ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
if (hdr.version == __constant_cpu_to_le16(0xffff))
return;
if (hdr.version != __constant_cpu_to_le16(1)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
"detected: version=0x%x entries=0x%x checksum=0x%x.\n",
le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
le16_to_cpu(hdr.checksum)));
return;
}
data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
if (!data) {
DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
"allocate memory.\n"));
return;
}
ha->isp_ops->read_optrom(vha, (uint8_t *)data,
ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
sizeof(struct qla_npiv_entry)) >> 1;
for (wptr = data, chksum = 0; cnt; cnt--)
chksum += le16_to_cpu(*wptr++);
if (chksum) {
DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
"detected: version=0x%x entries=0x%x checksum=0x%x.\n",
le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
chksum));
goto done;
}
entry = data + sizeof(struct qla_npiv_header);
cnt = le16_to_cpu(hdr.entries);
for (i = 0; cnt; cnt--, entry++, i++) {
uint16_t flags;
struct fc_vport_identifiers vid;
struct fc_vport *vport;
flags = le16_to_cpu(entry->flags);
if (flags == 0xffff)
continue;
if ((flags & BIT_0) == 0)
continue;
memset(&vid, 0, sizeof(vid));
vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
vid.vport_type = FC_PORTTYPE_NPIV;
vid.disable = false;
vid.port_name = wwn_to_u64(entry->port_name);
vid.node_name = wwn_to_u64(entry->node_name);
memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
entry->q_qos, entry->f_qos));
if (i < QLA_PRECONFIG_VPORTS) {
vport = fc_vport_create(vha->host, 0, &vid);
if (!vport)
qla_printk(KERN_INFO, ha,
"NPIV-Config: Failed to create vport [%02x]: "
"wwpn=%llx wwnn=%llx.\n", cnt,
vid.port_name, vid.node_name);
}
}
done:
kfree(data);
ha->npiv_info = NULL;
}
static void
qla24xx_unprotect_flash(struct qla_hw_data *ha)
{
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
/* Enable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
if (!ha->fdt_wrt_disable)
return;
/* Disable flash write-protection. */
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
/* Some flash parts need an additional zero-write to clear bits.*/
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
}
static void
qla24xx_protect_flash(struct qla_hw_data *ha)
{
uint32_t cnt;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
if (!ha->fdt_wrt_disable)
goto skip_wrt_protect;
/* Enable flash write-protection and wait for completion. */
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
ha->fdt_wrt_disable);
for (cnt = 300; cnt &&
qla24xx_read_flash_dword(ha,
flash_conf_to_access_addr(0x005)) & BIT_0;
cnt--) {
udelay(10);
}
skip_wrt_protect:
/* Disable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
}
static int
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
uint32_t dwords)
{
int ret;
uint32_t liter, miter;
uint32_t sec_mask, rest_addr;
uint32_t fdata, findex;
dma_addr_t optrom_dma;
void *optrom = NULL;
uint32_t *s, *d;
struct qla_hw_data *ha = vha->hw;
ret = QLA_SUCCESS;
/* Prepare burst-capable write on supported ISPs. */
if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
dwords > OPTROM_BURST_DWORDS) {
optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
&optrom_dma, GFP_KERNEL);
if (!optrom) {
qla_printk(KERN_DEBUG, ha,
"Unable to allocate memory for optrom burst write "
"(%x KB).\n", OPTROM_BURST_SIZE / 1024);
}
}
rest_addr = (ha->fdt_block_size >> 2) - 1;
sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
qla24xx_unprotect_flash(ha);
for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
findex = faddr;
fdata = (findex & sec_mask) << 2;
/* Are we at the beginning of a sector? */
if ((findex & rest_addr) == 0) {
/* Do sector unprotect. */
if (ha->fdt_unprotect_sec_cmd)
qla24xx_write_flash_dword(ha,
ha->fdt_unprotect_sec_cmd,
(fdata & 0xff00) | ((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
(fdata & 0xff00) |((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
if (ret != QLA_SUCCESS) {
DEBUG9(qla_printk("Unable to flash sector: "
"address=%x.\n", faddr));
break;
}
}
/* Go with burst-write. */
if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
/* Copy data to DMA'ble buffer. */
for (miter = 0, s = optrom, d = dwptr;
miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
*s = cpu_to_le32(*d);
ret = qla2x00_load_ram(vha, optrom_dma,
flash_data_to_access_addr(faddr),
OPTROM_BURST_DWORDS);
if (ret != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to burst-write optrom segment "
"(%x/%x/%llx).\n", ret,
flash_data_to_access_addr(faddr),
(unsigned long long)optrom_dma);
qla_printk(KERN_WARNING, ha,
"Reverting to slow-write.\n");
dma_free_coherent(&ha->pdev->dev,
OPTROM_BURST_SIZE, optrom, optrom_dma);
optrom = NULL;
} else {
liter += OPTROM_BURST_DWORDS - 1;
faddr += OPTROM_BURST_DWORDS - 1;
dwptr += OPTROM_BURST_DWORDS - 1;
continue;
}
}
ret = qla24xx_write_flash_dword(ha,
flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
if (ret != QLA_SUCCESS) {
DEBUG9(printk("%s(%ld) Unable to program flash "
"address=%x data=%x.\n", __func__,
vha->host_no, faddr, *dwptr));
break;
}
/* Do sector protect. */
if (ha->fdt_unprotect_sec_cmd &&
((faddr & rest_addr) == rest_addr))
qla24xx_write_flash_dword(ha,
ha->fdt_protect_sec_cmd,
(fdata & 0xff00) | ((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
}
qla24xx_protect_flash(ha);
if (optrom)
dma_free_coherent(&ha->pdev->dev,
OPTROM_BURST_SIZE, optrom, optrom_dma);
return ret;
}
uint8_t *
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint16_t *wptr;
struct qla_hw_data *ha = vha->hw;
/* Word reads to NVRAM via registers. */
wptr = (uint16_t *)buf;
qla2x00_lock_nvram_access(ha);
for (i = 0; i < bytes >> 1; i++, naddr++)
wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
naddr));
qla2x00_unlock_nvram_access(ha);
return buf;
}
uint8_t *
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint32_t *dwptr;
/* Dword reads to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(vha->hw,
nvram_data_to_access_addr(naddr)));
return buf;
}
int
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
int ret, stat;
uint32_t i;
uint16_t *wptr;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
ret = QLA_SUCCESS;
spin_lock_irqsave(&ha->hardware_lock, flags);
qla2x00_lock_nvram_access(ha);
/* Disable NVRAM write-protection. */
stat = qla2x00_clear_nvram_protection(ha);
wptr = (uint16_t *)buf;
for (i = 0; i < bytes >> 1; i++, naddr++) {
qla2x00_write_nvram_word(ha, naddr,
cpu_to_le16(*wptr));
wptr++;
}
/* Enable NVRAM write-protection. */
qla2x00_set_nvram_protection(ha, stat);
qla2x00_unlock_nvram_access(ha);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return ret;
}
int
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
int ret;
uint32_t i;
uint32_t *dwptr;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
ret = QLA_SUCCESS;
/* Enable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
/* Disable NVRAM write-protection. */
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
0);
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
0);
/* Dword writes to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
ret = qla24xx_write_flash_dword(ha,
nvram_data_to_access_addr(naddr),
cpu_to_le32(*dwptr));
if (ret != QLA_SUCCESS) {
DEBUG9(qla_printk("Unable to program nvram address=%x "
"data=%x.\n", naddr, *dwptr));
break;
}
}
/* Enable NVRAM write-protection. */
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
0x8c);
/* Disable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
return ret;
}
uint8_t *
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint32_t *dwptr;
struct qla_hw_data *ha = vha->hw;
/* Dword reads to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
flash_data_to_access_addr(ha->flt_region_vpd_nvram |
naddr)));
return buf;
}
int
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
struct qla_hw_data *ha = vha->hw;
#define RMW_BUFFER_SIZE (64 * 1024)
uint8_t *dbuf;
dbuf = vmalloc(RMW_BUFFER_SIZE);
if (!dbuf)
return QLA_MEMORY_ALLOC_FAILED;
ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
RMW_BUFFER_SIZE);
memcpy(dbuf + (naddr << 2), buf, bytes);
ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
RMW_BUFFER_SIZE);
vfree(dbuf);
return QLA_SUCCESS;
}
static inline void
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
{
if (IS_QLA2322(ha)) {
/* Flip all colors. */
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = GPIO_LED_ALL_OFF;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_ALL_ON;
*pflags = GPIO_LED_RGA_ON;
}
} else {
/* Flip green led only. */
if (ha->beacon_color_state == QLA_LED_GRN_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_GRN_ON;
*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
}
}
}
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
void
qla2x00_beacon_blink(struct scsi_qla_host *vha)
{
uint16_t gpio_enable;
uint16_t gpio_data;
uint16_t led_color = 0;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Save the Original GPIOE. */
if (ha->pio_address) {
gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
} else {
gpio_enable = RD_REG_WORD(&reg->gpioe);
gpio_data = RD_REG_WORD(&reg->gpiod);
}
/* Set the modified gpio_enable values */
gpio_enable |= GPIO_LED_MASK;
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
} else {
WRT_REG_WORD(&reg->gpioe, gpio_enable);
RD_REG_WORD(&reg->gpioe);
}
qla2x00_flip_colors(ha, &led_color);
/* Clear out any previously set LED color. */
gpio_data &= ~GPIO_LED_MASK;
/* Set the new input LED color to GPIOD. */
gpio_data |= led_color;
/* Set the modified gpio_data values */
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
} else {
WRT_REG_WORD(&reg->gpiod, gpio_data);
RD_REG_WORD(&reg->gpiod);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
int
qla2x00_beacon_on(struct scsi_qla_host *vha)
{
uint16_t gpio_enable;
uint16_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon on).\n");
return QLA_FUNCTION_FAILED;
}
/* Turn off LEDs. */
spin_lock_irqsave(&ha->hardware_lock, flags);
if (ha->pio_address) {
gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
} else {
gpio_enable = RD_REG_WORD(&reg->gpioe);
gpio_data = RD_REG_WORD(&reg->gpiod);
}
gpio_enable |= GPIO_LED_MASK;
/* Set the modified gpio_enable values. */
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
} else {
WRT_REG_WORD(&reg->gpioe, gpio_enable);
RD_REG_WORD(&reg->gpioe);
}
/* Clear out previously set LED colour. */
gpio_data &= ~GPIO_LED_MASK;
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
} else {
WRT_REG_WORD(&reg->gpiod, gpio_data);
RD_REG_WORD(&reg->gpiod);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
/*
* Let the per HBA timer kick off the blinking process based on
* the following flags. No need to do anything else now.
*/
ha->beacon_blink_led = 1;
ha->beacon_color_state = 0;
return QLA_SUCCESS;
}
int
qla2x00_beacon_off(struct scsi_qla_host *vha)
{
int rval = QLA_SUCCESS;
struct qla_hw_data *ha = vha->hw;
ha->beacon_blink_led = 0;
/* Set the on flag so when it gets flipped it will be off. */
if (IS_QLA2322(ha))
ha->beacon_color_state = QLA_LED_ALL_ON;
else
ha->beacon_color_state = QLA_LED_GRN_ON;
ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
rval = qla2x00_set_fw_options(vha, ha->fw_options);
if (rval != QLA_SUCCESS)
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon off).\n");
return rval;
}
static inline void
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
{
/* Flip all colors. */
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = 0;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_ALL_ON;
*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
}
}
void
qla24xx_beacon_blink(struct scsi_qla_host *vha)
{
uint16_t led_color = 0;
uint32_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
/* Save the Original GPIOD. */
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Enable the gpio_data reg for update. */
gpio_data |= GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(&reg->gpiod, gpio_data);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Set the color bits. */
qla24xx_flip_colors(ha, &led_color);
/* Clear out any previously set LED color. */
gpio_data &= ~GPDX_LED_COLOR_MASK;
/* Set the new input LED color to GPIOD. */
gpio_data |= led_color;
/* Set the modified gpio_data values. */
WRT_REG_DWORD(&reg->gpiod, gpio_data);
gpio_data = RD_REG_DWORD(&reg->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
int
qla24xx_beacon_on(struct scsi_qla_host *vha)
{
uint32_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
if (ha->beacon_blink_led == 0) {
/* Enable firmware for update */
ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
return QLA_FUNCTION_FAILED;
if (qla2x00_get_fw_options(vha, ha->fw_options) !=
QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon on).\n");
return QLA_FUNCTION_FAILED;
}
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Enable the gpio_data reg for update. */
gpio_data |= GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(&reg->gpiod, gpio_data);
RD_REG_DWORD(&reg->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
/* So all colors blink together. */
ha->beacon_color_state = 0;
/* Let the per HBA timer kick off the blinking process. */
ha->beacon_blink_led = 1;
return QLA_SUCCESS;
}
int
qla24xx_beacon_off(struct scsi_qla_host *vha)
{
uint32_t gpio_data;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
ha->beacon_blink_led = 0;
ha->beacon_color_state = QLA_LED_ALL_ON;
ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
/* Give control back to firmware. */
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(&reg->gpiod);
/* Disable the gpio_data reg for update. */
gpio_data &= ~GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(&reg->gpiod, gpio_data);
RD_REG_DWORD(&reg->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon off).\n");
return QLA_FUNCTION_FAILED;
}
if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to get fw options (beacon off).\n");
return QLA_FUNCTION_FAILED;
}
return QLA_SUCCESS;
}
/*
* Flash support routines
*/
/**
* qla2x00_flash_enable() - Setup flash for reading and writing.
* @ha: HA context
*/
static void
qla2x00_flash_enable(struct qla_hw_data *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
data = RD_REG_WORD(&reg->ctrl_status);
data |= CSR_FLASH_ENABLE;
WRT_REG_WORD(&reg->ctrl_status, data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/**
* qla2x00_flash_disable() - Disable flash and allow RISC to run.
* @ha: HA context
*/
static void
qla2x00_flash_disable(struct qla_hw_data *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
data = RD_REG_WORD(&reg->ctrl_status);
data &= ~(CSR_FLASH_ENABLE);
WRT_REG_WORD(&reg->ctrl_status, data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/**
* qla2x00_read_flash_byte() - Reads a byte from flash
* @ha: HA context
* @addr: Address in flash to read
*
* A word is read from the chip, but, only the lower byte is valid.
*
* Returns the byte read from flash @addr.
*/
static uint8_t
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
{
uint16_t data;
uint16_t bank_select;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
bank_select = RD_REG_WORD(&reg->ctrl_status);
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
/* Specify 64K address range: */
/* clear out Module Select and Flash Address bits [19:16]. */
bank_select &= ~0xf8;
bank_select |= addr >> 12 & 0xf0;
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
data = RD_REG_WORD(&reg->flash_data);
return (uint8_t)data;
}
/* Setup bit 16 of flash address. */
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
} else if (((addr & BIT_16) == 0) &&
(bank_select & CSR_FLASH_64K_BANK)) {
bank_select &= ~(CSR_FLASH_64K_BANK);
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/* Always perform IO mapped accesses to the FLASH registers. */
if (ha->pio_address) {
uint16_t data2;
WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
do {
data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
barrier();
cpu_relax();
data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
} while (data != data2);
} else {
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
data = qla2x00_debounce_register(&reg->flash_data);
}
return (uint8_t)data;
}
/**
* qla2x00_write_flash_byte() - Write a byte to flash
* @ha: HA context
* @addr: Address in flash to write
* @data: Data to write
*/
static void
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
{
uint16_t bank_select;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
bank_select = RD_REG_WORD(&reg->ctrl_status);
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
/* Specify 64K address range: */
/* clear out Module Select and Flash Address bits [19:16]. */
bank_select &= ~0xf8;
bank_select |= addr >> 12 & 0xf0;
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
return;
}
/* Setup bit 16 of flash address. */
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
} else if (((addr & BIT_16) == 0) &&
(bank_select & CSR_FLASH_64K_BANK)) {
bank_select &= ~(CSR_FLASH_64K_BANK);
WRT_REG_WORD(&reg->ctrl_status, bank_select);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
/* Always perform IO mapped accesses to the FLASH registers. */
if (ha->pio_address) {
WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
} else {
WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
}
}
/**
* qla2x00_poll_flash() - Polls flash for completion.
* @ha: HA context
* @addr: Address in flash to poll
* @poll_data: Data to be polled
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* This function polls the device until bit 7 of what is read matches data
* bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
* out (a fatal error). The flash book recommeds reading bit 7 again after
* reading bit 5 as a 1.
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
uint8_t man_id, uint8_t flash_id)
{
int status;
uint8_t flash_data;
uint32_t cnt;
status = 1;
/* Wait for 30 seconds for command to finish. */
poll_data &= BIT_7;
for (cnt = 3000000; cnt; cnt--) {
flash_data = qla2x00_read_flash_byte(ha, addr);
if ((flash_data & BIT_7) == poll_data) {
status = 0;
break;
}
if (man_id != 0x40 && man_id != 0xda) {
if ((flash_data & BIT_5) && cnt > 2)
cnt = 2;
}
udelay(10);
barrier();
cond_resched();
}
return status;
}
/**
* qla2x00_program_flash_address() - Programs a flash address
* @ha: HA context
* @addr: Address in flash to program
* @data: Data to be written in flash
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
uint8_t data, uint8_t man_id, uint8_t flash_id)
{
/* Write Program Command Sequence. */
if (IS_OEM_001(ha)) {
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
qla2x00_write_flash_byte(ha, addr, data);
} else {
if (man_id == 0xda && flash_id == 0xc1) {
qla2x00_write_flash_byte(ha, addr, data);
if (addr & 0x7e)
return 0;
} else {
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
qla2x00_write_flash_byte(ha, addr, data);
}
}
udelay(150);
/* Wait for write to complete. */
return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}
/**
* qla2x00_erase_flash() - Erase the flash.
* @ha: HA context
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
{
/* Individual Sector Erase Command Sequence */
if (IS_OEM_001(ha)) {
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
} else {
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x10);
}
udelay(150);
/* Wait for erase to complete. */
return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}
/**
* qla2x00_erase_flash_sector() - Erase a flash sector.
* @ha: HA context
* @addr: Flash sector to erase
* @sec_mask: Sector address mask
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
/* Individual Sector Erase Command Sequence */
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
if (man_id == 0x1f && flash_id == 0x13)
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
else
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
udelay(150);
/* Wait for erase to complete. */
return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}
/**
* qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*/
static void
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
uint8_t *flash_id)
{
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x90);
*man_id = qla2x00_read_flash_byte(ha, 0x0000);
*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}
static void
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
uint32_t saddr, uint32_t length)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t midpoint, ilength;
uint8_t data;
midpoint = length / 2;
WRT_REG_WORD(&reg->nvram, 0);
RD_REG_WORD(&reg->nvram);
for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
if (ilength == midpoint) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram);
}
data = qla2x00_read_flash_byte(ha, saddr);
if (saddr % 100)
udelay(10);
*tmp_buf = data;
cond_resched();
}
}
static inline void
qla2x00_suspend_hba(struct scsi_qla_host *vha)
{
int cnt;
unsigned long flags;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
scsi_block_requests(vha->host);
ha->isp_ops->disable_intrs(ha);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Pause RISC. */
spin_lock_irqsave(&ha->hardware_lock, flags);
WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
RD_REG_WORD(&reg->hccr);
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
for (cnt = 0; cnt < 30000; cnt++) {
if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
break;
udelay(100);
}
} else {
udelay(10);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
static inline void
qla2x00_resume_hba(struct scsi_qla_host *vha)
{
struct qla_hw_data *ha = vha->hw;
/* Resume HBA. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
qla2xxx_wake_dpc(vha);
qla2x00_wait_for_hba_online(vha);
scsi_unblock_requests(vha->host);
}
uint8_t *
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
uint32_t addr, midpoint;
uint8_t *data;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
qla2x00_suspend_hba(vha);
/* Go with read. */
midpoint = ha->optrom_size / 2;
qla2x00_flash_enable(ha);
WRT_REG_WORD(&reg->nvram, 0);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
for (addr = offset, data = buf; addr < length; addr++, data++) {
if (addr == midpoint) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram); /* PCI Posting. */
}
*data = qla2x00_read_flash_byte(ha, addr);
}
qla2x00_flash_disable(ha);
/* Resume HBA. */
qla2x00_resume_hba(vha);
return buf;
}
int
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
uint8_t man_id, flash_id, sec_number, data;
uint16_t wd;
uint32_t addr, liter, sec_mask, rest_addr;
struct qla_hw_data *ha = vha->hw;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
qla2x00_suspend_hba(vha);
rval = QLA_SUCCESS;
sec_number = 0;
/* Reset ISP chip. */
WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
/* Go with write. */
qla2x00_flash_enable(ha);
do { /* Loop once to provide quick error exit */
/* Structure of flash memory based on manufacturer */
if (IS_OEM_001(ha)) {
/* OEM variant with special flash part. */
man_id = flash_id = 0;
rest_addr = 0xffff;
sec_mask = 0x10000;
goto update_flash;
}
qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
switch (man_id) {
case 0x20: /* ST flash. */
if (flash_id == 0xd2 || flash_id == 0xe3) {
/*
* ST m29w008at part - 64kb sector size with
* 32kb,8kb,8kb,16kb sectors at memory address
* 0xf0000.
*/
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
}
/*
* ST m29w010b part - 16kb sector size
* Default to 16kb sectors
*/
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
case 0x40: /* Mostel flash. */
/* Mostel v29c51001 part - 512 byte sector size. */
rest_addr = 0x1ff;
sec_mask = 0x1fe00;
break;
case 0xbf: /* SST flash. */
/* SST39sf10 part - 4kb sector size. */
rest_addr = 0xfff;
sec_mask = 0x1f000;
break;
case 0xda: /* Winbond flash. */
/* Winbond W29EE011 part - 256 byte sector size. */
rest_addr = 0x7f;
sec_mask = 0x1ff80;
break;
case 0xc2: /* Macronix flash. */
/* 64k sector size. */
if (flash_id == 0x38 || flash_id == 0x4f) {
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
}
/* Fall through... */
case 0x1f: /* Atmel flash. */
/* 512k sector size. */
if (flash_id == 0x13) {
rest_addr = 0x7fffffff;
sec_mask = 0x80000000;
break;
}
/* Fall through... */
case 0x01: /* AMD flash. */
if (flash_id == 0x38 || flash_id == 0x40 ||
flash_id == 0x4f) {
/* Am29LV081 part - 64kb sector size. */
/* Am29LV002BT part - 64kb sector size. */
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
} else if (flash_id == 0x3e) {
/*
* Am29LV008b part - 64kb sector size with
* 32kb,8kb,8kb,16kb sector at memory address
* h0xf0000.
*/
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
} else if (flash_id == 0x20 || flash_id == 0x6e) {
/*
* Am29LV010 part or AM29f010 - 16kb sector
* size.
*/
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
} else if (flash_id == 0x6d) {
/* Am29LV001 part - 8kb sector size. */
rest_addr = 0x1fff;
sec_mask = 0x1e000;
break;
}
default:
/* Default to 16 kb sector size. */
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
}
update_flash:
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
if (qla2x00_erase_flash(ha, man_id, flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
}
for (addr = offset, liter = 0; liter < length; liter++,
addr++) {
data = buf[liter];
/* Are we at the beginning of a sector? */
if ((addr & rest_addr) == 0) {
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
if (addr >= 0x10000UL) {
if (((addr >> 12) & 0xf0) &&
((man_id == 0x01 &&
flash_id == 0x3e) ||
(man_id == 0x20 &&
flash_id == 0xd2))) {
sec_number++;
if (sec_number == 1) {
rest_addr =
0x7fff;
sec_mask =
0x18000;
} else if (
sec_number == 2 ||
sec_number == 3) {
rest_addr =
0x1fff;
sec_mask =
0x1e000;
} else if (
sec_number == 4) {
rest_addr =
0x3fff;
sec_mask =
0x1c000;
}
}
}
} else if (addr == ha->optrom_size / 2) {
WRT_REG_WORD(&reg->nvram, NVR_SELECT);
RD_REG_WORD(&reg->nvram);
}
if (flash_id == 0xda && man_id == 0xc1) {
qla2x00_write_flash_byte(ha, 0x5555,
0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa,
0x55);
qla2x00_write_flash_byte(ha, 0x5555,
0xa0);
} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
/* Then erase it */
if (qla2x00_erase_flash_sector(ha,
addr, sec_mask, man_id,
flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
if (man_id == 0x01 && flash_id == 0x6d)
sec_number++;
}
}
if (man_id == 0x01 && flash_id == 0x6d) {
if (sec_number == 1 &&
addr == (rest_addr - 1)) {
rest_addr = 0x0fff;
sec_mask = 0x1f000;
} else if (sec_number == 3 && (addr & 0x7ffe)) {
rest_addr = 0x3fff;
sec_mask = 0x1c000;
}
}
if (qla2x00_program_flash_address(ha, addr, data,
man_id, flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
cond_resched();
}
} while (0);
qla2x00_flash_disable(ha);
/* Resume HBA. */
qla2x00_resume_hba(vha);
return rval;
}
uint8_t *
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
struct qla_hw_data *ha = vha->hw;
/* Suspend HBA. */
scsi_block_requests(vha->host);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Go with read. */
qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
/* Resume HBA. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
scsi_unblock_requests(vha->host);
return buf;
}
int
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
struct qla_hw_data *ha = vha->hw;
/* Suspend HBA. */
scsi_block_requests(vha->host);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Go with write. */
rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
length >> 2);
/* Resume HBA -- RISC reset needed. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
qla2xxx_wake_dpc(vha);
qla2x00_wait_for_hba_online(vha);
scsi_unblock_requests(vha->host);
return rval;
}
uint8_t *
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
dma_addr_t optrom_dma;
void *optrom;
uint8_t *pbuf;
uint32_t faddr, left, burst;
struct qla_hw_data *ha = vha->hw;
if (offset & 0xfff)
goto slow_read;
if (length < OPTROM_BURST_SIZE)
goto slow_read;
optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
&optrom_dma, GFP_KERNEL);
if (!optrom) {
qla_printk(KERN_DEBUG, ha,
"Unable to allocate memory for optrom burst read "
"(%x KB).\n", OPTROM_BURST_SIZE / 1024);
goto slow_read;
}
pbuf = buf;
faddr = offset >> 2;
left = length >> 2;
burst = OPTROM_BURST_DWORDS;
while (left != 0) {
if (burst > left)
burst = left;
rval = qla2x00_dump_ram(vha, optrom_dma,
flash_data_to_access_addr(faddr), burst);
if (rval) {
qla_printk(KERN_WARNING, ha,
"Unable to burst-read optrom segment "
"(%x/%x/%llx).\n", rval,
flash_data_to_access_addr(faddr),
(unsigned long long)optrom_dma);
qla_printk(KERN_WARNING, ha,
"Reverting to slow-read.\n");
dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
optrom, optrom_dma);
goto slow_read;
}
memcpy(pbuf, optrom, burst * 4);
left -= burst;
faddr += burst;
pbuf += burst * 4;
}
dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
optrom_dma);
return buf;
slow_read:
return qla24xx_read_optrom_data(vha, buf, offset, length);
}
/**
* qla2x00_get_fcode_version() - Determine an FCODE image's version.
* @ha: HA context
* @pcids: Pointer to the FCODE PCI data structure
*
* The process of retrieving the FCODE version information is at best
* described as interesting.
*
* Within the first 100h bytes of the image an ASCII string is present
* which contains several pieces of information including the FCODE
* version. Unfortunately it seems the only reliable way to retrieve
* the version is by scanning for another sentinel within the string,
* the FCODE build date:
*
* ... 2.00.02 10/17/02 ...
*
* Returns QLA_SUCCESS on successful retrieval of version.
*/
static void
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
{
int ret = QLA_FUNCTION_FAILED;
uint32_t istart, iend, iter, vend;
uint8_t do_next, rbyte, *vbyte;
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
/* Skip the PCI data structure. */
istart = pcids +
((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
qla2x00_read_flash_byte(ha, pcids + 0x0A));
iend = istart + 0x100;
do {
/* Scan for the sentinel date string...eeewww. */
do_next = 0;
iter = istart;
while ((iter < iend) && !do_next) {
iter++;
if (qla2x00_read_flash_byte(ha, iter) == '/') {
if (qla2x00_read_flash_byte(ha, iter + 2) ==
'/')
do_next++;
else if (qla2x00_read_flash_byte(ha,
iter + 3) == '/')
do_next++;
}
}
if (!do_next)
break;
/* Backtrack to previous ' ' (space). */
do_next = 0;
while ((iter > istart) && !do_next) {
iter--;
if (qla2x00_read_flash_byte(ha, iter) == ' ')
do_next++;
}
if (!do_next)
break;
/*
* Mark end of version tag, and find previous ' ' (space) or
* string length (recent FCODE images -- major hack ahead!!!).
*/
vend = iter - 1;
do_next = 0;
while ((iter > istart) && !do_next) {
iter--;
rbyte = qla2x00_read_flash_byte(ha, iter);
if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
do_next++;
}
if (!do_next)
break;
/* Mark beginning of version tag, and copy data. */
iter++;
if ((vend - iter) &&
((vend - iter) < sizeof(ha->fcode_revision))) {
vbyte = ha->fcode_revision;
while (iter <= vend) {
*vbyte++ = qla2x00_read_flash_byte(ha, iter);
iter++;
}
ret = QLA_SUCCESS;
}
} while (0);
if (ret != QLA_SUCCESS)
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}
int
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
{
int ret = QLA_SUCCESS;
uint8_t code_type, last_image;
uint32_t pcihdr, pcids;
uint8_t *dbyte;
uint16_t *dcode;
struct qla_hw_data *ha = vha->hw;
if (!ha->pio_address || !mbuf)
return QLA_FUNCTION_FAILED;
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
qla2x00_flash_enable(ha);
/* Begin with first PCI expansion ROM header. */
pcihdr = 0;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
/* No signature */
DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
"signature.\n"));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Locate PCI data structure. */
pcids = pcihdr +
((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
qla2x00_read_flash_byte(ha, pcihdr + 0x18));
/* Validate signature of PCI data structure. */
if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
/* Incorrect header. */
DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
"found pcir_adr=%x.\n", pcids));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Read version */
code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
switch (code_type) {
case ROM_CODE_TYPE_BIOS:
/* Intel x86, PC-AT compatible. */
ha->bios_revision[0] =
qla2x00_read_flash_byte(ha, pcids + 0x12);
ha->bios_revision[1] =
qla2x00_read_flash_byte(ha, pcids + 0x13);
DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
ha->bios_revision[1], ha->bios_revision[0]));
break;
case ROM_CODE_TYPE_FCODE:
/* Open Firmware standard for PCI (FCode). */
/* Eeeewww... */
qla2x00_get_fcode_version(ha, pcids);
break;
case ROM_CODE_TYPE_EFI:
/* Extensible Firmware Interface (EFI). */
ha->efi_revision[0] =
qla2x00_read_flash_byte(ha, pcids + 0x12);
ha->efi_revision[1] =
qla2x00_read_flash_byte(ha, pcids + 0x13);
DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
ha->efi_revision[1], ha->efi_revision[0]));
break;
default:
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
"type %x at pcids %x.\n", code_type, pcids));
break;
}
last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
} while (!last_image);
if (IS_QLA2322(ha)) {
/* Read firmware image information. */
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dbyte = mbuf;
memset(dbyte, 0, 8);
dcode = (uint16_t *)dbyte;
qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
8);
DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
"flash:\n"));
DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
dcode[2] == 0xffff && dcode[3] == 0xffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
"revision at %x.\n", ha->flt_region_fw * 4));
} else {
/* values are in big endian */
ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
}
}
qla2x00_flash_disable(ha);
return ret;
}
int
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
{
int ret = QLA_SUCCESS;
uint32_t pcihdr, pcids;
uint32_t *dcode;
uint8_t *bcode;
uint8_t code_type, last_image;
int i;
struct qla_hw_data *ha = vha->hw;
if (!mbuf)
return QLA_FUNCTION_FAILED;
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dcode = mbuf;
/* Begin with first PCI expansion ROM header. */
pcihdr = ha->flt_region_boot;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
bcode = mbuf + (pcihdr % 4);
if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
/* No signature */
DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
"signature.\n"));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Locate PCI data structure. */
pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
bcode = mbuf + (pcihdr % 4);
/* Validate signature of PCI data structure. */
if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
bcode[0x2] != 'I' || bcode[0x3] != 'R') {
/* Incorrect header. */
DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
"found pcir_adr=%x.\n", pcids));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Read version */
code_type = bcode[0x14];
switch (code_type) {
case ROM_CODE_TYPE_BIOS:
/* Intel x86, PC-AT compatible. */
ha->bios_revision[0] = bcode[0x12];
ha->bios_revision[1] = bcode[0x13];
DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
ha->bios_revision[1], ha->bios_revision[0]));
break;
case ROM_CODE_TYPE_FCODE:
/* Open Firmware standard for PCI (FCode). */
ha->fcode_revision[0] = bcode[0x12];
ha->fcode_revision[1] = bcode[0x13];
DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
ha->fcode_revision[1], ha->fcode_revision[0]));
break;
case ROM_CODE_TYPE_EFI:
/* Extensible Firmware Interface (EFI). */
ha->efi_revision[0] = bcode[0x12];
ha->efi_revision[1] = bcode[0x13];
DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
ha->efi_revision[1], ha->efi_revision[0]));
break;
default:
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
"type %x at pcids %x.\n", code_type, pcids));
break;
}
last_image = bcode[0x15] & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
} while (!last_image);
/* Read firmware image information. */
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dcode = mbuf;
qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
for (i = 0; i < 4; i++)
dcode[i] = be32_to_cpu(dcode[i]);
if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
"revision at %x.\n", ha->flt_region_fw * 4));
} else {
ha->fw_revision[0] = dcode[0];
ha->fw_revision[1] = dcode[1];
ha->fw_revision[2] = dcode[2];
ha->fw_revision[3] = dcode[3];
}
return ret;
}
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
if (pos >= end || *pos != 0x82)
return 0;
pos += 3 + pos[1];
if (pos >= end || *pos != 0x90)
return 0;
pos += 3 + pos[1];
if (pos >= end || *pos != 0x78)
return 0;
return 1;
}
int
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
{
struct qla_hw_data *ha = vha->hw;
uint8_t *pos = ha->vpd;
uint8_t *end = pos + ha->vpd_size;
int len = 0;
if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
return 0;
while (pos < end && *pos != 0x78) {
len = (*pos == 0x82) ? pos[1] : pos[2];
if (!strncmp(pos, key, strlen(key)))
break;
if (*pos != 0x90 && *pos != 0x91)
pos += len;
pos += 3;
}
if (pos < end - len && *pos != 0x78)
return snprintf(str, size, "%.*s", len, pos + 3);
return 0;
}
static int
qla2xxx_hw_event_store(scsi_qla_host_t *vha, uint32_t *fdata)
{
uint32_t d[2], faddr;
struct qla_hw_data *ha = vha->hw;
/* Locate first empty entry. */
for (;;) {
if (ha->hw_event_ptr >=
ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
DEBUG2(qla_printk(KERN_WARNING, ha,
"HW event -- Log Full!\n"));
return QLA_MEMORY_ALLOC_FAILED;
}
qla24xx_read_flash_data(vha, d, ha->hw_event_ptr, 2);
faddr = flash_data_to_access_addr(ha->hw_event_ptr);
ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
d[1] == __constant_cpu_to_le32(0xffffffff)) {
qla24xx_unprotect_flash(ha);
qla24xx_write_flash_dword(ha, faddr++,
cpu_to_le32(jiffies));
qla24xx_write_flash_dword(ha, faddr++, 0);
qla24xx_write_flash_dword(ha, faddr++, *fdata++);
qla24xx_write_flash_dword(ha, faddr++, *fdata);
qla24xx_protect_flash(ha);
break;
}
}
return QLA_SUCCESS;
}
int
qla2xxx_hw_event_log(scsi_qla_host_t *vha, uint16_t code, uint16_t d1,
uint16_t d2, uint16_t d3)
{
#define QMARK(a, b, c, d) \
cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
struct qla_hw_data *ha = vha->hw;
int rval;
uint32_t marker[2], fdata[4];
if (ha->flt_region_hw_event == 0)
return QLA_FUNCTION_FAILED;
DEBUG2(qla_printk(KERN_WARNING, ha,
"HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));
/* If marker not already found, locate or write. */
if (!ha->flags.hw_event_marker_found) {
/* Create marker. */
marker[0] = QMARK('L', ha->fw_major_version,
ha->fw_minor_version, ha->fw_subminor_version);
marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);
/* Locate marker. */
ha->hw_event_ptr = ha->flt_region_hw_event;
for (;;) {
qla24xx_read_flash_data(vha, fdata, ha->hw_event_ptr,
4);
if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
fdata[1] == __constant_cpu_to_le32(0xffffffff))
break;
ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
if (ha->hw_event_ptr >=
ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
DEBUG2(qla_printk(KERN_WARNING, ha,
"HW event -- Log Full!\n"));
return QLA_MEMORY_ALLOC_FAILED;
}
if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
ha->flags.hw_event_marker_found = 1;
break;
}
}
/* No marker, write it. */
if (!ha->flags.hw_event_marker_found) {
rval = qla2xxx_hw_event_store(vha, marker);
if (rval != QLA_SUCCESS) {
DEBUG2(qla_printk(KERN_WARNING, ha,
"HW event -- Failed marker write=%x.!\n",
rval));
return rval;
}
ha->flags.hw_event_marker_found = 1;
}
}
/* Store error. */
fdata[0] = cpu_to_le32(code << 16 | d1);
fdata[1] = cpu_to_le32(d2 << 16 | d3);
rval = qla2xxx_hw_event_store(vha, fdata);
if (rval != QLA_SUCCESS) {
DEBUG2(qla_printk(KERN_WARNING, ha,
"HW event -- Failed error write=%x.!\n",
rval));
}
return rval;
}