mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 18:14:04 +00:00
2f98492c53
CPUs can be in either the legacy 29-bit or 32-bit physical addressing modes. This follows the x86 approach of tracking the phys bits in cpuinfo and exposing it to userspace through procfs. This change was requested to permit kexec-tools to detect the physical addressing mode in order to determine the appropriate address mangling. Signed-off-by: Paul Mundt <lethal@linux-sh.org>
366 lines
8.4 KiB
C
366 lines
8.4 KiB
C
/*
|
|
* arch/sh/kernel/cpu/init.c
|
|
*
|
|
* CPU init code
|
|
*
|
|
* Copyright (C) 2002 - 2009 Paul Mundt
|
|
* Copyright (C) 2003 Richard Curnow
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/log2.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/page.h>
|
|
#include <asm/system.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/io.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sh_bios.h>
|
|
|
|
#ifdef CONFIG_SH_FPU
|
|
#define cpu_has_fpu 1
|
|
#else
|
|
#define cpu_has_fpu 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_SH_DSP
|
|
#define cpu_has_dsp 1
|
|
#else
|
|
#define cpu_has_dsp 0
|
|
#endif
|
|
|
|
/*
|
|
* Generic wrapper for command line arguments to disable on-chip
|
|
* peripherals (nofpu, nodsp, and so forth).
|
|
*/
|
|
#define onchip_setup(x) \
|
|
static int x##_disabled __cpuinitdata = !cpu_has_##x; \
|
|
\
|
|
static int __cpuinit x##_setup(char *opts) \
|
|
{ \
|
|
x##_disabled = 1; \
|
|
return 1; \
|
|
} \
|
|
__setup("no" __stringify(x), x##_setup);
|
|
|
|
onchip_setup(fpu);
|
|
onchip_setup(dsp);
|
|
|
|
#ifdef CONFIG_SPECULATIVE_EXECUTION
|
|
#define CPUOPM 0xff2f0000
|
|
#define CPUOPM_RABD (1 << 5)
|
|
|
|
static void __cpuinit speculative_execution_init(void)
|
|
{
|
|
/* Clear RABD */
|
|
__raw_writel(__raw_readl(CPUOPM) & ~CPUOPM_RABD, CPUOPM);
|
|
|
|
/* Flush the update */
|
|
(void)__raw_readl(CPUOPM);
|
|
ctrl_barrier();
|
|
}
|
|
#else
|
|
#define speculative_execution_init() do { } while (0)
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_SH4A
|
|
#define EXPMASK 0xff2f0004
|
|
#define EXPMASK_RTEDS (1 << 0)
|
|
#define EXPMASK_BRDSSLP (1 << 1)
|
|
#define EXPMASK_MMCAW (1 << 4)
|
|
|
|
static void __cpuinit expmask_init(void)
|
|
{
|
|
unsigned long expmask = __raw_readl(EXPMASK);
|
|
|
|
/*
|
|
* Future proofing.
|
|
*
|
|
* Disable support for slottable sleep instruction, non-nop
|
|
* instructions in the rte delay slot, and associative writes to
|
|
* the memory-mapped cache array.
|
|
*/
|
|
expmask &= ~(EXPMASK_RTEDS | EXPMASK_BRDSSLP | EXPMASK_MMCAW);
|
|
|
|
__raw_writel(expmask, EXPMASK);
|
|
ctrl_barrier();
|
|
}
|
|
#else
|
|
#define expmask_init() do { } while (0)
|
|
#endif
|
|
|
|
/* 2nd-level cache init */
|
|
void __attribute__ ((weak)) l2_cache_init(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Generic first-level cache init
|
|
*/
|
|
#ifdef CONFIG_SUPERH32
|
|
static void cache_init(void)
|
|
{
|
|
unsigned long ccr, flags;
|
|
|
|
jump_to_uncached();
|
|
ccr = __raw_readl(CCR);
|
|
|
|
/*
|
|
* At this point we don't know whether the cache is enabled or not - a
|
|
* bootloader may have enabled it. There are at least 2 things that
|
|
* could be dirty in the cache at this point:
|
|
* 1. kernel command line set up by boot loader
|
|
* 2. spilled registers from the prolog of this function
|
|
* => before re-initialising the cache, we must do a purge of the whole
|
|
* cache out to memory for safety. As long as nothing is spilled
|
|
* during the loop to lines that have already been done, this is safe.
|
|
* - RPC
|
|
*/
|
|
if (ccr & CCR_CACHE_ENABLE) {
|
|
unsigned long ways, waysize, addrstart;
|
|
|
|
waysize = current_cpu_data.dcache.sets;
|
|
|
|
#ifdef CCR_CACHE_ORA
|
|
/*
|
|
* If the OC is already in RAM mode, we only have
|
|
* half of the entries to flush..
|
|
*/
|
|
if (ccr & CCR_CACHE_ORA)
|
|
waysize >>= 1;
|
|
#endif
|
|
|
|
waysize <<= current_cpu_data.dcache.entry_shift;
|
|
|
|
#ifdef CCR_CACHE_EMODE
|
|
/* If EMODE is not set, we only have 1 way to flush. */
|
|
if (!(ccr & CCR_CACHE_EMODE))
|
|
ways = 1;
|
|
else
|
|
#endif
|
|
ways = current_cpu_data.dcache.ways;
|
|
|
|
addrstart = CACHE_OC_ADDRESS_ARRAY;
|
|
do {
|
|
unsigned long addr;
|
|
|
|
for (addr = addrstart;
|
|
addr < addrstart + waysize;
|
|
addr += current_cpu_data.dcache.linesz)
|
|
__raw_writel(0, addr);
|
|
|
|
addrstart += current_cpu_data.dcache.way_incr;
|
|
} while (--ways);
|
|
}
|
|
|
|
/*
|
|
* Default CCR values .. enable the caches
|
|
* and invalidate them immediately..
|
|
*/
|
|
flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE;
|
|
|
|
#ifdef CCR_CACHE_EMODE
|
|
/* Force EMODE if possible */
|
|
if (current_cpu_data.dcache.ways > 1)
|
|
flags |= CCR_CACHE_EMODE;
|
|
else
|
|
flags &= ~CCR_CACHE_EMODE;
|
|
#endif
|
|
|
|
#if defined(CONFIG_CACHE_WRITETHROUGH)
|
|
/* Write-through */
|
|
flags |= CCR_CACHE_WT;
|
|
#elif defined(CONFIG_CACHE_WRITEBACK)
|
|
/* Write-back */
|
|
flags |= CCR_CACHE_CB;
|
|
#else
|
|
/* Off */
|
|
flags &= ~CCR_CACHE_ENABLE;
|
|
#endif
|
|
|
|
l2_cache_init();
|
|
|
|
__raw_writel(flags, CCR);
|
|
back_to_cached();
|
|
}
|
|
#else
|
|
#define cache_init() do { } while (0)
|
|
#endif
|
|
|
|
#define CSHAPE(totalsize, linesize, assoc) \
|
|
((totalsize & ~0xff) | (linesize << 4) | assoc)
|
|
|
|
#define CACHE_DESC_SHAPE(desc) \
|
|
CSHAPE((desc).way_size * (desc).ways, ilog2((desc).linesz), (desc).ways)
|
|
|
|
static void detect_cache_shape(void)
|
|
{
|
|
l1d_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.dcache);
|
|
|
|
if (current_cpu_data.dcache.flags & SH_CACHE_COMBINED)
|
|
l1i_cache_shape = l1d_cache_shape;
|
|
else
|
|
l1i_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.icache);
|
|
|
|
if (current_cpu_data.flags & CPU_HAS_L2_CACHE)
|
|
l2_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.scache);
|
|
else
|
|
l2_cache_shape = -1; /* No S-cache */
|
|
}
|
|
|
|
static void __cpuinit fpu_init(void)
|
|
{
|
|
/* Disable the FPU */
|
|
if (fpu_disabled && (current_cpu_data.flags & CPU_HAS_FPU)) {
|
|
printk("FPU Disabled\n");
|
|
current_cpu_data.flags &= ~CPU_HAS_FPU;
|
|
}
|
|
|
|
disable_fpu();
|
|
clear_used_math();
|
|
}
|
|
|
|
#ifdef CONFIG_SH_DSP
|
|
static void __cpuinit release_dsp(void)
|
|
{
|
|
unsigned long sr;
|
|
|
|
/* Clear SR.DSP bit */
|
|
__asm__ __volatile__ (
|
|
"stc\tsr, %0\n\t"
|
|
"and\t%1, %0\n\t"
|
|
"ldc\t%0, sr\n\t"
|
|
: "=&r" (sr)
|
|
: "r" (~SR_DSP)
|
|
);
|
|
}
|
|
|
|
static void __cpuinit dsp_init(void)
|
|
{
|
|
unsigned long sr;
|
|
|
|
/*
|
|
* Set the SR.DSP bit, wait for one instruction, and then read
|
|
* back the SR value.
|
|
*/
|
|
__asm__ __volatile__ (
|
|
"stc\tsr, %0\n\t"
|
|
"or\t%1, %0\n\t"
|
|
"ldc\t%0, sr\n\t"
|
|
"nop\n\t"
|
|
"stc\tsr, %0\n\t"
|
|
: "=&r" (sr)
|
|
: "r" (SR_DSP)
|
|
);
|
|
|
|
/* If the DSP bit is still set, this CPU has a DSP */
|
|
if (sr & SR_DSP)
|
|
current_cpu_data.flags |= CPU_HAS_DSP;
|
|
|
|
/* Disable the DSP */
|
|
if (dsp_disabled && (current_cpu_data.flags & CPU_HAS_DSP)) {
|
|
printk("DSP Disabled\n");
|
|
current_cpu_data.flags &= ~CPU_HAS_DSP;
|
|
}
|
|
|
|
/* Now that we've determined the DSP status, clear the DSP bit. */
|
|
release_dsp();
|
|
}
|
|
#else
|
|
static inline void __cpuinit dsp_init(void) { }
|
|
#endif /* CONFIG_SH_DSP */
|
|
|
|
/**
|
|
* cpu_init
|
|
*
|
|
* This is our initial entry point for each CPU, and is invoked on the
|
|
* boot CPU prior to calling start_kernel(). For SMP, a combination of
|
|
* this and start_secondary() will bring up each processor to a ready
|
|
* state prior to hand forking the idle loop.
|
|
*
|
|
* We do all of the basic processor init here, including setting up
|
|
* the caches, FPU, DSP, etc. By the time start_kernel() is hit (and
|
|
* subsequently platform_setup()) things like determining the CPU
|
|
* subtype and initial configuration will all be done.
|
|
*
|
|
* Each processor family is still responsible for doing its own probing
|
|
* and cache configuration in cpu_probe().
|
|
*/
|
|
asmlinkage void __cpuinit cpu_init(void)
|
|
{
|
|
current_thread_info()->cpu = hard_smp_processor_id();
|
|
|
|
/* First, probe the CPU */
|
|
cpu_probe();
|
|
|
|
if (current_cpu_data.type == CPU_SH_NONE)
|
|
panic("Unknown CPU");
|
|
|
|
/* First setup the rest of the I-cache info */
|
|
current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr -
|
|
current_cpu_data.icache.linesz;
|
|
|
|
current_cpu_data.icache.way_size = current_cpu_data.icache.sets *
|
|
current_cpu_data.icache.linesz;
|
|
|
|
/* And the D-cache too */
|
|
current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr -
|
|
current_cpu_data.dcache.linesz;
|
|
|
|
current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
|
|
current_cpu_data.dcache.linesz;
|
|
|
|
/* Init the cache */
|
|
cache_init();
|
|
|
|
if (raw_smp_processor_id() == 0) {
|
|
shm_align_mask = max_t(unsigned long,
|
|
current_cpu_data.dcache.way_size - 1,
|
|
PAGE_SIZE - 1);
|
|
|
|
/* Boot CPU sets the cache shape */
|
|
detect_cache_shape();
|
|
}
|
|
|
|
fpu_init();
|
|
dsp_init();
|
|
|
|
/*
|
|
* Initialize the per-CPU ASID cache very early, since the
|
|
* TLB flushing routines depend on this being setup.
|
|
*/
|
|
current_cpu_data.asid_cache = NO_CONTEXT;
|
|
|
|
current_cpu_data.phys_bits = __in_29bit_mode() ? 29 : 32;
|
|
|
|
speculative_execution_init();
|
|
expmask_init();
|
|
|
|
/* Do the rest of the boot processor setup */
|
|
if (raw_smp_processor_id() == 0) {
|
|
/* Save off the BIOS VBR, if there is one */
|
|
sh_bios_vbr_init();
|
|
|
|
/*
|
|
* Setup VBR for boot CPU. Secondary CPUs do this through
|
|
* start_secondary().
|
|
*/
|
|
per_cpu_trap_init();
|
|
|
|
/*
|
|
* Boot processor to setup the FP and extended state
|
|
* context info.
|
|
*/
|
|
init_thread_xstate();
|
|
}
|
|
}
|