mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 12:22:42 +00:00
ce28f94ca5
Go thru the Alchemy code and hunt down every unneeded #include, #define, and extern (some of which refer to already long dead functions). Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
275 lines
7.6 KiB
C
275 lines
7.6 KiB
C
/*
|
|
*
|
|
* Copyright (C) 2001, 2006, 2008 MontaVista Software, <source@mvista.com>
|
|
* Copied and modified Carsten Langgaard's time.c
|
|
*
|
|
* Carsten Langgaard, carstenl@mips.com
|
|
* Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License (Version 2) as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* Setting up the clock on the MIPS boards.
|
|
*
|
|
* Update. Always configure the kernel with CONFIG_NEW_TIME_C. This
|
|
* will use the user interface gettimeofday() functions from the
|
|
* arch/mips/kernel/time.c, and we provide the clock interrupt processing
|
|
* and the timer offset compute functions. If CONFIG_PM is selected,
|
|
* we also ensure the 32KHz timer is available. -- Dan
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/time.h>
|
|
#include <asm/mach-au1x00/au1000.h>
|
|
|
|
static int no_au1xxx_32khz;
|
|
extern int allow_au1k_wait; /* default off for CP0 Counter */
|
|
|
|
#ifdef CONFIG_PM
|
|
#if HZ < 100 || HZ > 1000
|
|
#error "unsupported HZ value! Must be in [100,1000]"
|
|
#endif
|
|
#define MATCH20_INC (328*100/HZ) /* magic number 328 is for HZ=100... */
|
|
extern void startup_match20_interrupt(irq_handler_t handler);
|
|
static unsigned long last_pc0, last_match20;
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(time_lock);
|
|
|
|
unsigned long wtimer;
|
|
|
|
#ifdef CONFIG_PM
|
|
static irqreturn_t counter0_irq(int irq, void *dev_id)
|
|
{
|
|
unsigned long pc0;
|
|
int time_elapsed;
|
|
static int jiffie_drift = 0;
|
|
|
|
if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) {
|
|
/* should never happen! */
|
|
printk(KERN_WARNING "counter 0 w status error\n");
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
pc0 = au_readl(SYS_TOYREAD);
|
|
if (pc0 < last_match20) {
|
|
/* counter overflowed */
|
|
time_elapsed = (0xffffffff - last_match20) + pc0;
|
|
}
|
|
else {
|
|
time_elapsed = pc0 - last_match20;
|
|
}
|
|
|
|
while (time_elapsed > 0) {
|
|
do_timer(1);
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
time_elapsed -= MATCH20_INC;
|
|
last_match20 += MATCH20_INC;
|
|
jiffie_drift++;
|
|
}
|
|
|
|
last_pc0 = pc0;
|
|
au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
|
|
au_sync();
|
|
|
|
/* our counter ticks at 10.009765625 ms/tick, we we're running
|
|
* almost 10uS too slow per tick.
|
|
*/
|
|
|
|
if (jiffie_drift >= 999) {
|
|
jiffie_drift -= 999;
|
|
do_timer(1); /* increment jiffies by one */
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
struct irqaction counter0_action = {
|
|
.handler = counter0_irq,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "alchemy-toy",
|
|
.dev_id = NULL,
|
|
};
|
|
|
|
/* When we wakeup from sleep, we have to "catch up" on all of the
|
|
* timer ticks we have missed.
|
|
*/
|
|
void
|
|
wakeup_counter0_adjust(void)
|
|
{
|
|
unsigned long pc0;
|
|
int time_elapsed;
|
|
|
|
pc0 = au_readl(SYS_TOYREAD);
|
|
if (pc0 < last_match20) {
|
|
/* counter overflowed */
|
|
time_elapsed = (0xffffffff - last_match20) + pc0;
|
|
}
|
|
else {
|
|
time_elapsed = pc0 - last_match20;
|
|
}
|
|
|
|
while (time_elapsed > 0) {
|
|
time_elapsed -= MATCH20_INC;
|
|
last_match20 += MATCH20_INC;
|
|
}
|
|
|
|
last_pc0 = pc0;
|
|
au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
|
|
au_sync();
|
|
|
|
}
|
|
|
|
/* This is just for debugging to set the timer for a sleep delay.
|
|
*/
|
|
void
|
|
wakeup_counter0_set(int ticks)
|
|
{
|
|
unsigned long pc0;
|
|
|
|
pc0 = au_readl(SYS_TOYREAD);
|
|
last_pc0 = pc0;
|
|
au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2);
|
|
au_sync();
|
|
}
|
|
#endif
|
|
|
|
/* I haven't found anyone that doesn't use a 12 MHz source clock,
|
|
* but just in case.....
|
|
*/
|
|
#define AU1000_SRC_CLK 12000000
|
|
|
|
/*
|
|
* We read the real processor speed from the PLL. This is important
|
|
* because it is more accurate than computing it from the 32KHz
|
|
* counter, if it exists. If we don't have an accurate processor
|
|
* speed, all of the peripherals that derive their clocks based on
|
|
* this advertised speed will introduce error and sometimes not work
|
|
* properly. This function is futher convoluted to still allow configurations
|
|
* to do that in case they have really, really old silicon with a
|
|
* write-only PLL register, that we need the 32KHz when power management
|
|
* "wait" is enabled, and we need to detect if the 32KHz isn't present
|
|
* but requested......got it? :-) -- Dan
|
|
*/
|
|
unsigned long calc_clock(void)
|
|
{
|
|
unsigned long cpu_speed;
|
|
unsigned long flags;
|
|
unsigned long counter;
|
|
|
|
spin_lock_irqsave(&time_lock, flags);
|
|
|
|
/* Power management cares if we don't have a 32KHz counter.
|
|
*/
|
|
no_au1xxx_32khz = 0;
|
|
counter = au_readl(SYS_COUNTER_CNTRL);
|
|
if (counter & SYS_CNTRL_E0) {
|
|
int trim_divide = 16;
|
|
|
|
au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL);
|
|
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
|
|
/* RTC now ticks at 32.768/16 kHz */
|
|
au_writel(trim_divide-1, SYS_RTCTRIM);
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
|
|
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
|
|
au_writel(0, SYS_TOYWRITE);
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
|
|
} else
|
|
no_au1xxx_32khz = 1;
|
|
|
|
/*
|
|
* On early Au1000, sys_cpupll was write-only. Since these
|
|
* silicon versions of Au1000 are not sold by AMD, we don't bend
|
|
* over backwards trying to determine the frequency.
|
|
*/
|
|
if (cur_cpu_spec[0]->cpu_pll_wo)
|
|
#ifdef CONFIG_SOC_AU1000_FREQUENCY
|
|
cpu_speed = CONFIG_SOC_AU1000_FREQUENCY;
|
|
#else
|
|
cpu_speed = 396000000;
|
|
#endif
|
|
else
|
|
cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK;
|
|
mips_hpt_frequency = cpu_speed;
|
|
// Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16)
|
|
set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16));
|
|
spin_unlock_irqrestore(&time_lock, flags);
|
|
return cpu_speed;
|
|
}
|
|
|
|
void __init plat_time_init(void)
|
|
{
|
|
unsigned int est_freq = calc_clock();
|
|
|
|
est_freq += 5000; /* round */
|
|
est_freq -= est_freq%10000;
|
|
printk("CPU frequency %d.%02d MHz\n", est_freq/1000000,
|
|
(est_freq%1000000)*100/1000000);
|
|
set_au1x00_speed(est_freq);
|
|
set_au1x00_lcd_clock(); // program the LCD clock
|
|
|
|
#ifdef CONFIG_PM
|
|
/*
|
|
* setup counter 0, since it keeps ticking after a
|
|
* 'wait' instruction has been executed. The CP0 timer and
|
|
* counter 1 do NOT continue running after 'wait'
|
|
*
|
|
* It's too early to call request_irq() here, so we handle
|
|
* counter 0 interrupt as a special irq and it doesn't show
|
|
* up under /proc/interrupts.
|
|
*
|
|
* Check to ensure we really have a 32KHz oscillator before
|
|
* we do this.
|
|
*/
|
|
if (no_au1xxx_32khz)
|
|
printk("WARNING: no 32KHz clock found.\n");
|
|
else {
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
|
|
au_writel(0, SYS_TOYWRITE);
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
|
|
|
|
au_writel(au_readl(SYS_WAKEMSK) | (1<<8), SYS_WAKEMSK);
|
|
au_writel(~0, SYS_WAKESRC);
|
|
au_sync();
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
|
|
|
|
/* setup match20 to interrupt once every HZ */
|
|
last_pc0 = last_match20 = au_readl(SYS_TOYREAD);
|
|
au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
|
|
au_sync();
|
|
while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
|
|
setup_irq(AU1000_TOY_MATCH2_INT, &counter0_action);
|
|
|
|
/* We can use the real 'wait' instruction.
|
|
*/
|
|
allow_au1k_wait = 1;
|
|
}
|
|
|
|
#endif
|
|
}
|