mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 20:31:49 +00:00
d4faaecbcc
Move zlib_inflate_blob() out into it's own source file, infutil.c, so that things like the powerpc zImage builder in arch/powerpc/boot/Makefile don't end up trying to compile it. Signed-off-by: David S. Miller <davem@davemloft.net>
919 lines
31 KiB
C
919 lines
31 KiB
C
/* inflate.c -- zlib decompression
|
|
* Copyright (C) 1995-2005 Mark Adler
|
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
*
|
|
* Based on zlib 1.2.3 but modified for the Linux Kernel by
|
|
* Richard Purdie <richard@openedhand.com>
|
|
*
|
|
* Changes mainly for static instead of dynamic memory allocation
|
|
*
|
|
*/
|
|
|
|
#include <linux/zutil.h>
|
|
#include "inftrees.h"
|
|
#include "inflate.h"
|
|
#include "inffast.h"
|
|
#include "infutil.h"
|
|
|
|
int zlib_inflate_workspacesize(void)
|
|
{
|
|
return sizeof(struct inflate_workspace);
|
|
}
|
|
|
|
int zlib_inflateReset(z_streamp strm)
|
|
{
|
|
struct inflate_state *state;
|
|
|
|
if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
|
|
state = (struct inflate_state *)strm->state;
|
|
strm->total_in = strm->total_out = state->total = 0;
|
|
strm->msg = NULL;
|
|
strm->adler = 1; /* to support ill-conceived Java test suite */
|
|
state->mode = HEAD;
|
|
state->last = 0;
|
|
state->havedict = 0;
|
|
state->dmax = 32768U;
|
|
state->hold = 0;
|
|
state->bits = 0;
|
|
state->lencode = state->distcode = state->next = state->codes;
|
|
|
|
/* Initialise Window */
|
|
state->wsize = 1U << state->wbits;
|
|
state->write = 0;
|
|
state->whave = 0;
|
|
|
|
return Z_OK;
|
|
}
|
|
|
|
#if 0
|
|
int zlib_inflatePrime(z_streamp strm, int bits, int value)
|
|
{
|
|
struct inflate_state *state;
|
|
|
|
if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
|
|
state = (struct inflate_state *)strm->state;
|
|
if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR;
|
|
value &= (1L << bits) - 1;
|
|
state->hold += value << state->bits;
|
|
state->bits += bits;
|
|
return Z_OK;
|
|
}
|
|
#endif
|
|
|
|
int zlib_inflateInit2(z_streamp strm, int windowBits)
|
|
{
|
|
struct inflate_state *state;
|
|
|
|
if (strm == NULL) return Z_STREAM_ERROR;
|
|
strm->msg = NULL; /* in case we return an error */
|
|
|
|
state = &WS(strm)->inflate_state;
|
|
strm->state = (struct internal_state *)state;
|
|
|
|
if (windowBits < 0) {
|
|
state->wrap = 0;
|
|
windowBits = -windowBits;
|
|
}
|
|
else {
|
|
state->wrap = (windowBits >> 4) + 1;
|
|
}
|
|
if (windowBits < 8 || windowBits > 15) {
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
state->wbits = (unsigned)windowBits;
|
|
state->window = &WS(strm)->working_window[0];
|
|
|
|
return zlib_inflateReset(strm);
|
|
}
|
|
|
|
/*
|
|
Return state with length and distance decoding tables and index sizes set to
|
|
fixed code decoding. This returns fixed tables from inffixed.h.
|
|
*/
|
|
static void zlib_fixedtables(struct inflate_state *state)
|
|
{
|
|
# include "inffixed.h"
|
|
state->lencode = lenfix;
|
|
state->lenbits = 9;
|
|
state->distcode = distfix;
|
|
state->distbits = 5;
|
|
}
|
|
|
|
|
|
/*
|
|
Update the window with the last wsize (normally 32K) bytes written before
|
|
returning. This is only called when a window is already in use, or when
|
|
output has been written during this inflate call, but the end of the deflate
|
|
stream has not been reached yet. It is also called to window dictionary data
|
|
when a dictionary is loaded.
|
|
|
|
Providing output buffers larger than 32K to inflate() should provide a speed
|
|
advantage, since only the last 32K of output is copied to the sliding window
|
|
upon return from inflate(), and since all distances after the first 32K of
|
|
output will fall in the output data, making match copies simpler and faster.
|
|
The advantage may be dependent on the size of the processor's data caches.
|
|
*/
|
|
static void zlib_updatewindow(z_streamp strm, unsigned out)
|
|
{
|
|
struct inflate_state *state;
|
|
unsigned copy, dist;
|
|
|
|
state = (struct inflate_state *)strm->state;
|
|
|
|
/* copy state->wsize or less output bytes into the circular window */
|
|
copy = out - strm->avail_out;
|
|
if (copy >= state->wsize) {
|
|
memcpy(state->window, strm->next_out - state->wsize, state->wsize);
|
|
state->write = 0;
|
|
state->whave = state->wsize;
|
|
}
|
|
else {
|
|
dist = state->wsize - state->write;
|
|
if (dist > copy) dist = copy;
|
|
memcpy(state->window + state->write, strm->next_out - copy, dist);
|
|
copy -= dist;
|
|
if (copy) {
|
|
memcpy(state->window, strm->next_out - copy, copy);
|
|
state->write = copy;
|
|
state->whave = state->wsize;
|
|
}
|
|
else {
|
|
state->write += dist;
|
|
if (state->write == state->wsize) state->write = 0;
|
|
if (state->whave < state->wsize) state->whave += dist;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* At the end of a Deflate-compressed PPP packet, we expect to have seen
|
|
* a `stored' block type value but not the (zero) length bytes.
|
|
*/
|
|
/*
|
|
Returns true if inflate is currently at the end of a block generated by
|
|
Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
|
|
implementation to provide an additional safety check. PPP uses
|
|
Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored
|
|
block. When decompressing, PPP checks that at the end of input packet,
|
|
inflate is waiting for these length bytes.
|
|
*/
|
|
static int zlib_inflateSyncPacket(z_streamp strm)
|
|
{
|
|
struct inflate_state *state;
|
|
|
|
if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
|
|
state = (struct inflate_state *)strm->state;
|
|
|
|
if (state->mode == STORED && state->bits == 0) {
|
|
state->mode = TYPE;
|
|
return Z_OK;
|
|
}
|
|
return Z_DATA_ERROR;
|
|
}
|
|
|
|
/* Macros for inflate(): */
|
|
|
|
/* check function to use adler32() for zlib or crc32() for gzip */
|
|
#define UPDATE(check, buf, len) zlib_adler32(check, buf, len)
|
|
|
|
/* Load registers with state in inflate() for speed */
|
|
#define LOAD() \
|
|
do { \
|
|
put = strm->next_out; \
|
|
left = strm->avail_out; \
|
|
next = strm->next_in; \
|
|
have = strm->avail_in; \
|
|
hold = state->hold; \
|
|
bits = state->bits; \
|
|
} while (0)
|
|
|
|
/* Restore state from registers in inflate() */
|
|
#define RESTORE() \
|
|
do { \
|
|
strm->next_out = put; \
|
|
strm->avail_out = left; \
|
|
strm->next_in = next; \
|
|
strm->avail_in = have; \
|
|
state->hold = hold; \
|
|
state->bits = bits; \
|
|
} while (0)
|
|
|
|
/* Clear the input bit accumulator */
|
|
#define INITBITS() \
|
|
do { \
|
|
hold = 0; \
|
|
bits = 0; \
|
|
} while (0)
|
|
|
|
/* Get a byte of input into the bit accumulator, or return from inflate()
|
|
if there is no input available. */
|
|
#define PULLBYTE() \
|
|
do { \
|
|
if (have == 0) goto inf_leave; \
|
|
have--; \
|
|
hold += (unsigned long)(*next++) << bits; \
|
|
bits += 8; \
|
|
} while (0)
|
|
|
|
/* Assure that there are at least n bits in the bit accumulator. If there is
|
|
not enough available input to do that, then return from inflate(). */
|
|
#define NEEDBITS(n) \
|
|
do { \
|
|
while (bits < (unsigned)(n)) \
|
|
PULLBYTE(); \
|
|
} while (0)
|
|
|
|
/* Return the low n bits of the bit accumulator (n < 16) */
|
|
#define BITS(n) \
|
|
((unsigned)hold & ((1U << (n)) - 1))
|
|
|
|
/* Remove n bits from the bit accumulator */
|
|
#define DROPBITS(n) \
|
|
do { \
|
|
hold >>= (n); \
|
|
bits -= (unsigned)(n); \
|
|
} while (0)
|
|
|
|
/* Remove zero to seven bits as needed to go to a byte boundary */
|
|
#define BYTEBITS() \
|
|
do { \
|
|
hold >>= bits & 7; \
|
|
bits -= bits & 7; \
|
|
} while (0)
|
|
|
|
/* Reverse the bytes in a 32-bit value */
|
|
#define REVERSE(q) \
|
|
((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
|
|
(((q) & 0xff00) << 8) + (((q) & 0xff) << 24))
|
|
|
|
/*
|
|
inflate() uses a state machine to process as much input data and generate as
|
|
much output data as possible before returning. The state machine is
|
|
structured roughly as follows:
|
|
|
|
for (;;) switch (state) {
|
|
...
|
|
case STATEn:
|
|
if (not enough input data or output space to make progress)
|
|
return;
|
|
... make progress ...
|
|
state = STATEm;
|
|
break;
|
|
...
|
|
}
|
|
|
|
so when inflate() is called again, the same case is attempted again, and
|
|
if the appropriate resources are provided, the machine proceeds to the
|
|
next state. The NEEDBITS() macro is usually the way the state evaluates
|
|
whether it can proceed or should return. NEEDBITS() does the return if
|
|
the requested bits are not available. The typical use of the BITS macros
|
|
is:
|
|
|
|
NEEDBITS(n);
|
|
... do something with BITS(n) ...
|
|
DROPBITS(n);
|
|
|
|
where NEEDBITS(n) either returns from inflate() if there isn't enough
|
|
input left to load n bits into the accumulator, or it continues. BITS(n)
|
|
gives the low n bits in the accumulator. When done, DROPBITS(n) drops
|
|
the low n bits off the accumulator. INITBITS() clears the accumulator
|
|
and sets the number of available bits to zero. BYTEBITS() discards just
|
|
enough bits to put the accumulator on a byte boundary. After BYTEBITS()
|
|
and a NEEDBITS(8), then BITS(8) would return the next byte in the stream.
|
|
|
|
NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return
|
|
if there is no input available. The decoding of variable length codes uses
|
|
PULLBYTE() directly in order to pull just enough bytes to decode the next
|
|
code, and no more.
|
|
|
|
Some states loop until they get enough input, making sure that enough
|
|
state information is maintained to continue the loop where it left off
|
|
if NEEDBITS() returns in the loop. For example, want, need, and keep
|
|
would all have to actually be part of the saved state in case NEEDBITS()
|
|
returns:
|
|
|
|
case STATEw:
|
|
while (want < need) {
|
|
NEEDBITS(n);
|
|
keep[want++] = BITS(n);
|
|
DROPBITS(n);
|
|
}
|
|
state = STATEx;
|
|
case STATEx:
|
|
|
|
As shown above, if the next state is also the next case, then the break
|
|
is omitted.
|
|
|
|
A state may also return if there is not enough output space available to
|
|
complete that state. Those states are copying stored data, writing a
|
|
literal byte, and copying a matching string.
|
|
|
|
When returning, a "goto inf_leave" is used to update the total counters,
|
|
update the check value, and determine whether any progress has been made
|
|
during that inflate() call in order to return the proper return code.
|
|
Progress is defined as a change in either strm->avail_in or strm->avail_out.
|
|
When there is a window, goto inf_leave will update the window with the last
|
|
output written. If a goto inf_leave occurs in the middle of decompression
|
|
and there is no window currently, goto inf_leave will create one and copy
|
|
output to the window for the next call of inflate().
|
|
|
|
In this implementation, the flush parameter of inflate() only affects the
|
|
return code (per zlib.h). inflate() always writes as much as possible to
|
|
strm->next_out, given the space available and the provided input--the effect
|
|
documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers
|
|
the allocation of and copying into a sliding window until necessary, which
|
|
provides the effect documented in zlib.h for Z_FINISH when the entire input
|
|
stream available. So the only thing the flush parameter actually does is:
|
|
when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it
|
|
will return Z_BUF_ERROR if it has not reached the end of the stream.
|
|
*/
|
|
|
|
int zlib_inflate(z_streamp strm, int flush)
|
|
{
|
|
struct inflate_state *state;
|
|
const unsigned char *next; /* next input */
|
|
unsigned char *put; /* next output */
|
|
unsigned have, left; /* available input and output */
|
|
unsigned long hold; /* bit buffer */
|
|
unsigned bits; /* bits in bit buffer */
|
|
unsigned in, out; /* save starting available input and output */
|
|
unsigned copy; /* number of stored or match bytes to copy */
|
|
unsigned char *from; /* where to copy match bytes from */
|
|
code this; /* current decoding table entry */
|
|
code last; /* parent table entry */
|
|
unsigned len; /* length to copy for repeats, bits to drop */
|
|
int ret; /* return code */
|
|
static const unsigned short order[19] = /* permutation of code lengths */
|
|
{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
|
|
|
/* Do not check for strm->next_out == NULL here as ppc zImage
|
|
inflates to strm->next_out = 0 */
|
|
|
|
if (strm == NULL || strm->state == NULL ||
|
|
(strm->next_in == NULL && strm->avail_in != 0))
|
|
return Z_STREAM_ERROR;
|
|
|
|
state = (struct inflate_state *)strm->state;
|
|
|
|
if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */
|
|
LOAD();
|
|
in = have;
|
|
out = left;
|
|
ret = Z_OK;
|
|
for (;;)
|
|
switch (state->mode) {
|
|
case HEAD:
|
|
if (state->wrap == 0) {
|
|
state->mode = TYPEDO;
|
|
break;
|
|
}
|
|
NEEDBITS(16);
|
|
if (
|
|
((BITS(8) << 8) + (hold >> 8)) % 31) {
|
|
strm->msg = (char *)"incorrect header check";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
if (BITS(4) != Z_DEFLATED) {
|
|
strm->msg = (char *)"unknown compression method";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
DROPBITS(4);
|
|
len = BITS(4) + 8;
|
|
if (len > state->wbits) {
|
|
strm->msg = (char *)"invalid window size";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->dmax = 1U << len;
|
|
strm->adler = state->check = zlib_adler32(0L, NULL, 0);
|
|
state->mode = hold & 0x200 ? DICTID : TYPE;
|
|
INITBITS();
|
|
break;
|
|
case DICTID:
|
|
NEEDBITS(32);
|
|
strm->adler = state->check = REVERSE(hold);
|
|
INITBITS();
|
|
state->mode = DICT;
|
|
case DICT:
|
|
if (state->havedict == 0) {
|
|
RESTORE();
|
|
return Z_NEED_DICT;
|
|
}
|
|
strm->adler = state->check = zlib_adler32(0L, NULL, 0);
|
|
state->mode = TYPE;
|
|
case TYPE:
|
|
if (flush == Z_BLOCK) goto inf_leave;
|
|
case TYPEDO:
|
|
if (state->last) {
|
|
BYTEBITS();
|
|
state->mode = CHECK;
|
|
break;
|
|
}
|
|
NEEDBITS(3);
|
|
state->last = BITS(1);
|
|
DROPBITS(1);
|
|
switch (BITS(2)) {
|
|
case 0: /* stored block */
|
|
state->mode = STORED;
|
|
break;
|
|
case 1: /* fixed block */
|
|
zlib_fixedtables(state);
|
|
state->mode = LEN; /* decode codes */
|
|
break;
|
|
case 2: /* dynamic block */
|
|
state->mode = TABLE;
|
|
break;
|
|
case 3:
|
|
strm->msg = (char *)"invalid block type";
|
|
state->mode = BAD;
|
|
}
|
|
DROPBITS(2);
|
|
break;
|
|
case STORED:
|
|
BYTEBITS(); /* go to byte boundary */
|
|
NEEDBITS(32);
|
|
if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) {
|
|
strm->msg = (char *)"invalid stored block lengths";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->length = (unsigned)hold & 0xffff;
|
|
INITBITS();
|
|
state->mode = COPY;
|
|
case COPY:
|
|
copy = state->length;
|
|
if (copy) {
|
|
if (copy > have) copy = have;
|
|
if (copy > left) copy = left;
|
|
if (copy == 0) goto inf_leave;
|
|
memcpy(put, next, copy);
|
|
have -= copy;
|
|
next += copy;
|
|
left -= copy;
|
|
put += copy;
|
|
state->length -= copy;
|
|
break;
|
|
}
|
|
state->mode = TYPE;
|
|
break;
|
|
case TABLE:
|
|
NEEDBITS(14);
|
|
state->nlen = BITS(5) + 257;
|
|
DROPBITS(5);
|
|
state->ndist = BITS(5) + 1;
|
|
DROPBITS(5);
|
|
state->ncode = BITS(4) + 4;
|
|
DROPBITS(4);
|
|
#ifndef PKZIP_BUG_WORKAROUND
|
|
if (state->nlen > 286 || state->ndist > 30) {
|
|
strm->msg = (char *)"too many length or distance symbols";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
#endif
|
|
state->have = 0;
|
|
state->mode = LENLENS;
|
|
case LENLENS:
|
|
while (state->have < state->ncode) {
|
|
NEEDBITS(3);
|
|
state->lens[order[state->have++]] = (unsigned short)BITS(3);
|
|
DROPBITS(3);
|
|
}
|
|
while (state->have < 19)
|
|
state->lens[order[state->have++]] = 0;
|
|
state->next = state->codes;
|
|
state->lencode = (code const *)(state->next);
|
|
state->lenbits = 7;
|
|
ret = zlib_inflate_table(CODES, state->lens, 19, &(state->next),
|
|
&(state->lenbits), state->work);
|
|
if (ret) {
|
|
strm->msg = (char *)"invalid code lengths set";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->have = 0;
|
|
state->mode = CODELENS;
|
|
case CODELENS:
|
|
while (state->have < state->nlen + state->ndist) {
|
|
for (;;) {
|
|
this = state->lencode[BITS(state->lenbits)];
|
|
if ((unsigned)(this.bits) <= bits) break;
|
|
PULLBYTE();
|
|
}
|
|
if (this.val < 16) {
|
|
NEEDBITS(this.bits);
|
|
DROPBITS(this.bits);
|
|
state->lens[state->have++] = this.val;
|
|
}
|
|
else {
|
|
if (this.val == 16) {
|
|
NEEDBITS(this.bits + 2);
|
|
DROPBITS(this.bits);
|
|
if (state->have == 0) {
|
|
strm->msg = (char *)"invalid bit length repeat";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
len = state->lens[state->have - 1];
|
|
copy = 3 + BITS(2);
|
|
DROPBITS(2);
|
|
}
|
|
else if (this.val == 17) {
|
|
NEEDBITS(this.bits + 3);
|
|
DROPBITS(this.bits);
|
|
len = 0;
|
|
copy = 3 + BITS(3);
|
|
DROPBITS(3);
|
|
}
|
|
else {
|
|
NEEDBITS(this.bits + 7);
|
|
DROPBITS(this.bits);
|
|
len = 0;
|
|
copy = 11 + BITS(7);
|
|
DROPBITS(7);
|
|
}
|
|
if (state->have + copy > state->nlen + state->ndist) {
|
|
strm->msg = (char *)"invalid bit length repeat";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
while (copy--)
|
|
state->lens[state->have++] = (unsigned short)len;
|
|
}
|
|
}
|
|
|
|
/* handle error breaks in while */
|
|
if (state->mode == BAD) break;
|
|
|
|
/* build code tables */
|
|
state->next = state->codes;
|
|
state->lencode = (code const *)(state->next);
|
|
state->lenbits = 9;
|
|
ret = zlib_inflate_table(LENS, state->lens, state->nlen, &(state->next),
|
|
&(state->lenbits), state->work);
|
|
if (ret) {
|
|
strm->msg = (char *)"invalid literal/lengths set";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->distcode = (code const *)(state->next);
|
|
state->distbits = 6;
|
|
ret = zlib_inflate_table(DISTS, state->lens + state->nlen, state->ndist,
|
|
&(state->next), &(state->distbits), state->work);
|
|
if (ret) {
|
|
strm->msg = (char *)"invalid distances set";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->mode = LEN;
|
|
case LEN:
|
|
if (have >= 6 && left >= 258) {
|
|
RESTORE();
|
|
inflate_fast(strm, out);
|
|
LOAD();
|
|
break;
|
|
}
|
|
for (;;) {
|
|
this = state->lencode[BITS(state->lenbits)];
|
|
if ((unsigned)(this.bits) <= bits) break;
|
|
PULLBYTE();
|
|
}
|
|
if (this.op && (this.op & 0xf0) == 0) {
|
|
last = this;
|
|
for (;;) {
|
|
this = state->lencode[last.val +
|
|
(BITS(last.bits + last.op) >> last.bits)];
|
|
if ((unsigned)(last.bits + this.bits) <= bits) break;
|
|
PULLBYTE();
|
|
}
|
|
DROPBITS(last.bits);
|
|
}
|
|
DROPBITS(this.bits);
|
|
state->length = (unsigned)this.val;
|
|
if ((int)(this.op) == 0) {
|
|
state->mode = LIT;
|
|
break;
|
|
}
|
|
if (this.op & 32) {
|
|
state->mode = TYPE;
|
|
break;
|
|
}
|
|
if (this.op & 64) {
|
|
strm->msg = (char *)"invalid literal/length code";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->extra = (unsigned)(this.op) & 15;
|
|
state->mode = LENEXT;
|
|
case LENEXT:
|
|
if (state->extra) {
|
|
NEEDBITS(state->extra);
|
|
state->length += BITS(state->extra);
|
|
DROPBITS(state->extra);
|
|
}
|
|
state->mode = DIST;
|
|
case DIST:
|
|
for (;;) {
|
|
this = state->distcode[BITS(state->distbits)];
|
|
if ((unsigned)(this.bits) <= bits) break;
|
|
PULLBYTE();
|
|
}
|
|
if ((this.op & 0xf0) == 0) {
|
|
last = this;
|
|
for (;;) {
|
|
this = state->distcode[last.val +
|
|
(BITS(last.bits + last.op) >> last.bits)];
|
|
if ((unsigned)(last.bits + this.bits) <= bits) break;
|
|
PULLBYTE();
|
|
}
|
|
DROPBITS(last.bits);
|
|
}
|
|
DROPBITS(this.bits);
|
|
if (this.op & 64) {
|
|
strm->msg = (char *)"invalid distance code";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->offset = (unsigned)this.val;
|
|
state->extra = (unsigned)(this.op) & 15;
|
|
state->mode = DISTEXT;
|
|
case DISTEXT:
|
|
if (state->extra) {
|
|
NEEDBITS(state->extra);
|
|
state->offset += BITS(state->extra);
|
|
DROPBITS(state->extra);
|
|
}
|
|
#ifdef INFLATE_STRICT
|
|
if (state->offset > state->dmax) {
|
|
strm->msg = (char *)"invalid distance too far back";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
#endif
|
|
if (state->offset > state->whave + out - left) {
|
|
strm->msg = (char *)"invalid distance too far back";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
state->mode = MATCH;
|
|
case MATCH:
|
|
if (left == 0) goto inf_leave;
|
|
copy = out - left;
|
|
if (state->offset > copy) { /* copy from window */
|
|
copy = state->offset - copy;
|
|
if (copy > state->write) {
|
|
copy -= state->write;
|
|
from = state->window + (state->wsize - copy);
|
|
}
|
|
else
|
|
from = state->window + (state->write - copy);
|
|
if (copy > state->length) copy = state->length;
|
|
}
|
|
else { /* copy from output */
|
|
from = put - state->offset;
|
|
copy = state->length;
|
|
}
|
|
if (copy > left) copy = left;
|
|
left -= copy;
|
|
state->length -= copy;
|
|
do {
|
|
*put++ = *from++;
|
|
} while (--copy);
|
|
if (state->length == 0) state->mode = LEN;
|
|
break;
|
|
case LIT:
|
|
if (left == 0) goto inf_leave;
|
|
*put++ = (unsigned char)(state->length);
|
|
left--;
|
|
state->mode = LEN;
|
|
break;
|
|
case CHECK:
|
|
if (state->wrap) {
|
|
NEEDBITS(32);
|
|
out -= left;
|
|
strm->total_out += out;
|
|
state->total += out;
|
|
if (out)
|
|
strm->adler = state->check =
|
|
UPDATE(state->check, put - out, out);
|
|
out = left;
|
|
if ((
|
|
REVERSE(hold)) != state->check) {
|
|
strm->msg = (char *)"incorrect data check";
|
|
state->mode = BAD;
|
|
break;
|
|
}
|
|
INITBITS();
|
|
}
|
|
state->mode = DONE;
|
|
case DONE:
|
|
ret = Z_STREAM_END;
|
|
goto inf_leave;
|
|
case BAD:
|
|
ret = Z_DATA_ERROR;
|
|
goto inf_leave;
|
|
case MEM:
|
|
return Z_MEM_ERROR;
|
|
case SYNC:
|
|
default:
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
|
|
/*
|
|
Return from inflate(), updating the total counts and the check value.
|
|
If there was no progress during the inflate() call, return a buffer
|
|
error. Call zlib_updatewindow() to create and/or update the window state.
|
|
*/
|
|
inf_leave:
|
|
RESTORE();
|
|
if (state->wsize || (state->mode < CHECK && out != strm->avail_out))
|
|
zlib_updatewindow(strm, out);
|
|
|
|
in -= strm->avail_in;
|
|
out -= strm->avail_out;
|
|
strm->total_in += in;
|
|
strm->total_out += out;
|
|
state->total += out;
|
|
if (state->wrap && out)
|
|
strm->adler = state->check =
|
|
UPDATE(state->check, strm->next_out - out, out);
|
|
|
|
strm->data_type = state->bits + (state->last ? 64 : 0) +
|
|
(state->mode == TYPE ? 128 : 0);
|
|
|
|
if (flush == Z_PACKET_FLUSH && ret == Z_OK &&
|
|
strm->avail_out != 0 && strm->avail_in == 0)
|
|
return zlib_inflateSyncPacket(strm);
|
|
|
|
if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK)
|
|
ret = Z_BUF_ERROR;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int zlib_inflateEnd(z_streamp strm)
|
|
{
|
|
if (strm == NULL || strm->state == NULL)
|
|
return Z_STREAM_ERROR;
|
|
return Z_OK;
|
|
}
|
|
|
|
#if 0
|
|
int zlib_inflateSetDictionary(z_streamp strm, const Byte *dictionary,
|
|
uInt dictLength)
|
|
{
|
|
struct inflate_state *state;
|
|
unsigned long id;
|
|
|
|
/* check state */
|
|
if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
|
|
state = (struct inflate_state *)strm->state;
|
|
if (state->wrap != 0 && state->mode != DICT)
|
|
return Z_STREAM_ERROR;
|
|
|
|
/* check for correct dictionary id */
|
|
if (state->mode == DICT) {
|
|
id = zlib_adler32(0L, NULL, 0);
|
|
id = zlib_adler32(id, dictionary, dictLength);
|
|
if (id != state->check)
|
|
return Z_DATA_ERROR;
|
|
}
|
|
|
|
/* copy dictionary to window */
|
|
zlib_updatewindow(strm, strm->avail_out);
|
|
|
|
if (dictLength > state->wsize) {
|
|
memcpy(state->window, dictionary + dictLength - state->wsize,
|
|
state->wsize);
|
|
state->whave = state->wsize;
|
|
}
|
|
else {
|
|
memcpy(state->window + state->wsize - dictLength, dictionary,
|
|
dictLength);
|
|
state->whave = dictLength;
|
|
}
|
|
state->havedict = 1;
|
|
return Z_OK;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/*
|
|
Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found
|
|
or when out of input. When called, *have is the number of pattern bytes
|
|
found in order so far, in 0..3. On return *have is updated to the new
|
|
state. If on return *have equals four, then the pattern was found and the
|
|
return value is how many bytes were read including the last byte of the
|
|
pattern. If *have is less than four, then the pattern has not been found
|
|
yet and the return value is len. In the latter case, zlib_syncsearch() can be
|
|
called again with more data and the *have state. *have is initialized to
|
|
zero for the first call.
|
|
*/
|
|
static unsigned zlib_syncsearch(unsigned *have, unsigned char *buf,
|
|
unsigned len)
|
|
{
|
|
unsigned got;
|
|
unsigned next;
|
|
|
|
got = *have;
|
|
next = 0;
|
|
while (next < len && got < 4) {
|
|
if ((int)(buf[next]) == (got < 2 ? 0 : 0xff))
|
|
got++;
|
|
else if (buf[next])
|
|
got = 0;
|
|
else
|
|
got = 4 - got;
|
|
next++;
|
|
}
|
|
*have = got;
|
|
return next;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
int zlib_inflateSync(z_streamp strm)
|
|
{
|
|
unsigned len; /* number of bytes to look at or looked at */
|
|
unsigned long in, out; /* temporary to save total_in and total_out */
|
|
unsigned char buf[4]; /* to restore bit buffer to byte string */
|
|
struct inflate_state *state;
|
|
|
|
/* check parameters */
|
|
if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
|
|
state = (struct inflate_state *)strm->state;
|
|
if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR;
|
|
|
|
/* if first time, start search in bit buffer */
|
|
if (state->mode != SYNC) {
|
|
state->mode = SYNC;
|
|
state->hold <<= state->bits & 7;
|
|
state->bits -= state->bits & 7;
|
|
len = 0;
|
|
while (state->bits >= 8) {
|
|
buf[len++] = (unsigned char)(state->hold);
|
|
state->hold >>= 8;
|
|
state->bits -= 8;
|
|
}
|
|
state->have = 0;
|
|
zlib_syncsearch(&(state->have), buf, len);
|
|
}
|
|
|
|
/* search available input */
|
|
len = zlib_syncsearch(&(state->have), strm->next_in, strm->avail_in);
|
|
strm->avail_in -= len;
|
|
strm->next_in += len;
|
|
strm->total_in += len;
|
|
|
|
/* return no joy or set up to restart inflate() on a new block */
|
|
if (state->have != 4) return Z_DATA_ERROR;
|
|
in = strm->total_in; out = strm->total_out;
|
|
zlib_inflateReset(strm);
|
|
strm->total_in = in; strm->total_out = out;
|
|
state->mode = TYPE;
|
|
return Z_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This subroutine adds the data at next_in/avail_in to the output history
|
|
* without performing any output. The output buffer must be "caught up";
|
|
* i.e. no pending output but this should always be the case. The state must
|
|
* be waiting on the start of a block (i.e. mode == TYPE or HEAD). On exit,
|
|
* the output will also be caught up, and the checksum will have been updated
|
|
* if need be.
|
|
*/
|
|
int zlib_inflateIncomp(z_stream *z)
|
|
{
|
|
struct inflate_state *state = (struct inflate_state *)z->state;
|
|
Byte *saved_no = z->next_out;
|
|
uInt saved_ao = z->avail_out;
|
|
|
|
if (state->mode != TYPE && state->mode != HEAD)
|
|
return Z_DATA_ERROR;
|
|
|
|
/* Setup some variables to allow misuse of updateWindow */
|
|
z->avail_out = 0;
|
|
z->next_out = (unsigned char*)z->next_in + z->avail_in;
|
|
|
|
zlib_updatewindow(z, z->avail_in);
|
|
|
|
/* Restore saved variables */
|
|
z->avail_out = saved_ao;
|
|
z->next_out = saved_no;
|
|
|
|
z->adler = state->check =
|
|
UPDATE(state->check, z->next_in, z->avail_in);
|
|
|
|
z->total_out += z->avail_in;
|
|
z->total_in += z->avail_in;
|
|
z->next_in += z->avail_in;
|
|
state->total += z->avail_in;
|
|
z->avail_in = 0;
|
|
|
|
return Z_OK;
|
|
}
|