mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-23 09:56:00 +00:00
cdd0db058d
Second round of drivers for Gb cards (and NIU one I forgot in the 10GB round) Now that core network takes care of trans_start updates, dont do it in drivers themselves, if possible. Drivers can avoid one cache miss (on dev->trans_start) in their start_xmit() handler. Exceptions are NETIF_F_LLTX drivers Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1844 lines
48 KiB
C
1844 lines
48 KiB
C
/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
|
|
/*
|
|
Copyright (c) 2001, 2002 by D-Link Corporation
|
|
Written by Edward Peng.<edward_peng@dlink.com.tw>
|
|
Created 03-May-2001, base on Linux' sundance.c.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
*/
|
|
|
|
#define DRV_NAME "DL2000/TC902x-based linux driver"
|
|
#define DRV_VERSION "v1.19"
|
|
#define DRV_RELDATE "2007/08/12"
|
|
#include "dl2k.h"
|
|
#include <linux/dma-mapping.h>
|
|
|
|
static char version[] __devinitdata =
|
|
KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
|
|
#define MAX_UNITS 8
|
|
static int mtu[MAX_UNITS];
|
|
static int vlan[MAX_UNITS];
|
|
static int jumbo[MAX_UNITS];
|
|
static char *media[MAX_UNITS];
|
|
static int tx_flow=-1;
|
|
static int rx_flow=-1;
|
|
static int copy_thresh;
|
|
static int rx_coalesce=10; /* Rx frame count each interrupt */
|
|
static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
|
|
static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
|
|
|
|
|
|
MODULE_AUTHOR ("Edward Peng");
|
|
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
|
|
MODULE_LICENSE("GPL");
|
|
module_param_array(mtu, int, NULL, 0);
|
|
module_param_array(media, charp, NULL, 0);
|
|
module_param_array(vlan, int, NULL, 0);
|
|
module_param_array(jumbo, int, NULL, 0);
|
|
module_param(tx_flow, int, 0);
|
|
module_param(rx_flow, int, 0);
|
|
module_param(copy_thresh, int, 0);
|
|
module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
|
|
module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
|
|
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
|
|
|
|
|
|
/* Enable the default interrupts */
|
|
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
|
|
UpdateStats | LinkEvent)
|
|
#define EnableInt() \
|
|
writew(DEFAULT_INTR, ioaddr + IntEnable)
|
|
|
|
static const int max_intrloop = 50;
|
|
static const int multicast_filter_limit = 0x40;
|
|
|
|
static int rio_open (struct net_device *dev);
|
|
static void rio_timer (unsigned long data);
|
|
static void rio_tx_timeout (struct net_device *dev);
|
|
static void alloc_list (struct net_device *dev);
|
|
static int start_xmit (struct sk_buff *skb, struct net_device *dev);
|
|
static irqreturn_t rio_interrupt (int irq, void *dev_instance);
|
|
static void rio_free_tx (struct net_device *dev, int irq);
|
|
static void tx_error (struct net_device *dev, int tx_status);
|
|
static int receive_packet (struct net_device *dev);
|
|
static void rio_error (struct net_device *dev, int int_status);
|
|
static int change_mtu (struct net_device *dev, int new_mtu);
|
|
static void set_multicast (struct net_device *dev);
|
|
static struct net_device_stats *get_stats (struct net_device *dev);
|
|
static int clear_stats (struct net_device *dev);
|
|
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static int rio_close (struct net_device *dev);
|
|
static int find_miiphy (struct net_device *dev);
|
|
static int parse_eeprom (struct net_device *dev);
|
|
static int read_eeprom (long ioaddr, int eep_addr);
|
|
static int mii_wait_link (struct net_device *dev, int wait);
|
|
static int mii_set_media (struct net_device *dev);
|
|
static int mii_get_media (struct net_device *dev);
|
|
static int mii_set_media_pcs (struct net_device *dev);
|
|
static int mii_get_media_pcs (struct net_device *dev);
|
|
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
|
|
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
|
|
u16 data);
|
|
|
|
static const struct ethtool_ops ethtool_ops;
|
|
|
|
static const struct net_device_ops netdev_ops = {
|
|
.ndo_open = rio_open,
|
|
.ndo_start_xmit = start_xmit,
|
|
.ndo_stop = rio_close,
|
|
.ndo_get_stats = get_stats,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
.ndo_set_multicast_list = set_multicast,
|
|
.ndo_do_ioctl = rio_ioctl,
|
|
.ndo_tx_timeout = rio_tx_timeout,
|
|
.ndo_change_mtu = change_mtu,
|
|
};
|
|
|
|
static int __devinit
|
|
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *dev;
|
|
struct netdev_private *np;
|
|
static int card_idx;
|
|
int chip_idx = ent->driver_data;
|
|
int err, irq;
|
|
long ioaddr;
|
|
static int version_printed;
|
|
void *ring_space;
|
|
dma_addr_t ring_dma;
|
|
|
|
if (!version_printed++)
|
|
printk ("%s", version);
|
|
|
|
err = pci_enable_device (pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
irq = pdev->irq;
|
|
err = pci_request_regions (pdev, "dl2k");
|
|
if (err)
|
|
goto err_out_disable;
|
|
|
|
pci_set_master (pdev);
|
|
dev = alloc_etherdev (sizeof (*np));
|
|
if (!dev) {
|
|
err = -ENOMEM;
|
|
goto err_out_res;
|
|
}
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
#ifdef MEM_MAPPING
|
|
ioaddr = pci_resource_start (pdev, 1);
|
|
ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
|
|
if (!ioaddr) {
|
|
err = -ENOMEM;
|
|
goto err_out_dev;
|
|
}
|
|
#else
|
|
ioaddr = pci_resource_start (pdev, 0);
|
|
#endif
|
|
dev->base_addr = ioaddr;
|
|
dev->irq = irq;
|
|
np = netdev_priv(dev);
|
|
np->chip_id = chip_idx;
|
|
np->pdev = pdev;
|
|
spin_lock_init (&np->tx_lock);
|
|
spin_lock_init (&np->rx_lock);
|
|
|
|
/* Parse manual configuration */
|
|
np->an_enable = 1;
|
|
np->tx_coalesce = 1;
|
|
if (card_idx < MAX_UNITS) {
|
|
if (media[card_idx] != NULL) {
|
|
np->an_enable = 0;
|
|
if (strcmp (media[card_idx], "auto") == 0 ||
|
|
strcmp (media[card_idx], "autosense") == 0 ||
|
|
strcmp (media[card_idx], "0") == 0 ) {
|
|
np->an_enable = 2;
|
|
} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "4") == 0) {
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
} else if (strcmp (media[card_idx], "100mbps_hd") == 0
|
|
|| strcmp (media[card_idx], "3") == 0) {
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "2") == 0) {
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
|
|
strcmp (media[card_idx], "1") == 0) {
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "6") == 0) {
|
|
np->speed=1000;
|
|
np->full_duplex=1;
|
|
} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
|
|
strcmp (media[card_idx], "5") == 0) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 0;
|
|
} else {
|
|
np->an_enable = 1;
|
|
}
|
|
}
|
|
if (jumbo[card_idx] != 0) {
|
|
np->jumbo = 1;
|
|
dev->mtu = MAX_JUMBO;
|
|
} else {
|
|
np->jumbo = 0;
|
|
if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
|
|
dev->mtu = mtu[card_idx];
|
|
}
|
|
np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
|
|
vlan[card_idx] : 0;
|
|
if (rx_coalesce > 0 && rx_timeout > 0) {
|
|
np->rx_coalesce = rx_coalesce;
|
|
np->rx_timeout = rx_timeout;
|
|
np->coalesce = 1;
|
|
}
|
|
np->tx_flow = (tx_flow == 0) ? 0 : 1;
|
|
np->rx_flow = (rx_flow == 0) ? 0 : 1;
|
|
|
|
if (tx_coalesce < 1)
|
|
tx_coalesce = 1;
|
|
else if (tx_coalesce > TX_RING_SIZE-1)
|
|
tx_coalesce = TX_RING_SIZE - 1;
|
|
}
|
|
dev->netdev_ops = &netdev_ops;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
SET_ETHTOOL_OPS(dev, ðtool_ops);
|
|
#if 0
|
|
dev->features = NETIF_F_IP_CSUM;
|
|
#endif
|
|
pci_set_drvdata (pdev, dev);
|
|
|
|
ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
|
|
if (!ring_space)
|
|
goto err_out_iounmap;
|
|
np->tx_ring = (struct netdev_desc *) ring_space;
|
|
np->tx_ring_dma = ring_dma;
|
|
|
|
ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
|
|
if (!ring_space)
|
|
goto err_out_unmap_tx;
|
|
np->rx_ring = (struct netdev_desc *) ring_space;
|
|
np->rx_ring_dma = ring_dma;
|
|
|
|
/* Parse eeprom data */
|
|
parse_eeprom (dev);
|
|
|
|
/* Find PHY address */
|
|
err = find_miiphy (dev);
|
|
if (err)
|
|
goto err_out_unmap_rx;
|
|
|
|
/* Fiber device? */
|
|
np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
|
|
np->link_status = 0;
|
|
/* Set media and reset PHY */
|
|
if (np->phy_media) {
|
|
/* default Auto-Negotiation for fiber deivices */
|
|
if (np->an_enable == 2) {
|
|
np->an_enable = 1;
|
|
}
|
|
mii_set_media_pcs (dev);
|
|
} else {
|
|
/* Auto-Negotiation is mandatory for 1000BASE-T,
|
|
IEEE 802.3ab Annex 28D page 14 */
|
|
if (np->speed == 1000)
|
|
np->an_enable = 1;
|
|
mii_set_media (dev);
|
|
}
|
|
|
|
err = register_netdev (dev);
|
|
if (err)
|
|
goto err_out_unmap_rx;
|
|
|
|
card_idx++;
|
|
|
|
printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
|
|
dev->name, np->name, dev->dev_addr, irq);
|
|
if (tx_coalesce > 1)
|
|
printk(KERN_INFO "tx_coalesce:\t%d packets\n",
|
|
tx_coalesce);
|
|
if (np->coalesce)
|
|
printk(KERN_INFO "rx_coalesce:\t%d packets\n"
|
|
KERN_INFO "rx_timeout: \t%d ns\n",
|
|
np->rx_coalesce, np->rx_timeout*640);
|
|
if (np->vlan)
|
|
printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
|
|
return 0;
|
|
|
|
err_out_unmap_rx:
|
|
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
|
|
err_out_unmap_tx:
|
|
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
|
|
err_out_iounmap:
|
|
#ifdef MEM_MAPPING
|
|
iounmap ((void *) ioaddr);
|
|
|
|
err_out_dev:
|
|
#endif
|
|
free_netdev (dev);
|
|
|
|
err_out_res:
|
|
pci_release_regions (pdev);
|
|
|
|
err_out_disable:
|
|
pci_disable_device (pdev);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
find_miiphy (struct net_device *dev)
|
|
{
|
|
int i, phy_found = 0;
|
|
struct netdev_private *np;
|
|
long ioaddr;
|
|
np = netdev_priv(dev);
|
|
ioaddr = dev->base_addr;
|
|
np->phy_addr = 1;
|
|
|
|
for (i = 31; i >= 0; i--) {
|
|
int mii_status = mii_read (dev, i, 1);
|
|
if (mii_status != 0xffff && mii_status != 0x0000) {
|
|
np->phy_addr = i;
|
|
phy_found++;
|
|
}
|
|
}
|
|
if (!phy_found) {
|
|
printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
parse_eeprom (struct net_device *dev)
|
|
{
|
|
int i, j;
|
|
long ioaddr = dev->base_addr;
|
|
u8 sromdata[256];
|
|
u8 *psib;
|
|
u32 crc;
|
|
PSROM_t psrom = (PSROM_t) sromdata;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
int cid, next;
|
|
|
|
#ifdef MEM_MAPPING
|
|
ioaddr = pci_resource_start (np->pdev, 0);
|
|
#endif
|
|
/* Read eeprom */
|
|
for (i = 0; i < 128; i++) {
|
|
((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
|
|
}
|
|
#ifdef MEM_MAPPING
|
|
ioaddr = dev->base_addr;
|
|
#endif
|
|
if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
|
|
/* Check CRC */
|
|
crc = ~ether_crc_le (256 - 4, sromdata);
|
|
if (psrom->crc != crc) {
|
|
printk (KERN_ERR "%s: EEPROM data CRC error.\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Set MAC address */
|
|
for (i = 0; i < 6; i++)
|
|
dev->dev_addr[i] = psrom->mac_addr[i];
|
|
|
|
if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
|
|
return 0;
|
|
}
|
|
|
|
/* Parse Software Information Block */
|
|
i = 0x30;
|
|
psib = (u8 *) sromdata;
|
|
do {
|
|
cid = psib[i++];
|
|
next = psib[i++];
|
|
if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
|
|
printk (KERN_ERR "Cell data error\n");
|
|
return -1;
|
|
}
|
|
switch (cid) {
|
|
case 0: /* Format version */
|
|
break;
|
|
case 1: /* End of cell */
|
|
return 0;
|
|
case 2: /* Duplex Polarity */
|
|
np->duplex_polarity = psib[i];
|
|
writeb (readb (ioaddr + PhyCtrl) | psib[i],
|
|
ioaddr + PhyCtrl);
|
|
break;
|
|
case 3: /* Wake Polarity */
|
|
np->wake_polarity = psib[i];
|
|
break;
|
|
case 9: /* Adapter description */
|
|
j = (next - i > 255) ? 255 : next - i;
|
|
memcpy (np->name, &(psib[i]), j);
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8: /* Reversed */
|
|
break;
|
|
default: /* Unknown cell */
|
|
return -1;
|
|
}
|
|
i = next;
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rio_open (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
int i;
|
|
u16 macctrl;
|
|
|
|
i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
|
|
if (i)
|
|
return i;
|
|
|
|
/* Reset all logic functions */
|
|
writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
|
|
ioaddr + ASICCtrl + 2);
|
|
mdelay(10);
|
|
|
|
/* DebugCtrl bit 4, 5, 9 must set */
|
|
writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
|
|
|
|
/* Jumbo frame */
|
|
if (np->jumbo != 0)
|
|
writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
|
|
|
|
alloc_list (dev);
|
|
|
|
/* Get station address */
|
|
for (i = 0; i < 6; i++)
|
|
writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
|
|
|
|
set_multicast (dev);
|
|
if (np->coalesce) {
|
|
writel (np->rx_coalesce | np->rx_timeout << 16,
|
|
ioaddr + RxDMAIntCtrl);
|
|
}
|
|
/* Set RIO to poll every N*320nsec. */
|
|
writeb (0x20, ioaddr + RxDMAPollPeriod);
|
|
writeb (0xff, ioaddr + TxDMAPollPeriod);
|
|
writeb (0x30, ioaddr + RxDMABurstThresh);
|
|
writeb (0x30, ioaddr + RxDMAUrgentThresh);
|
|
writel (0x0007ffff, ioaddr + RmonStatMask);
|
|
/* clear statistics */
|
|
clear_stats (dev);
|
|
|
|
/* VLAN supported */
|
|
if (np->vlan) {
|
|
/* priority field in RxDMAIntCtrl */
|
|
writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
|
|
ioaddr + RxDMAIntCtrl);
|
|
/* VLANId */
|
|
writew (np->vlan, ioaddr + VLANId);
|
|
/* Length/Type should be 0x8100 */
|
|
writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
|
|
/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
|
|
VLAN information tagged by TFC' VID, CFI fields. */
|
|
writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
|
|
ioaddr + MACCtrl);
|
|
}
|
|
|
|
init_timer (&np->timer);
|
|
np->timer.expires = jiffies + 1*HZ;
|
|
np->timer.data = (unsigned long) dev;
|
|
np->timer.function = &rio_timer;
|
|
add_timer (&np->timer);
|
|
|
|
/* Start Tx/Rx */
|
|
writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
|
|
ioaddr + MACCtrl);
|
|
|
|
macctrl = 0;
|
|
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
|
|
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
|
|
macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
|
|
macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
|
|
writew(macctrl, ioaddr + MACCtrl);
|
|
|
|
netif_start_queue (dev);
|
|
|
|
/* Enable default interrupts */
|
|
EnableInt ();
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rio_timer (unsigned long data)
|
|
{
|
|
struct net_device *dev = (struct net_device *)data;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
unsigned int entry;
|
|
int next_tick = 1*HZ;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&np->rx_lock, flags);
|
|
/* Recover rx ring exhausted error */
|
|
if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
|
|
printk(KERN_INFO "Try to recover rx ring exhausted...\n");
|
|
/* Re-allocate skbuffs to fill the descriptor ring */
|
|
for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
|
|
struct sk_buff *skb;
|
|
entry = np->old_rx % RX_RING_SIZE;
|
|
/* Dropped packets don't need to re-allocate */
|
|
if (np->rx_skbuff[entry] == NULL) {
|
|
skb = netdev_alloc_skb (dev, np->rx_buf_sz);
|
|
if (skb == NULL) {
|
|
np->rx_ring[entry].fraginfo = 0;
|
|
printk (KERN_INFO
|
|
"%s: Still unable to re-allocate Rx skbuff.#%d\n",
|
|
dev->name, entry);
|
|
break;
|
|
}
|
|
np->rx_skbuff[entry] = skb;
|
|
/* 16 byte align the IP header */
|
|
skb_reserve (skb, 2);
|
|
np->rx_ring[entry].fraginfo =
|
|
cpu_to_le64 (pci_map_single
|
|
(np->pdev, skb->data, np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE));
|
|
}
|
|
np->rx_ring[entry].fraginfo |=
|
|
cpu_to_le64((u64)np->rx_buf_sz << 48);
|
|
np->rx_ring[entry].status = 0;
|
|
} /* end for */
|
|
} /* end if */
|
|
spin_unlock_irqrestore (&np->rx_lock, flags);
|
|
np->timer.expires = jiffies + next_tick;
|
|
add_timer(&np->timer);
|
|
}
|
|
|
|
static void
|
|
rio_tx_timeout (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
|
|
printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
|
|
dev->name, readl (ioaddr + TxStatus));
|
|
rio_free_tx(dev, 0);
|
|
dev->if_port = 0;
|
|
dev->trans_start = jiffies; /* prevent tx timeout */
|
|
}
|
|
|
|
/* allocate and initialize Tx and Rx descriptors */
|
|
static void
|
|
alloc_list (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
np->cur_rx = np->cur_tx = 0;
|
|
np->old_rx = np->old_tx = 0;
|
|
np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
|
|
|
|
/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
np->tx_skbuff[i] = NULL;
|
|
np->tx_ring[i].status = cpu_to_le64 (TFDDone);
|
|
np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
|
|
((i+1)%TX_RING_SIZE) *
|
|
sizeof (struct netdev_desc));
|
|
}
|
|
|
|
/* Initialize Rx descriptors */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
|
|
((i + 1) % RX_RING_SIZE) *
|
|
sizeof (struct netdev_desc));
|
|
np->rx_ring[i].status = 0;
|
|
np->rx_ring[i].fraginfo = 0;
|
|
np->rx_skbuff[i] = NULL;
|
|
}
|
|
|
|
/* Allocate the rx buffers */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
/* Allocated fixed size of skbuff */
|
|
struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
|
|
np->rx_skbuff[i] = skb;
|
|
if (skb == NULL) {
|
|
printk (KERN_ERR
|
|
"%s: alloc_list: allocate Rx buffer error! ",
|
|
dev->name);
|
|
break;
|
|
}
|
|
skb_reserve (skb, 2); /* 16 byte align the IP header. */
|
|
/* Rubicon now supports 40 bits of addressing space. */
|
|
np->rx_ring[i].fraginfo =
|
|
cpu_to_le64 ( pci_map_single (
|
|
np->pdev, skb->data, np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE));
|
|
np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
|
|
}
|
|
|
|
/* Set RFDListPtr */
|
|
writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
|
|
writel (0, dev->base_addr + RFDListPtr1);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
start_xmit (struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct netdev_desc *txdesc;
|
|
unsigned entry;
|
|
u32 ioaddr;
|
|
u64 tfc_vlan_tag = 0;
|
|
|
|
if (np->link_status == 0) { /* Link Down */
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
ioaddr = dev->base_addr;
|
|
entry = np->cur_tx % TX_RING_SIZE;
|
|
np->tx_skbuff[entry] = skb;
|
|
txdesc = &np->tx_ring[entry];
|
|
|
|
#if 0
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
txdesc->status |=
|
|
cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
|
|
IPChecksumEnable);
|
|
}
|
|
#endif
|
|
if (np->vlan) {
|
|
tfc_vlan_tag = VLANTagInsert |
|
|
((u64)np->vlan << 32) |
|
|
((u64)skb->priority << 45);
|
|
}
|
|
txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
|
|
skb->len,
|
|
PCI_DMA_TODEVICE));
|
|
txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
|
|
|
|
/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
|
|
* Work around: Always use 1 descriptor in 10Mbps mode */
|
|
if (entry % np->tx_coalesce == 0 || np->speed == 10)
|
|
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
|
|
WordAlignDisable |
|
|
TxDMAIndicate |
|
|
(1 << FragCountShift));
|
|
else
|
|
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
|
|
WordAlignDisable |
|
|
(1 << FragCountShift));
|
|
|
|
/* TxDMAPollNow */
|
|
writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
|
|
/* Schedule ISR */
|
|
writel(10000, ioaddr + CountDown);
|
|
np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
|
|
if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
|
|
< TX_QUEUE_LEN - 1 && np->speed != 10) {
|
|
/* do nothing */
|
|
} else if (!netif_queue_stopped(dev)) {
|
|
netif_stop_queue (dev);
|
|
}
|
|
|
|
/* The first TFDListPtr */
|
|
if (readl (dev->base_addr + TFDListPtr0) == 0) {
|
|
writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
|
|
dev->base_addr + TFDListPtr0);
|
|
writel (0, dev->base_addr + TFDListPtr1);
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static irqreturn_t
|
|
rio_interrupt (int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct netdev_private *np;
|
|
unsigned int_status;
|
|
long ioaddr;
|
|
int cnt = max_intrloop;
|
|
int handled = 0;
|
|
|
|
ioaddr = dev->base_addr;
|
|
np = netdev_priv(dev);
|
|
while (1) {
|
|
int_status = readw (ioaddr + IntStatus);
|
|
writew (int_status, ioaddr + IntStatus);
|
|
int_status &= DEFAULT_INTR;
|
|
if (int_status == 0 || --cnt < 0)
|
|
break;
|
|
handled = 1;
|
|
/* Processing received packets */
|
|
if (int_status & RxDMAComplete)
|
|
receive_packet (dev);
|
|
/* TxDMAComplete interrupt */
|
|
if ((int_status & (TxDMAComplete|IntRequested))) {
|
|
int tx_status;
|
|
tx_status = readl (ioaddr + TxStatus);
|
|
if (tx_status & 0x01)
|
|
tx_error (dev, tx_status);
|
|
/* Free used tx skbuffs */
|
|
rio_free_tx (dev, 1);
|
|
}
|
|
|
|
/* Handle uncommon events */
|
|
if (int_status &
|
|
(HostError | LinkEvent | UpdateStats))
|
|
rio_error (dev, int_status);
|
|
}
|
|
if (np->cur_tx != np->old_tx)
|
|
writel (100, ioaddr + CountDown);
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
|
|
{
|
|
return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
|
|
}
|
|
|
|
static void
|
|
rio_free_tx (struct net_device *dev, int irq)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int entry = np->old_tx % TX_RING_SIZE;
|
|
int tx_use = 0;
|
|
unsigned long flag = 0;
|
|
|
|
if (irq)
|
|
spin_lock(&np->tx_lock);
|
|
else
|
|
spin_lock_irqsave(&np->tx_lock, flag);
|
|
|
|
/* Free used tx skbuffs */
|
|
while (entry != np->cur_tx) {
|
|
struct sk_buff *skb;
|
|
|
|
if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
|
|
break;
|
|
skb = np->tx_skbuff[entry];
|
|
pci_unmap_single (np->pdev,
|
|
desc_to_dma(&np->tx_ring[entry]),
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
if (irq)
|
|
dev_kfree_skb_irq (skb);
|
|
else
|
|
dev_kfree_skb (skb);
|
|
|
|
np->tx_skbuff[entry] = NULL;
|
|
entry = (entry + 1) % TX_RING_SIZE;
|
|
tx_use++;
|
|
}
|
|
if (irq)
|
|
spin_unlock(&np->tx_lock);
|
|
else
|
|
spin_unlock_irqrestore(&np->tx_lock, flag);
|
|
np->old_tx = entry;
|
|
|
|
/* If the ring is no longer full, clear tx_full and
|
|
call netif_wake_queue() */
|
|
|
|
if (netif_queue_stopped(dev) &&
|
|
((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
|
|
< TX_QUEUE_LEN - 1 || np->speed == 10)) {
|
|
netif_wake_queue (dev);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tx_error (struct net_device *dev, int tx_status)
|
|
{
|
|
struct netdev_private *np;
|
|
long ioaddr = dev->base_addr;
|
|
int frame_id;
|
|
int i;
|
|
|
|
np = netdev_priv(dev);
|
|
|
|
frame_id = (tx_status & 0xffff0000);
|
|
printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
|
|
dev->name, tx_status, frame_id);
|
|
np->stats.tx_errors++;
|
|
/* Ttransmit Underrun */
|
|
if (tx_status & 0x10) {
|
|
np->stats.tx_fifo_errors++;
|
|
writew (readw (ioaddr + TxStartThresh) + 0x10,
|
|
ioaddr + TxStartThresh);
|
|
/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
|
|
writew (TxReset | DMAReset | FIFOReset | NetworkReset,
|
|
ioaddr + ASICCtrl + 2);
|
|
/* Wait for ResetBusy bit clear */
|
|
for (i = 50; i > 0; i--) {
|
|
if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
|
|
break;
|
|
mdelay (1);
|
|
}
|
|
rio_free_tx (dev, 1);
|
|
/* Reset TFDListPtr */
|
|
writel (np->tx_ring_dma +
|
|
np->old_tx * sizeof (struct netdev_desc),
|
|
dev->base_addr + TFDListPtr0);
|
|
writel (0, dev->base_addr + TFDListPtr1);
|
|
|
|
/* Let TxStartThresh stay default value */
|
|
}
|
|
/* Late Collision */
|
|
if (tx_status & 0x04) {
|
|
np->stats.tx_fifo_errors++;
|
|
/* TxReset and clear FIFO */
|
|
writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
|
|
/* Wait reset done */
|
|
for (i = 50; i > 0; i--) {
|
|
if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
|
|
break;
|
|
mdelay (1);
|
|
}
|
|
/* Let TxStartThresh stay default value */
|
|
}
|
|
/* Maximum Collisions */
|
|
#ifdef ETHER_STATS
|
|
if (tx_status & 0x08)
|
|
np->stats.collisions16++;
|
|
#else
|
|
if (tx_status & 0x08)
|
|
np->stats.collisions++;
|
|
#endif
|
|
/* Restart the Tx */
|
|
writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
|
|
}
|
|
|
|
static int
|
|
receive_packet (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int entry = np->cur_rx % RX_RING_SIZE;
|
|
int cnt = 30;
|
|
|
|
/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
|
|
while (1) {
|
|
struct netdev_desc *desc = &np->rx_ring[entry];
|
|
int pkt_len;
|
|
u64 frame_status;
|
|
|
|
if (!(desc->status & cpu_to_le64(RFDDone)) ||
|
|
!(desc->status & cpu_to_le64(FrameStart)) ||
|
|
!(desc->status & cpu_to_le64(FrameEnd)))
|
|
break;
|
|
|
|
/* Chip omits the CRC. */
|
|
frame_status = le64_to_cpu(desc->status);
|
|
pkt_len = frame_status & 0xffff;
|
|
if (--cnt < 0)
|
|
break;
|
|
/* Update rx error statistics, drop packet. */
|
|
if (frame_status & RFS_Errors) {
|
|
np->stats.rx_errors++;
|
|
if (frame_status & (RxRuntFrame | RxLengthError))
|
|
np->stats.rx_length_errors++;
|
|
if (frame_status & RxFCSError)
|
|
np->stats.rx_crc_errors++;
|
|
if (frame_status & RxAlignmentError && np->speed != 1000)
|
|
np->stats.rx_frame_errors++;
|
|
if (frame_status & RxFIFOOverrun)
|
|
np->stats.rx_fifo_errors++;
|
|
} else {
|
|
struct sk_buff *skb;
|
|
|
|
/* Small skbuffs for short packets */
|
|
if (pkt_len > copy_thresh) {
|
|
pci_unmap_single (np->pdev,
|
|
desc_to_dma(desc),
|
|
np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
skb_put (skb = np->rx_skbuff[entry], pkt_len);
|
|
np->rx_skbuff[entry] = NULL;
|
|
} else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
|
|
pci_dma_sync_single_for_cpu(np->pdev,
|
|
desc_to_dma(desc),
|
|
np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
/* 16 byte align the IP header */
|
|
skb_reserve (skb, 2);
|
|
skb_copy_to_linear_data (skb,
|
|
np->rx_skbuff[entry]->data,
|
|
pkt_len);
|
|
skb_put (skb, pkt_len);
|
|
pci_dma_sync_single_for_device(np->pdev,
|
|
desc_to_dma(desc),
|
|
np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
}
|
|
skb->protocol = eth_type_trans (skb, dev);
|
|
#if 0
|
|
/* Checksum done by hw, but csum value unavailable. */
|
|
if (np->pdev->pci_rev_id >= 0x0c &&
|
|
!(frame_status & (TCPError | UDPError | IPError))) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
#endif
|
|
netif_rx (skb);
|
|
}
|
|
entry = (entry + 1) % RX_RING_SIZE;
|
|
}
|
|
spin_lock(&np->rx_lock);
|
|
np->cur_rx = entry;
|
|
/* Re-allocate skbuffs to fill the descriptor ring */
|
|
entry = np->old_rx;
|
|
while (entry != np->cur_rx) {
|
|
struct sk_buff *skb;
|
|
/* Dropped packets don't need to re-allocate */
|
|
if (np->rx_skbuff[entry] == NULL) {
|
|
skb = netdev_alloc_skb(dev, np->rx_buf_sz);
|
|
if (skb == NULL) {
|
|
np->rx_ring[entry].fraginfo = 0;
|
|
printk (KERN_INFO
|
|
"%s: receive_packet: "
|
|
"Unable to re-allocate Rx skbuff.#%d\n",
|
|
dev->name, entry);
|
|
break;
|
|
}
|
|
np->rx_skbuff[entry] = skb;
|
|
/* 16 byte align the IP header */
|
|
skb_reserve (skb, 2);
|
|
np->rx_ring[entry].fraginfo =
|
|
cpu_to_le64 (pci_map_single
|
|
(np->pdev, skb->data, np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE));
|
|
}
|
|
np->rx_ring[entry].fraginfo |=
|
|
cpu_to_le64((u64)np->rx_buf_sz << 48);
|
|
np->rx_ring[entry].status = 0;
|
|
entry = (entry + 1) % RX_RING_SIZE;
|
|
}
|
|
np->old_rx = entry;
|
|
spin_unlock(&np->rx_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rio_error (struct net_device *dev, int int_status)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u16 macctrl;
|
|
|
|
/* Link change event */
|
|
if (int_status & LinkEvent) {
|
|
if (mii_wait_link (dev, 10) == 0) {
|
|
printk (KERN_INFO "%s: Link up\n", dev->name);
|
|
if (np->phy_media)
|
|
mii_get_media_pcs (dev);
|
|
else
|
|
mii_get_media (dev);
|
|
if (np->speed == 1000)
|
|
np->tx_coalesce = tx_coalesce;
|
|
else
|
|
np->tx_coalesce = 1;
|
|
macctrl = 0;
|
|
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
|
|
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
|
|
macctrl |= (np->tx_flow) ?
|
|
TxFlowControlEnable : 0;
|
|
macctrl |= (np->rx_flow) ?
|
|
RxFlowControlEnable : 0;
|
|
writew(macctrl, ioaddr + MACCtrl);
|
|
np->link_status = 1;
|
|
netif_carrier_on(dev);
|
|
} else {
|
|
printk (KERN_INFO "%s: Link off\n", dev->name);
|
|
np->link_status = 0;
|
|
netif_carrier_off(dev);
|
|
}
|
|
}
|
|
|
|
/* UpdateStats statistics registers */
|
|
if (int_status & UpdateStats) {
|
|
get_stats (dev);
|
|
}
|
|
|
|
/* PCI Error, a catastronphic error related to the bus interface
|
|
occurs, set GlobalReset and HostReset to reset. */
|
|
if (int_status & HostError) {
|
|
printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
|
|
dev->name, int_status);
|
|
writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
|
|
mdelay (500);
|
|
}
|
|
}
|
|
|
|
static struct net_device_stats *
|
|
get_stats (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
#ifdef MEM_MAPPING
|
|
int i;
|
|
#endif
|
|
unsigned int stat_reg;
|
|
|
|
/* All statistics registers need to be acknowledged,
|
|
else statistic overflow could cause problems */
|
|
|
|
np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
|
|
np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
|
|
np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
|
|
np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
|
|
|
|
np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
|
|
np->stats.collisions += readl (ioaddr + SingleColFrames)
|
|
+ readl (ioaddr + MultiColFrames);
|
|
|
|
/* detailed tx errors */
|
|
stat_reg = readw (ioaddr + FramesAbortXSColls);
|
|
np->stats.tx_aborted_errors += stat_reg;
|
|
np->stats.tx_errors += stat_reg;
|
|
|
|
stat_reg = readw (ioaddr + CarrierSenseErrors);
|
|
np->stats.tx_carrier_errors += stat_reg;
|
|
np->stats.tx_errors += stat_reg;
|
|
|
|
/* Clear all other statistic register. */
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readw (ioaddr + BcstFramesRcvdOk);
|
|
readw (ioaddr + MacControlFramesRcvd);
|
|
readw (ioaddr + FrameTooLongErrors);
|
|
readw (ioaddr + InRangeLengthErrors);
|
|
readw (ioaddr + FramesCheckSeqErrors);
|
|
readw (ioaddr + FramesLostRxErrors);
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readl (ioaddr + BcstOctetXmtOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readl (ioaddr + FramesWDeferredXmt);
|
|
readl (ioaddr + LateCollisions);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readw (ioaddr + MacControlFramesXmtd);
|
|
readw (ioaddr + FramesWEXDeferal);
|
|
|
|
#ifdef MEM_MAPPING
|
|
for (i = 0x100; i <= 0x150; i += 4)
|
|
readl (ioaddr + i);
|
|
#endif
|
|
readw (ioaddr + TxJumboFrames);
|
|
readw (ioaddr + RxJumboFrames);
|
|
readw (ioaddr + TCPCheckSumErrors);
|
|
readw (ioaddr + UDPCheckSumErrors);
|
|
readw (ioaddr + IPCheckSumErrors);
|
|
return &np->stats;
|
|
}
|
|
|
|
static int
|
|
clear_stats (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
#ifdef MEM_MAPPING
|
|
int i;
|
|
#endif
|
|
|
|
/* All statistics registers need to be acknowledged,
|
|
else statistic overflow could cause problems */
|
|
readl (ioaddr + FramesRcvOk);
|
|
readl (ioaddr + FramesXmtOk);
|
|
readl (ioaddr + OctetRcvOk);
|
|
readl (ioaddr + OctetXmtOk);
|
|
|
|
readl (ioaddr + McstFramesRcvdOk);
|
|
readl (ioaddr + SingleColFrames);
|
|
readl (ioaddr + MultiColFrames);
|
|
readl (ioaddr + LateCollisions);
|
|
/* detailed rx errors */
|
|
readw (ioaddr + FrameTooLongErrors);
|
|
readw (ioaddr + InRangeLengthErrors);
|
|
readw (ioaddr + FramesCheckSeqErrors);
|
|
readw (ioaddr + FramesLostRxErrors);
|
|
|
|
/* detailed tx errors */
|
|
readw (ioaddr + FramesAbortXSColls);
|
|
readw (ioaddr + CarrierSenseErrors);
|
|
|
|
/* Clear all other statistic register. */
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readw (ioaddr + BcstFramesRcvdOk);
|
|
readw (ioaddr + MacControlFramesRcvd);
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readl (ioaddr + BcstOctetXmtOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readl (ioaddr + FramesWDeferredXmt);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readw (ioaddr + MacControlFramesXmtd);
|
|
readw (ioaddr + FramesWEXDeferal);
|
|
#ifdef MEM_MAPPING
|
|
for (i = 0x100; i <= 0x150; i += 4)
|
|
readl (ioaddr + i);
|
|
#endif
|
|
readw (ioaddr + TxJumboFrames);
|
|
readw (ioaddr + RxJumboFrames);
|
|
readw (ioaddr + TCPCheckSumErrors);
|
|
readw (ioaddr + UDPCheckSumErrors);
|
|
readw (ioaddr + IPCheckSumErrors);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
change_mtu (struct net_device *dev, int new_mtu)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int max = (np->jumbo) ? MAX_JUMBO : 1536;
|
|
|
|
if ((new_mtu < 68) || (new_mtu > max)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev->mtu = new_mtu;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
set_multicast (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
u32 hash_table[2];
|
|
u16 rx_mode = 0;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
hash_table[0] = hash_table[1] = 0;
|
|
/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
|
|
hash_table[1] |= 0x02000000;
|
|
if (dev->flags & IFF_PROMISC) {
|
|
/* Receive all frames promiscuously. */
|
|
rx_mode = ReceiveAllFrames;
|
|
} else if ((dev->flags & IFF_ALLMULTI) ||
|
|
(dev->mc_count > multicast_filter_limit)) {
|
|
/* Receive broadcast and multicast frames */
|
|
rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
|
|
} else if (dev->mc_count > 0) {
|
|
int i;
|
|
struct dev_mc_list *mclist;
|
|
/* Receive broadcast frames and multicast frames filtering
|
|
by Hashtable */
|
|
rx_mode =
|
|
ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
|
|
for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist=mclist->next)
|
|
{
|
|
int bit, index = 0;
|
|
int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
|
|
/* The inverted high significant 6 bits of CRC are
|
|
used as an index to hashtable */
|
|
for (bit = 0; bit < 6; bit++)
|
|
if (crc & (1 << (31 - bit)))
|
|
index |= (1 << bit);
|
|
hash_table[index / 32] |= (1 << (index % 32));
|
|
}
|
|
} else {
|
|
rx_mode = ReceiveBroadcast | ReceiveUnicast;
|
|
}
|
|
if (np->vlan) {
|
|
/* ReceiveVLANMatch field in ReceiveMode */
|
|
rx_mode |= ReceiveVLANMatch;
|
|
}
|
|
|
|
writel (hash_table[0], ioaddr + HashTable0);
|
|
writel (hash_table[1], ioaddr + HashTable1);
|
|
writew (rx_mode, ioaddr + ReceiveMode);
|
|
}
|
|
|
|
static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
strcpy(info->driver, "dl2k");
|
|
strcpy(info->version, DRV_VERSION);
|
|
strcpy(info->bus_info, pci_name(np->pdev));
|
|
}
|
|
|
|
static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
if (np->phy_media) {
|
|
/* fiber device */
|
|
cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
|
|
cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
|
|
cmd->port = PORT_FIBRE;
|
|
cmd->transceiver = XCVR_INTERNAL;
|
|
} else {
|
|
/* copper device */
|
|
cmd->supported = SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
|
|
| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_Autoneg | SUPPORTED_MII;
|
|
cmd->advertising = ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
|
|
ADVERTISED_Autoneg | ADVERTISED_MII;
|
|
cmd->port = PORT_MII;
|
|
cmd->transceiver = XCVR_INTERNAL;
|
|
}
|
|
if ( np->link_status ) {
|
|
cmd->speed = np->speed;
|
|
cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
|
|
} else {
|
|
cmd->speed = -1;
|
|
cmd->duplex = -1;
|
|
}
|
|
if ( np->an_enable)
|
|
cmd->autoneg = AUTONEG_ENABLE;
|
|
else
|
|
cmd->autoneg = AUTONEG_DISABLE;
|
|
|
|
cmd->phy_address = np->phy_addr;
|
|
return 0;
|
|
}
|
|
|
|
static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
netif_carrier_off(dev);
|
|
if (cmd->autoneg == AUTONEG_ENABLE) {
|
|
if (np->an_enable)
|
|
return 0;
|
|
else {
|
|
np->an_enable = 1;
|
|
mii_set_media(dev);
|
|
return 0;
|
|
}
|
|
} else {
|
|
np->an_enable = 0;
|
|
if (np->speed == 1000) {
|
|
cmd->speed = SPEED_100;
|
|
cmd->duplex = DUPLEX_FULL;
|
|
printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
|
|
}
|
|
switch(cmd->speed + cmd->duplex) {
|
|
|
|
case SPEED_10 + DUPLEX_HALF:
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
break;
|
|
|
|
case SPEED_10 + DUPLEX_FULL:
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
break;
|
|
case SPEED_100 + DUPLEX_HALF:
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
break;
|
|
case SPEED_100 + DUPLEX_FULL:
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
break;
|
|
case SPEED_1000 + DUPLEX_HALF:/* not supported */
|
|
case SPEED_1000 + DUPLEX_FULL:/* not supported */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
mii_set_media(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32 rio_get_link(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
return np->link_status;
|
|
}
|
|
|
|
static const struct ethtool_ops ethtool_ops = {
|
|
.get_drvinfo = rio_get_drvinfo,
|
|
.get_settings = rio_get_settings,
|
|
.set_settings = rio_set_settings,
|
|
.get_link = rio_get_link,
|
|
};
|
|
|
|
static int
|
|
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
int phy_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
|
|
|
|
struct netdev_desc *desc;
|
|
int i;
|
|
|
|
phy_addr = np->phy_addr;
|
|
switch (cmd) {
|
|
case SIOCDEVPRIVATE:
|
|
break;
|
|
|
|
case SIOCDEVPRIVATE + 1:
|
|
miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
|
|
break;
|
|
case SIOCDEVPRIVATE + 2:
|
|
mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
|
|
break;
|
|
case SIOCDEVPRIVATE + 3:
|
|
break;
|
|
case SIOCDEVPRIVATE + 4:
|
|
break;
|
|
case SIOCDEVPRIVATE + 5:
|
|
netif_stop_queue (dev);
|
|
break;
|
|
case SIOCDEVPRIVATE + 6:
|
|
netif_wake_queue (dev);
|
|
break;
|
|
case SIOCDEVPRIVATE + 7:
|
|
printk
|
|
("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
|
|
netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
|
|
np->old_rx);
|
|
break;
|
|
case SIOCDEVPRIVATE + 8:
|
|
printk("TX ring:\n");
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
desc = &np->tx_ring[i];
|
|
printk
|
|
("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
|
|
i,
|
|
(u32) (np->tx_ring_dma + i * sizeof (*desc)),
|
|
(u32)le64_to_cpu(desc->next_desc),
|
|
(u32)le64_to_cpu(desc->status),
|
|
(u32)(le64_to_cpu(desc->fraginfo) >> 32),
|
|
(u32)le64_to_cpu(desc->fraginfo));
|
|
printk ("\n");
|
|
}
|
|
printk ("\n");
|
|
break;
|
|
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define EEP_READ 0x0200
|
|
#define EEP_BUSY 0x8000
|
|
/* Read the EEPROM word */
|
|
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
|
|
static int
|
|
read_eeprom (long ioaddr, int eep_addr)
|
|
{
|
|
int i = 1000;
|
|
outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
|
|
while (i-- > 0) {
|
|
if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
|
|
return inw (ioaddr + EepromData);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
enum phy_ctrl_bits {
|
|
MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
|
|
MII_DUPLEX = 0x08,
|
|
};
|
|
|
|
#define mii_delay() readb(ioaddr)
|
|
static void
|
|
mii_sendbit (struct net_device *dev, u32 data)
|
|
{
|
|
long ioaddr = dev->base_addr + PhyCtrl;
|
|
data = (data) ? MII_DATA1 : 0;
|
|
data |= MII_WRITE;
|
|
data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
|
|
writeb (data, ioaddr);
|
|
mii_delay ();
|
|
writeb (data | MII_CLK, ioaddr);
|
|
mii_delay ();
|
|
}
|
|
|
|
static int
|
|
mii_getbit (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr + PhyCtrl;
|
|
u8 data;
|
|
|
|
data = (readb (ioaddr) & 0xf8) | MII_READ;
|
|
writeb (data, ioaddr);
|
|
mii_delay ();
|
|
writeb (data | MII_CLK, ioaddr);
|
|
mii_delay ();
|
|
return ((readb (ioaddr) >> 1) & 1);
|
|
}
|
|
|
|
static void
|
|
mii_send_bits (struct net_device *dev, u32 data, int len)
|
|
{
|
|
int i;
|
|
for (i = len - 1; i >= 0; i--) {
|
|
mii_sendbit (dev, data & (1 << i));
|
|
}
|
|
}
|
|
|
|
static int
|
|
mii_read (struct net_device *dev, int phy_addr, int reg_num)
|
|
{
|
|
u32 cmd;
|
|
int i;
|
|
u32 retval = 0;
|
|
|
|
/* Preamble */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP = 0110'b for read operation */
|
|
cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
|
|
mii_send_bits (dev, cmd, 14);
|
|
/* Turnaround */
|
|
if (mii_getbit (dev))
|
|
goto err_out;
|
|
/* Read data */
|
|
for (i = 0; i < 16; i++) {
|
|
retval |= mii_getbit (dev);
|
|
retval <<= 1;
|
|
}
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
return (retval >> 1) & 0xffff;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
static int
|
|
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
|
|
{
|
|
u32 cmd;
|
|
|
|
/* Preamble */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
|
|
cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
|
|
mii_send_bits (dev, cmd, 32);
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
return 0;
|
|
}
|
|
static int
|
|
mii_wait_link (struct net_device *dev, int wait)
|
|
{
|
|
__u16 bmsr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
do {
|
|
bmsr = mii_read (dev, phy_addr, MII_BMSR);
|
|
if (bmsr & MII_BMSR_LINK_STATUS)
|
|
return 0;
|
|
mdelay (1);
|
|
} while (--wait > 0);
|
|
return -1;
|
|
}
|
|
static int
|
|
mii_get_media (struct net_device *dev)
|
|
{
|
|
__u16 negotiate;
|
|
__u16 bmsr;
|
|
__u16 mscr;
|
|
__u16 mssr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
bmsr = mii_read (dev, phy_addr, MII_BMSR);
|
|
if (np->an_enable) {
|
|
if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
|
|
/* Auto-Negotiation not completed */
|
|
return -1;
|
|
}
|
|
negotiate = mii_read (dev, phy_addr, MII_ANAR) &
|
|
mii_read (dev, phy_addr, MII_ANLPAR);
|
|
mscr = mii_read (dev, phy_addr, MII_MSCR);
|
|
mssr = mii_read (dev, phy_addr, MII_MSSR);
|
|
if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
|
|
} else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
|
|
} else if (negotiate & MII_ANAR_100BX_FD) {
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
|
|
} else if (negotiate & MII_ANAR_100BX_HD) {
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
|
|
} else if (negotiate & MII_ANAR_10BT_FD) {
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
|
|
} else if (negotiate & MII_ANAR_10BT_HD) {
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
|
|
}
|
|
if (negotiate & MII_ANAR_PAUSE) {
|
|
np->tx_flow &= 1;
|
|
np->rx_flow &= 1;
|
|
} else if (negotiate & MII_ANAR_ASYMMETRIC) {
|
|
np->tx_flow = 0;
|
|
np->rx_flow &= 1;
|
|
}
|
|
/* else tx_flow, rx_flow = user select */
|
|
} else {
|
|
__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
|
|
switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
|
|
case MII_BMCR_SPEED_1000:
|
|
printk (KERN_INFO "Operating at 1000 Mbps, ");
|
|
break;
|
|
case MII_BMCR_SPEED_100:
|
|
printk (KERN_INFO "Operating at 100 Mbps, ");
|
|
break;
|
|
case 0:
|
|
printk (KERN_INFO "Operating at 10 Mbps, ");
|
|
}
|
|
if (bmcr & MII_BMCR_DUPLEX_MODE) {
|
|
printk ("Full duplex\n");
|
|
} else {
|
|
printk ("Half duplex\n");
|
|
}
|
|
}
|
|
if (np->tx_flow)
|
|
printk(KERN_INFO "Enable Tx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Tx Flow Control\n");
|
|
if (np->rx_flow)
|
|
printk(KERN_INFO "Enable Rx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Rx Flow Control\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_set_media (struct net_device *dev)
|
|
{
|
|
__u16 pscr;
|
|
__u16 bmcr;
|
|
__u16 bmsr;
|
|
__u16 anar;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
/* Does user set speed? */
|
|
if (np->an_enable) {
|
|
/* Advertise capabilities */
|
|
bmsr = mii_read (dev, phy_addr, MII_BMSR);
|
|
anar = mii_read (dev, phy_addr, MII_ANAR) &
|
|
~MII_ANAR_100BX_FD &
|
|
~MII_ANAR_100BX_HD &
|
|
~MII_ANAR_100BT4 &
|
|
~MII_ANAR_10BT_FD &
|
|
~MII_ANAR_10BT_HD;
|
|
if (bmsr & MII_BMSR_100BX_FD)
|
|
anar |= MII_ANAR_100BX_FD;
|
|
if (bmsr & MII_BMSR_100BX_HD)
|
|
anar |= MII_ANAR_100BX_HD;
|
|
if (bmsr & MII_BMSR_100BT4)
|
|
anar |= MII_ANAR_100BT4;
|
|
if (bmsr & MII_BMSR_10BT_FD)
|
|
anar |= MII_ANAR_10BT_FD;
|
|
if (bmsr & MII_BMSR_10BT_HD)
|
|
anar |= MII_ANAR_10BT_HD;
|
|
anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
|
|
mii_write (dev, phy_addr, MII_ANAR, anar);
|
|
|
|
/* Enable Auto crossover */
|
|
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
|
|
pscr |= 3 << 5; /* 11'b */
|
|
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
|
|
|
|
/* Soft reset PHY */
|
|
mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
|
|
bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(1);
|
|
} else {
|
|
/* Force speed setting */
|
|
/* 1) Disable Auto crossover */
|
|
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
|
|
pscr &= ~(3 << 5);
|
|
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
|
|
|
|
/* 2) PHY Reset */
|
|
bmcr = mii_read (dev, phy_addr, MII_BMCR);
|
|
bmcr |= MII_BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
|
|
/* 3) Power Down */
|
|
bmcr = 0x1940; /* must be 0x1940 */
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay (100); /* wait a certain time */
|
|
|
|
/* 4) Advertise nothing */
|
|
mii_write (dev, phy_addr, MII_ANAR, 0);
|
|
|
|
/* 5) Set media and Power Up */
|
|
bmcr = MII_BMCR_POWER_DOWN;
|
|
if (np->speed == 100) {
|
|
bmcr |= MII_BMCR_SPEED_100;
|
|
printk (KERN_INFO "Manual 100 Mbps, ");
|
|
} else if (np->speed == 10) {
|
|
printk (KERN_INFO "Manual 10 Mbps, ");
|
|
}
|
|
if (np->full_duplex) {
|
|
bmcr |= MII_BMCR_DUPLEX_MODE;
|
|
printk ("Full duplex\n");
|
|
} else {
|
|
printk ("Half duplex\n");
|
|
}
|
|
#if 0
|
|
/* Set 1000BaseT Master/Slave setting */
|
|
mscr = mii_read (dev, phy_addr, MII_MSCR);
|
|
mscr |= MII_MSCR_CFG_ENABLE;
|
|
mscr &= ~MII_MSCR_CFG_VALUE = 0;
|
|
#endif
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_get_media_pcs (struct net_device *dev)
|
|
{
|
|
__u16 negotiate;
|
|
__u16 bmsr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
bmsr = mii_read (dev, phy_addr, PCS_BMSR);
|
|
if (np->an_enable) {
|
|
if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
|
|
/* Auto-Negotiation not completed */
|
|
return -1;
|
|
}
|
|
negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
|
|
mii_read (dev, phy_addr, PCS_ANLPAR);
|
|
np->speed = 1000;
|
|
if (negotiate & PCS_ANAR_FULL_DUPLEX) {
|
|
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
|
|
np->full_duplex = 1;
|
|
} else {
|
|
printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
|
|
np->full_duplex = 0;
|
|
}
|
|
if (negotiate & PCS_ANAR_PAUSE) {
|
|
np->tx_flow &= 1;
|
|
np->rx_flow &= 1;
|
|
} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
|
|
np->tx_flow = 0;
|
|
np->rx_flow &= 1;
|
|
}
|
|
/* else tx_flow, rx_flow = user select */
|
|
} else {
|
|
__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
|
|
printk (KERN_INFO "Operating at 1000 Mbps, ");
|
|
if (bmcr & MII_BMCR_DUPLEX_MODE) {
|
|
printk ("Full duplex\n");
|
|
} else {
|
|
printk ("Half duplex\n");
|
|
}
|
|
}
|
|
if (np->tx_flow)
|
|
printk(KERN_INFO "Enable Tx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Tx Flow Control\n");
|
|
if (np->rx_flow)
|
|
printk(KERN_INFO "Enable Rx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Rx Flow Control\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_set_media_pcs (struct net_device *dev)
|
|
{
|
|
__u16 bmcr;
|
|
__u16 esr;
|
|
__u16 anar;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
/* Auto-Negotiation? */
|
|
if (np->an_enable) {
|
|
/* Advertise capabilities */
|
|
esr = mii_read (dev, phy_addr, PCS_ESR);
|
|
anar = mii_read (dev, phy_addr, MII_ANAR) &
|
|
~PCS_ANAR_HALF_DUPLEX &
|
|
~PCS_ANAR_FULL_DUPLEX;
|
|
if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
|
|
anar |= PCS_ANAR_HALF_DUPLEX;
|
|
if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
|
|
anar |= PCS_ANAR_FULL_DUPLEX;
|
|
anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
|
|
mii_write (dev, phy_addr, MII_ANAR, anar);
|
|
|
|
/* Soft reset PHY */
|
|
mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
|
|
bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
|
|
MII_BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(1);
|
|
} else {
|
|
/* Force speed setting */
|
|
/* PHY Reset */
|
|
bmcr = MII_BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(10);
|
|
if (np->full_duplex) {
|
|
bmcr = MII_BMCR_DUPLEX_MODE;
|
|
printk (KERN_INFO "Manual full duplex\n");
|
|
} else {
|
|
bmcr = 0;
|
|
printk (KERN_INFO "Manual half duplex\n");
|
|
}
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(10);
|
|
|
|
/* Advertise nothing */
|
|
mii_write (dev, phy_addr, MII_ANAR, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
rio_close (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
netif_stop_queue (dev);
|
|
|
|
/* Disable interrupts */
|
|
writew (0, ioaddr + IntEnable);
|
|
|
|
/* Stop Tx and Rx logics */
|
|
writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
|
|
|
|
free_irq (dev->irq, dev);
|
|
del_timer_sync (&np->timer);
|
|
|
|
/* Free all the skbuffs in the queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].status = 0;
|
|
np->rx_ring[i].fraginfo = 0;
|
|
skb = np->rx_skbuff[i];
|
|
if (skb) {
|
|
pci_unmap_single(np->pdev,
|
|
desc_to_dma(&np->rx_ring[i]),
|
|
skb->len, PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb (skb);
|
|
np->rx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
skb = np->tx_skbuff[i];
|
|
if (skb) {
|
|
pci_unmap_single(np->pdev,
|
|
desc_to_dma(&np->tx_ring[i]),
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
dev_kfree_skb (skb);
|
|
np->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __devexit
|
|
rio_remove1 (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata (pdev);
|
|
|
|
if (dev) {
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
unregister_netdev (dev);
|
|
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
|
|
np->rx_ring_dma);
|
|
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
|
|
np->tx_ring_dma);
|
|
#ifdef MEM_MAPPING
|
|
iounmap ((char *) (dev->base_addr));
|
|
#endif
|
|
free_netdev (dev);
|
|
pci_release_regions (pdev);
|
|
pci_disable_device (pdev);
|
|
}
|
|
pci_set_drvdata (pdev, NULL);
|
|
}
|
|
|
|
static struct pci_driver rio_driver = {
|
|
.name = "dl2k",
|
|
.id_table = rio_pci_tbl,
|
|
.probe = rio_probe1,
|
|
.remove = __devexit_p(rio_remove1),
|
|
};
|
|
|
|
static int __init
|
|
rio_init (void)
|
|
{
|
|
return pci_register_driver(&rio_driver);
|
|
}
|
|
|
|
static void __exit
|
|
rio_exit (void)
|
|
{
|
|
pci_unregister_driver (&rio_driver);
|
|
}
|
|
|
|
module_init (rio_init);
|
|
module_exit (rio_exit);
|
|
|
|
/*
|
|
|
|
Compile command:
|
|
|
|
gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
|
|
|
|
Read Documentation/networking/dl2k.txt for details.
|
|
|
|
*/
|
|
|