mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 10:03:24 +00:00
5467fb0255
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
636 lines
17 KiB
C
636 lines
17 KiB
C
/*
|
|
* cafe_nand.c
|
|
*
|
|
* Copyright © 2006 Red Hat, Inc.
|
|
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
|
|
*/
|
|
|
|
//#define DEBUG
|
|
|
|
#include <linux/device.h>
|
|
#undef DEBUG
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <asm/io.h>
|
|
|
|
#define CAFE_NAND_CTRL1 0x00
|
|
#define CAFE_NAND_CTRL2 0x04
|
|
#define CAFE_NAND_CTRL3 0x08
|
|
#define CAFE_NAND_STATUS 0x0c
|
|
#define CAFE_NAND_IRQ 0x10
|
|
#define CAFE_NAND_IRQ_MASK 0x14
|
|
#define CAFE_NAND_DATA_LEN 0x18
|
|
#define CAFE_NAND_ADDR1 0x1c
|
|
#define CAFE_NAND_ADDR2 0x20
|
|
#define CAFE_NAND_TIMING1 0x24
|
|
#define CAFE_NAND_TIMING2 0x28
|
|
#define CAFE_NAND_TIMING3 0x2c
|
|
#define CAFE_NAND_NONMEM 0x30
|
|
#define CAFE_NAND_DMA_CTRL 0x40
|
|
#define CAFE_NAND_DMA_ADDR0 0x44
|
|
#define CAFE_NAND_DMA_ADDR1 0x48
|
|
#define CAFE_NAND_READ_DATA 0x1000
|
|
#define CAFE_NAND_WRITE_DATA 0x2000
|
|
|
|
struct cafe_priv {
|
|
struct nand_chip nand;
|
|
struct pci_dev *pdev;
|
|
void __iomem *mmio;
|
|
uint32_t ctl1;
|
|
uint32_t ctl2;
|
|
int datalen;
|
|
int nr_data;
|
|
int data_pos;
|
|
int page_addr;
|
|
dma_addr_t dmaaddr;
|
|
unsigned char *dmabuf;
|
|
|
|
};
|
|
|
|
static int usedma = 1;
|
|
module_param(usedma, int, 0644);
|
|
|
|
static int cafe_device_ready(struct mtd_info *mtd)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);
|
|
|
|
uint32_t irqs = readl(cafe->mmio + 0x10);
|
|
writel(irqs, cafe->mmio+0x10);
|
|
dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
|
|
result?"":" not", irqs, readl(cafe->mmio + 0x10),
|
|
readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
|
|
return result;
|
|
}
|
|
|
|
|
|
static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
if (usedma)
|
|
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
|
|
else
|
|
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
|
|
cafe->datalen += len;
|
|
|
|
dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
|
|
len, cafe->datalen);
|
|
}
|
|
|
|
static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
if (usedma)
|
|
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
|
|
else
|
|
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
|
|
|
|
dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
|
|
len, cafe->datalen);
|
|
cafe->datalen += len;
|
|
}
|
|
|
|
static uint8_t cafe_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
uint8_t d;
|
|
|
|
cafe_read_buf(mtd, &d, 1);
|
|
dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
|
|
|
|
return d;
|
|
}
|
|
|
|
static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
|
|
int column, int page_addr)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
int adrbytes = 0;
|
|
uint32_t ctl1;
|
|
uint32_t doneint = 0x80000000;
|
|
int i;
|
|
|
|
dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
|
|
command, column, page_addr);
|
|
|
|
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
|
|
/* Second half of a command we already calculated */
|
|
writel(cafe->ctl2 | 0x100 | command, cafe->mmio + 0x04);
|
|
ctl1 = cafe->ctl1;
|
|
dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
|
|
cafe->ctl1, cafe->nr_data);
|
|
goto do_command;
|
|
}
|
|
/* Reset ECC engine */
|
|
writel(0, cafe->mmio + CAFE_NAND_CTRL2);
|
|
|
|
/* Emulate NAND_CMD_READOOB on large-page chips */
|
|
if (mtd->writesize > 512 &&
|
|
command == NAND_CMD_READOOB) {
|
|
column += mtd->writesize;
|
|
command = NAND_CMD_READ0;
|
|
}
|
|
|
|
/* FIXME: Do we need to send read command before sending data
|
|
for small-page chips, to position the buffer correctly? */
|
|
|
|
if (column != -1) {
|
|
writel(column, cafe->mmio + 0x1c);
|
|
adrbytes = 2;
|
|
if (page_addr != -1)
|
|
goto write_adr2;
|
|
} else if (page_addr != -1) {
|
|
writel(page_addr & 0xffff, cafe->mmio + 0x1c);
|
|
page_addr >>= 16;
|
|
write_adr2:
|
|
writel(page_addr, cafe->mmio+0x20);
|
|
adrbytes += 2;
|
|
if (mtd->size > mtd->writesize << 16)
|
|
adrbytes++;
|
|
}
|
|
|
|
cafe->data_pos = cafe->datalen = 0;
|
|
|
|
/* Set command valid bit */
|
|
ctl1 = 0x80000000 | command;
|
|
|
|
/* Set RD or WR bits as appropriate */
|
|
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
|
|
ctl1 |= (1<<26); /* rd */
|
|
/* Always 5 bytes, for now */
|
|
cafe->datalen = 5;
|
|
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
|
|
adrbytes = 1;
|
|
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
|
|
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
|
|
ctl1 |= 1<<26; /* rd */
|
|
/* For now, assume just read to end of page */
|
|
cafe->datalen = mtd->writesize + mtd->oobsize - column;
|
|
} else if (command == NAND_CMD_SEQIN)
|
|
ctl1 |= 1<<25; /* wr */
|
|
|
|
/* Set number of address bytes */
|
|
if (adrbytes)
|
|
ctl1 |= ((adrbytes-1)|8) << 27;
|
|
|
|
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
|
|
/* Ignore the first command of a pair; the hardware
|
|
deals with them both at once, later */
|
|
cafe->ctl1 = ctl1;
|
|
cafe->ctl2 = 0;
|
|
dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
|
|
cafe->ctl1, cafe->datalen);
|
|
return;
|
|
}
|
|
/* RNDOUT and READ0 commands need a following byte */
|
|
if (command == NAND_CMD_RNDOUT)
|
|
writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
|
|
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
|
|
writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);
|
|
|
|
do_command:
|
|
if (cafe->datalen == 2112)
|
|
cafe->datalen = 2062;
|
|
dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
|
|
cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
|
|
/* NB: The datasheet lies -- we really should be subtracting 1 here */
|
|
writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
|
|
writel(0x90000000, cafe->mmio + 0x10);
|
|
if (usedma && (ctl1 & (3<<25))) {
|
|
uint32_t dmactl = 0xc0000000 + cafe->datalen;
|
|
/* If WR or RD bits set, set up DMA */
|
|
if (ctl1 & (1<<26)) {
|
|
/* It's a read */
|
|
dmactl |= (1<<29);
|
|
/* ... so it's done when the DMA is done, not just
|
|
the command. */
|
|
doneint = 0x10000000;
|
|
}
|
|
writel(dmactl, cafe->mmio + 0x40);
|
|
}
|
|
#if 0
|
|
printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
|
|
printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
|
|
#endif
|
|
cafe->datalen = 0;
|
|
|
|
#if 0
|
|
printk("About to write command %08x\n", ctl1);
|
|
for (i=0; i< 0x5c; i+=4)
|
|
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
|
|
#endif
|
|
writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay(100);
|
|
|
|
if (1) {
|
|
int c = 50000;
|
|
uint32_t irqs;
|
|
|
|
while (c--) {
|
|
irqs = readl(cafe->mmio + 0x10);
|
|
if (irqs & doneint)
|
|
break;
|
|
udelay(1);
|
|
if (!(c & 1000))
|
|
dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
|
|
cpu_relax();
|
|
}
|
|
writel(doneint, cafe->mmio + 0x10);
|
|
dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 50000-c, irqs, readl(cafe->mmio + 0x10));
|
|
}
|
|
|
|
|
|
cafe->ctl2 &= ~(1<<8);
|
|
cafe->ctl2 &= ~(1<<30);
|
|
|
|
switch (command) {
|
|
|
|
case NAND_CMD_CACHEDPROG:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_RNDIN:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_DEPLETE1:
|
|
case NAND_CMD_RNDOUT:
|
|
case NAND_CMD_STATUS_ERROR:
|
|
case NAND_CMD_STATUS_ERROR0:
|
|
case NAND_CMD_STATUS_ERROR1:
|
|
case NAND_CMD_STATUS_ERROR2:
|
|
case NAND_CMD_STATUS_ERROR3:
|
|
writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
|
|
return;
|
|
}
|
|
nand_wait_ready(mtd);
|
|
writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
|
|
}
|
|
|
|
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
//struct cafe_priv *cafe = mtd->priv;
|
|
// dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
|
|
}
|
|
static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
|
|
{
|
|
struct mtd_info *mtd = id;
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
uint32_t irqs = readl(cafe->mmio + 0x10);
|
|
writel(irqs & ~0x90000000, cafe->mmio + 0x10);
|
|
if (!irqs)
|
|
return IRQ_NONE;
|
|
|
|
dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + 0x10));
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void cafe_nand_bug(struct mtd_info *mtd)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static int cafe_nand_write_oob(struct mtd_info *mtd,
|
|
struct nand_chip *chip, int page)
|
|
{
|
|
int status = 0;
|
|
|
|
WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
|
|
return status & NAND_STATUS_FAIL ? -EIO : 0;
|
|
}
|
|
|
|
/* Don't use -- use nand_read_oob_std for now */
|
|
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page, int sndcmd)
|
|
{
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
|
|
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
return 1;
|
|
}
|
|
/**
|
|
* cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
*
|
|
* The hw generator calculates the error syndrome automatically. Therefor
|
|
* we need a special oob layout and handling.
|
|
*/
|
|
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
WARN_ON(chip->oob_poi != chip->buffers->oobrbuf);
|
|
|
|
dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", readl(cafe->mmio + 0x3c), readl(cafe->mmio + 0x50));
|
|
|
|
chip->read_buf(mtd, buf, mtd->writesize);
|
|
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static char foo[14];
|
|
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const uint8_t *buf)
|
|
{
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
|
|
|
|
chip->write_buf(mtd, buf, mtd->writesize);
|
|
chip->write_buf(mtd, foo, 14);
|
|
// chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/* Set up ECC autogeneration */
|
|
cafe->ctl2 |= (1<<27) | (1<<30);
|
|
if (mtd->writesize == 2048)
|
|
cafe->ctl2 |= (1<<29);
|
|
}
|
|
|
|
static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int page, int cached, int raw)
|
|
{
|
|
int status;
|
|
|
|
WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
|
|
if (unlikely(raw))
|
|
chip->ecc.write_page_raw(mtd, chip, buf);
|
|
else
|
|
chip->ecc.write_page(mtd, chip, buf);
|
|
|
|
/*
|
|
* Cached progamming disabled for now, Not sure if its worth the
|
|
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
|
|
*/
|
|
cached = 0;
|
|
|
|
if (!cached || !(chip->options & NAND_CACHEPRG)) {
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
/*
|
|
* See if operation failed and additional status checks are
|
|
* available
|
|
*/
|
|
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
|
|
status = chip->errstat(mtd, chip, FL_WRITING, status,
|
|
page);
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
} else {
|
|
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
/* Send command to read back the data */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
|
|
if (chip->verify_buf(mtd, buf, mtd->writesize))
|
|
return -EIO;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct mtd_info *mtd;
|
|
struct cafe_priv *cafe;
|
|
uint32_t ctrl;
|
|
int err = 0;
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
|
|
if (!mtd) {
|
|
dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
|
|
return -ENOMEM;
|
|
}
|
|
cafe = (void *)(&mtd[1]);
|
|
|
|
mtd->priv = cafe;
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
cafe->pdev = pdev;
|
|
cafe->mmio = pci_iomap(pdev, 0, 0);
|
|
if (!cafe->mmio) {
|
|
dev_warn(&pdev->dev, "failed to iomap\n");
|
|
err = -ENOMEM;
|
|
goto out_free_mtd;
|
|
}
|
|
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
|
|
&cafe->dmaaddr, GFP_KERNEL);
|
|
if (!cafe->dmabuf) {
|
|
err = -ENOMEM;
|
|
goto out_ior;
|
|
}
|
|
cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
|
|
|
|
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
|
|
cafe->nand.dev_ready = cafe_device_ready;
|
|
cafe->nand.read_byte = cafe_read_byte;
|
|
cafe->nand.read_buf = cafe_read_buf;
|
|
cafe->nand.write_buf = cafe_write_buf;
|
|
cafe->nand.select_chip = cafe_select_chip;
|
|
|
|
cafe->nand.chip_delay = 0;
|
|
|
|
/* Enable the following for a flash based bad block table */
|
|
cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
|
|
|
|
/* Timings from Marvell's test code (not verified or calculated by us) */
|
|
writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
|
|
#if 1
|
|
writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
|
|
writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
|
|
writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
|
|
#else
|
|
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
|
|
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
|
|
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
|
|
#endif
|
|
writel(0xdfffffff, cafe->mmio + 0x14);
|
|
err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
|
|
if (err) {
|
|
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
|
|
|
|
goto out_free_dma;
|
|
}
|
|
#if 1
|
|
/* Disable master reset, enable NAND clock */
|
|
ctrl = readl(cafe->mmio + 0x3004);
|
|
ctrl &= 0xffffeff0;
|
|
ctrl |= 0x00007000;
|
|
writel(ctrl | 0x05, cafe->mmio + 0x3004);
|
|
writel(ctrl | 0x0a, cafe->mmio + 0x3004);
|
|
writel(0, cafe->mmio + 0x40);
|
|
|
|
writel(0x7006, cafe->mmio + 0x3004);
|
|
writel(0x700a, cafe->mmio + 0x3004);
|
|
|
|
/* Set up DMA address */
|
|
writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + 0x44);
|
|
if (sizeof(cafe->dmaaddr) > 4)
|
|
writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + 0x48);
|
|
else
|
|
writel(0, cafe->mmio + 0x48);
|
|
dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
|
|
readl(cafe->mmio+0x44), cafe->dmabuf);
|
|
|
|
/* Enable NAND IRQ in global IRQ mask register */
|
|
writel(0x80000007, cafe->mmio + 0x300c);
|
|
dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
|
|
readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
|
|
#endif
|
|
#if 1
|
|
mtd->writesize=2048;
|
|
mtd->oobsize = 0x40;
|
|
memset(cafe->dmabuf, 0xa5, 2112);
|
|
cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
|
|
cafe->nand.read_byte(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
#endif
|
|
#if 0
|
|
cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
|
|
// nand_wait_ready(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
cafe->nand.read_byte(mtd);
|
|
#endif
|
|
#if 0
|
|
writel(0x84600070, cafe->mmio);
|
|
udelay(10);
|
|
dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
|
|
#endif
|
|
/* Scan to find existance of the device */
|
|
if (nand_scan_ident(mtd, 1)) {
|
|
err = -ENXIO;
|
|
goto out_irq;
|
|
}
|
|
|
|
cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
|
|
if (mtd->writesize == 2048)
|
|
cafe->ctl2 |= 1<<29; /* 2KiB page size */
|
|
|
|
/* Set up ECC according to the type of chip we found */
|
|
if (mtd->writesize == 512 || mtd->writesize == 2048) {
|
|
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
cafe->nand.ecc.size = mtd->writesize;
|
|
cafe->nand.ecc.bytes = 14;
|
|
cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
|
|
cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
|
|
cafe->nand.ecc.correct = (void *)cafe_nand_bug;
|
|
cafe->nand.write_page = cafe_nand_write_page;
|
|
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
|
|
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
|
|
cafe->nand.ecc.read_page = cafe_nand_read_page;
|
|
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
|
|
|
|
} else {
|
|
printk(KERN_WARNING "Unexpected NAND flash writesize %d. Using software ECC\n",
|
|
mtd->writesize);
|
|
cafe->nand.ecc.mode = NAND_ECC_NONE;
|
|
}
|
|
|
|
err = nand_scan_tail(mtd);
|
|
if (err)
|
|
goto out_irq;
|
|
|
|
|
|
pci_set_drvdata(pdev, mtd);
|
|
add_mtd_device(mtd);
|
|
goto out;
|
|
|
|
out_irq:
|
|
/* Disable NAND IRQ in global IRQ mask register */
|
|
writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
|
|
free_irq(pdev->irq, mtd);
|
|
out_free_dma:
|
|
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
|
|
out_ior:
|
|
pci_iounmap(pdev, cafe->mmio);
|
|
out_free_mtd:
|
|
kfree(mtd);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void __devexit cafe_nand_remove(struct pci_dev *pdev)
|
|
{
|
|
struct mtd_info *mtd = pci_get_drvdata(pdev);
|
|
struct cafe_priv *cafe = mtd->priv;
|
|
|
|
del_mtd_device(mtd);
|
|
/* Disable NAND IRQ in global IRQ mask register */
|
|
writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
|
|
free_irq(pdev->irq, mtd);
|
|
nand_release(mtd);
|
|
pci_iounmap(pdev, cafe->mmio);
|
|
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
|
|
kfree(mtd);
|
|
}
|
|
|
|
static struct pci_device_id cafe_nand_tbl[] = {
|
|
{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
|
|
|
|
static struct pci_driver cafe_nand_pci_driver = {
|
|
.name = "CAFÉ NAND",
|
|
.id_table = cafe_nand_tbl,
|
|
.probe = cafe_nand_probe,
|
|
.remove = __devexit_p(cafe_nand_remove),
|
|
#ifdef CONFIG_PMx
|
|
.suspend = cafe_nand_suspend,
|
|
.resume = cafe_nand_resume,
|
|
#endif
|
|
};
|
|
|
|
static int cafe_nand_init(void)
|
|
{
|
|
return pci_register_driver(&cafe_nand_pci_driver);
|
|
}
|
|
|
|
static void cafe_nand_exit(void)
|
|
{
|
|
pci_unregister_driver(&cafe_nand_pci_driver);
|
|
}
|
|
module_init(cafe_nand_init);
|
|
module_exit(cafe_nand_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
|
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
|
|
|
|
/* Correct ECC for 2048 bytes of 0xff:
|
|
41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
|