linux/drivers/mtd/nand/cafe_nand.c
David Woodhouse 5467fb0255 [MTD NAND] Initial import of CAFÉ NAND driver.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-10-06 15:36:29 +01:00

636 lines
17 KiB
C

/*
* cafe_nand.c
*
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
*/
//#define DEBUG
#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#define CAFE_NAND_CTRL1 0x00
#define CAFE_NAND_CTRL2 0x04
#define CAFE_NAND_CTRL3 0x08
#define CAFE_NAND_STATUS 0x0c
#define CAFE_NAND_IRQ 0x10
#define CAFE_NAND_IRQ_MASK 0x14
#define CAFE_NAND_DATA_LEN 0x18
#define CAFE_NAND_ADDR1 0x1c
#define CAFE_NAND_ADDR2 0x20
#define CAFE_NAND_TIMING1 0x24
#define CAFE_NAND_TIMING2 0x28
#define CAFE_NAND_TIMING3 0x2c
#define CAFE_NAND_NONMEM 0x30
#define CAFE_NAND_DMA_CTRL 0x40
#define CAFE_NAND_DMA_ADDR0 0x44
#define CAFE_NAND_DMA_ADDR1 0x48
#define CAFE_NAND_READ_DATA 0x1000
#define CAFE_NAND_WRITE_DATA 0x2000
struct cafe_priv {
struct nand_chip nand;
struct pci_dev *pdev;
void __iomem *mmio;
uint32_t ctl1;
uint32_t ctl2;
int datalen;
int nr_data;
int data_pos;
int page_addr;
dma_addr_t dmaaddr;
unsigned char *dmabuf;
};
static int usedma = 1;
module_param(usedma, int, 0644);
static int cafe_device_ready(struct mtd_info *mtd)
{
struct cafe_priv *cafe = mtd->priv;
int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);
uint32_t irqs = readl(cafe->mmio + 0x10);
writel(irqs, cafe->mmio+0x10);
dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
result?"":" not", irqs, readl(cafe->mmio + 0x10),
readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
return result;
}
static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct cafe_priv *cafe = mtd->priv;
if (usedma)
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
else
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
cafe->datalen += len;
dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
len, cafe->datalen);
}
static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct cafe_priv *cafe = mtd->priv;
if (usedma)
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
else
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
len, cafe->datalen);
cafe->datalen += len;
}
static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
struct cafe_priv *cafe = mtd->priv;
uint8_t d;
cafe_read_buf(mtd, &d, 1);
dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
return d;
}
static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct cafe_priv *cafe = mtd->priv;
int adrbytes = 0;
uint32_t ctl1;
uint32_t doneint = 0x80000000;
int i;
dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
command, column, page_addr);
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
/* Second half of a command we already calculated */
writel(cafe->ctl2 | 0x100 | command, cafe->mmio + 0x04);
ctl1 = cafe->ctl1;
dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
cafe->ctl1, cafe->nr_data);
goto do_command;
}
/* Reset ECC engine */
writel(0, cafe->mmio + CAFE_NAND_CTRL2);
/* Emulate NAND_CMD_READOOB on large-page chips */
if (mtd->writesize > 512 &&
command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* FIXME: Do we need to send read command before sending data
for small-page chips, to position the buffer correctly? */
if (column != -1) {
writel(column, cafe->mmio + 0x1c);
adrbytes = 2;
if (page_addr != -1)
goto write_adr2;
} else if (page_addr != -1) {
writel(page_addr & 0xffff, cafe->mmio + 0x1c);
page_addr >>= 16;
write_adr2:
writel(page_addr, cafe->mmio+0x20);
adrbytes += 2;
if (mtd->size > mtd->writesize << 16)
adrbytes++;
}
cafe->data_pos = cafe->datalen = 0;
/* Set command valid bit */
ctl1 = 0x80000000 | command;
/* Set RD or WR bits as appropriate */
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
ctl1 |= (1<<26); /* rd */
/* Always 5 bytes, for now */
cafe->datalen = 5;
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
adrbytes = 1;
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
ctl1 |= 1<<26; /* rd */
/* For now, assume just read to end of page */
cafe->datalen = mtd->writesize + mtd->oobsize - column;
} else if (command == NAND_CMD_SEQIN)
ctl1 |= 1<<25; /* wr */
/* Set number of address bytes */
if (adrbytes)
ctl1 |= ((adrbytes-1)|8) << 27;
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
/* Ignore the first command of a pair; the hardware
deals with them both at once, later */
cafe->ctl1 = ctl1;
cafe->ctl2 = 0;
dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
cafe->ctl1, cafe->datalen);
return;
}
/* RNDOUT and READ0 commands need a following byte */
if (command == NAND_CMD_RNDOUT)
writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);
do_command:
if (cafe->datalen == 2112)
cafe->datalen = 2062;
dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
/* NB: The datasheet lies -- we really should be subtracting 1 here */
writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
writel(0x90000000, cafe->mmio + 0x10);
if (usedma && (ctl1 & (3<<25))) {
uint32_t dmactl = 0xc0000000 + cafe->datalen;
/* If WR or RD bits set, set up DMA */
if (ctl1 & (1<<26)) {
/* It's a read */
dmactl |= (1<<29);
/* ... so it's done when the DMA is done, not just
the command. */
doneint = 0x10000000;
}
writel(dmactl, cafe->mmio + 0x40);
}
#if 0
printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
#endif
cafe->datalen = 0;
#if 0
printk("About to write command %08x\n", ctl1);
for (i=0; i< 0x5c; i+=4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
#endif
writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
if (1) {
int c = 50000;
uint32_t irqs;
while (c--) {
irqs = readl(cafe->mmio + 0x10);
if (irqs & doneint)
break;
udelay(1);
if (!(c & 1000))
dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
cpu_relax();
}
writel(doneint, cafe->mmio + 0x10);
dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 50000-c, irqs, readl(cafe->mmio + 0x10));
}
cafe->ctl2 &= ~(1<<8);
cafe->ctl2 &= ~(1<<30);
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_DEPLETE1:
case NAND_CMD_RNDOUT:
case NAND_CMD_STATUS_ERROR:
case NAND_CMD_STATUS_ERROR0:
case NAND_CMD_STATUS_ERROR1:
case NAND_CMD_STATUS_ERROR2:
case NAND_CMD_STATUS_ERROR3:
writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
return;
}
nand_wait_ready(mtd);
writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
}
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
//struct cafe_priv *cafe = mtd->priv;
// dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
}
static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
{
struct mtd_info *mtd = id;
struct cafe_priv *cafe = mtd->priv;
uint32_t irqs = readl(cafe->mmio + 0x10);
writel(irqs & ~0x90000000, cafe->mmio + 0x10);
if (!irqs)
return IRQ_NONE;
dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + 0x10));
return IRQ_HANDLED;
}
static void cafe_nand_bug(struct mtd_info *mtd)
{
BUG();
}
static int cafe_nand_write_oob(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int status = 0;
WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 1;
}
/**
* cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
*
* The hw generator calculates the error syndrome automatically. Therefor
* we need a special oob layout and handling.
*/
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf)
{
struct cafe_priv *cafe = mtd->priv;
WARN_ON(chip->oob_poi != chip->buffers->oobrbuf);
dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", readl(cafe->mmio + 0x3c), readl(cafe->mmio + 0x50));
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static char foo[14];
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf)
{
struct cafe_priv *cafe = mtd->priv;
WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
chip->write_buf(mtd, buf, mtd->writesize);
chip->write_buf(mtd, foo, 14);
// chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
/* Set up ECC autogeneration */
cafe->ctl2 |= (1<<27) | (1<<30);
if (mtd->writesize == 2048)
cafe->ctl2 |= (1<<29);
}
static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int page, int cached, int raw)
{
int status;
WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
if (unlikely(raw))
chip->ecc.write_page_raw(mtd, chip, buf);
else
chip->ecc.write_page(mtd, chip, buf);
/*
* Cached progamming disabled for now, Not sure if its worth the
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
*/
cached = 0;
if (!cached || !(chip->options & NAND_CACHEPRG)) {
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
/*
* See if operation failed and additional status checks are
* available
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status,
page);
if (status & NAND_STATUS_FAIL)
return -EIO;
} else {
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
if (chip->verify_buf(mtd, buf, mtd->writesize))
return -EIO;
#endif
return 0;
}
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct mtd_info *mtd;
struct cafe_priv *cafe;
uint32_t ctrl;
int err = 0;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
if (!mtd) {
dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
return -ENOMEM;
}
cafe = (void *)(&mtd[1]);
mtd->priv = cafe;
mtd->owner = THIS_MODULE;
cafe->pdev = pdev;
cafe->mmio = pci_iomap(pdev, 0, 0);
if (!cafe->mmio) {
dev_warn(&pdev->dev, "failed to iomap\n");
err = -ENOMEM;
goto out_free_mtd;
}
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
&cafe->dmaaddr, GFP_KERNEL);
if (!cafe->dmabuf) {
err = -ENOMEM;
goto out_ior;
}
cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
cafe->nand.dev_ready = cafe_device_ready;
cafe->nand.read_byte = cafe_read_byte;
cafe->nand.read_buf = cafe_read_buf;
cafe->nand.write_buf = cafe_write_buf;
cafe->nand.select_chip = cafe_select_chip;
cafe->nand.chip_delay = 0;
/* Enable the following for a flash based bad block table */
cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
/* Timings from Marvell's test code (not verified or calculated by us) */
writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
#if 1
writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
#else
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
#endif
writel(0xdfffffff, cafe->mmio + 0x14);
err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
if (err) {
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
goto out_free_dma;
}
#if 1
/* Disable master reset, enable NAND clock */
ctrl = readl(cafe->mmio + 0x3004);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
writel(ctrl | 0x05, cafe->mmio + 0x3004);
writel(ctrl | 0x0a, cafe->mmio + 0x3004);
writel(0, cafe->mmio + 0x40);
writel(0x7006, cafe->mmio + 0x3004);
writel(0x700a, cafe->mmio + 0x3004);
/* Set up DMA address */
writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + 0x44);
if (sizeof(cafe->dmaaddr) > 4)
writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + 0x48);
else
writel(0, cafe->mmio + 0x48);
dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
readl(cafe->mmio+0x44), cafe->dmabuf);
/* Enable NAND IRQ in global IRQ mask register */
writel(0x80000007, cafe->mmio + 0x300c);
dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
#endif
#if 1
mtd->writesize=2048;
mtd->oobsize = 0x40;
memset(cafe->dmabuf, 0xa5, 2112);
cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
#endif
#if 0
cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
// nand_wait_ready(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
cafe->nand.read_byte(mtd);
#endif
#if 0
writel(0x84600070, cafe->mmio);
udelay(10);
dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
#endif
/* Scan to find existance of the device */
if (nand_scan_ident(mtd, 1)) {
err = -ENXIO;
goto out_irq;
}
cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
if (mtd->writesize == 2048)
cafe->ctl2 |= 1<<29; /* 2KiB page size */
/* Set up ECC according to the type of chip we found */
if (mtd->writesize == 512 || mtd->writesize == 2048) {
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
cafe->nand.ecc.size = mtd->writesize;
cafe->nand.ecc.bytes = 14;
cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
cafe->nand.ecc.correct = (void *)cafe_nand_bug;
cafe->nand.write_page = cafe_nand_write_page;
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
cafe->nand.ecc.read_page = cafe_nand_read_page;
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
} else {
printk(KERN_WARNING "Unexpected NAND flash writesize %d. Using software ECC\n",
mtd->writesize);
cafe->nand.ecc.mode = NAND_ECC_NONE;
}
err = nand_scan_tail(mtd);
if (err)
goto out_irq;
pci_set_drvdata(pdev, mtd);
add_mtd_device(mtd);
goto out;
out_irq:
/* Disable NAND IRQ in global IRQ mask register */
writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
free_irq(pdev->irq, mtd);
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
out_ior:
pci_iounmap(pdev, cafe->mmio);
out_free_mtd:
kfree(mtd);
out:
return err;
}
static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct cafe_priv *cafe = mtd->priv;
del_mtd_device(mtd);
/* Disable NAND IRQ in global IRQ mask register */
writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
free_irq(pdev->irq, mtd);
nand_release(mtd);
pci_iounmap(pdev, cafe->mmio);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
kfree(mtd);
}
static struct pci_device_id cafe_nand_tbl[] = {
{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
};
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
static struct pci_driver cafe_nand_pci_driver = {
.name = "CAFÉ NAND",
.id_table = cafe_nand_tbl,
.probe = cafe_nand_probe,
.remove = __devexit_p(cafe_nand_remove),
#ifdef CONFIG_PMx
.suspend = cafe_nand_suspend,
.resume = cafe_nand_resume,
#endif
};
static int cafe_nand_init(void)
{
return pci_register_driver(&cafe_nand_pci_driver);
}
static void cafe_nand_exit(void)
{
pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
/* Correct ECC for 2048 bytes of 0xff:
41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */