mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-28 20:37:27 +00:00
d37b1a037c
The existing kvm_stlb_write/kvm_gtlb_write were a poor match for the e500/book3e MMU -- mas1 was passed as "tid", mas2 was limited to "unsigned int" which will be a problem on 64-bit, mas3/7 got split up rather than treated as a single 64-bit word, etc. Signed-off-by: Liu Yu <yu.liu@freescale.com> [scottwood@freescale.com: made mas2 64-bit, and added mas8 init] Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
1393 lines
36 KiB
C
1393 lines
36 KiB
C
/*
|
|
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
|
|
*
|
|
* Author: Yu Liu, yu.liu@freescale.com
|
|
*
|
|
* Description:
|
|
* This file is based on arch/powerpc/kvm/44x_tlb.c,
|
|
* by Hollis Blanchard <hollisb@us.ibm.com>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_e500.h>
|
|
|
|
#include "../mm/mmu_decl.h"
|
|
#include "e500_tlb.h"
|
|
#include "trace.h"
|
|
#include "timing.h"
|
|
|
|
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
|
|
|
|
struct id {
|
|
unsigned long val;
|
|
struct id **pentry;
|
|
};
|
|
|
|
#define NUM_TIDS 256
|
|
|
|
/*
|
|
* This table provide mappings from:
|
|
* (guestAS,guestTID,guestPR) --> ID of physical cpu
|
|
* guestAS [0..1]
|
|
* guestTID [0..255]
|
|
* guestPR [0..1]
|
|
* ID [1..255]
|
|
* Each vcpu keeps one vcpu_id_table.
|
|
*/
|
|
struct vcpu_id_table {
|
|
struct id id[2][NUM_TIDS][2];
|
|
};
|
|
|
|
/*
|
|
* This table provide reversed mappings of vcpu_id_table:
|
|
* ID --> address of vcpu_id_table item.
|
|
* Each physical core has one pcpu_id_table.
|
|
*/
|
|
struct pcpu_id_table {
|
|
struct id *entry[NUM_TIDS];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
|
|
|
|
/* This variable keeps last used shadow ID on local core.
|
|
* The valid range of shadow ID is [1..255] */
|
|
static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
|
|
|
|
static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
|
|
|
|
static struct kvm_book3e_206_tlb_entry *get_entry(
|
|
struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int entry)
|
|
{
|
|
int offset = vcpu_e500->gtlb_offset[tlbsel];
|
|
return &vcpu_e500->gtlb_arch[offset + entry];
|
|
}
|
|
|
|
/*
|
|
* Allocate a free shadow id and setup a valid sid mapping in given entry.
|
|
* A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
|
|
*
|
|
* The caller must have preemption disabled, and keep it that way until
|
|
* it has finished with the returned shadow id (either written into the
|
|
* TLB or arch.shadow_pid, or discarded).
|
|
*/
|
|
static inline int local_sid_setup_one(struct id *entry)
|
|
{
|
|
unsigned long sid;
|
|
int ret = -1;
|
|
|
|
sid = ++(__get_cpu_var(pcpu_last_used_sid));
|
|
if (sid < NUM_TIDS) {
|
|
__get_cpu_var(pcpu_sids).entry[sid] = entry;
|
|
entry->val = sid;
|
|
entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
|
|
ret = sid;
|
|
}
|
|
|
|
/*
|
|
* If sid == NUM_TIDS, we've run out of sids. We return -1, and
|
|
* the caller will invalidate everything and start over.
|
|
*
|
|
* sid > NUM_TIDS indicates a race, which we disable preemption to
|
|
* avoid.
|
|
*/
|
|
WARN_ON(sid > NUM_TIDS);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check if given entry contain a valid shadow id mapping.
|
|
* An ID mapping is considered valid only if
|
|
* both vcpu and pcpu know this mapping.
|
|
*
|
|
* The caller must have preemption disabled, and keep it that way until
|
|
* it has finished with the returned shadow id (either written into the
|
|
* TLB or arch.shadow_pid, or discarded).
|
|
*/
|
|
static inline int local_sid_lookup(struct id *entry)
|
|
{
|
|
if (entry && entry->val != 0 &&
|
|
__get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
|
|
entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
|
|
return entry->val;
|
|
return -1;
|
|
}
|
|
|
|
/* Invalidate all id mappings on local core -- call with preempt disabled */
|
|
static inline void local_sid_destroy_all(void)
|
|
{
|
|
__get_cpu_var(pcpu_last_used_sid) = 0;
|
|
memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
|
|
}
|
|
|
|
static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
|
|
return vcpu_e500->idt;
|
|
}
|
|
|
|
static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
kfree(vcpu_e500->idt);
|
|
}
|
|
|
|
/* Invalidate all mappings on vcpu */
|
|
static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
|
|
|
|
/* Update shadow pid when mappings are changed */
|
|
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
|
|
}
|
|
|
|
/* Invalidate one ID mapping on vcpu */
|
|
static inline void kvmppc_e500_id_table_reset_one(
|
|
struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
int as, int pid, int pr)
|
|
{
|
|
struct vcpu_id_table *idt = vcpu_e500->idt;
|
|
|
|
BUG_ON(as >= 2);
|
|
BUG_ON(pid >= NUM_TIDS);
|
|
BUG_ON(pr >= 2);
|
|
|
|
idt->id[as][pid][pr].val = 0;
|
|
idt->id[as][pid][pr].pentry = NULL;
|
|
|
|
/* Update shadow pid when mappings are changed */
|
|
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
|
|
}
|
|
|
|
/*
|
|
* Map guest (vcpu,AS,ID,PR) to physical core shadow id.
|
|
* This function first lookup if a valid mapping exists,
|
|
* if not, then creates a new one.
|
|
*
|
|
* The caller must have preemption disabled, and keep it that way until
|
|
* it has finished with the returned shadow id (either written into the
|
|
* TLB or arch.shadow_pid, or discarded).
|
|
*/
|
|
static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
unsigned int as, unsigned int gid,
|
|
unsigned int pr, int avoid_recursion)
|
|
{
|
|
struct vcpu_id_table *idt = vcpu_e500->idt;
|
|
int sid;
|
|
|
|
BUG_ON(as >= 2);
|
|
BUG_ON(gid >= NUM_TIDS);
|
|
BUG_ON(pr >= 2);
|
|
|
|
sid = local_sid_lookup(&idt->id[as][gid][pr]);
|
|
|
|
while (sid <= 0) {
|
|
/* No mapping yet */
|
|
sid = local_sid_setup_one(&idt->id[as][gid][pr]);
|
|
if (sid <= 0) {
|
|
_tlbil_all();
|
|
local_sid_destroy_all();
|
|
}
|
|
|
|
/* Update shadow pid when mappings are changed */
|
|
if (!avoid_recursion)
|
|
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
|
|
}
|
|
|
|
return sid;
|
|
}
|
|
|
|
/* Map guest pid to shadow.
|
|
* We use PID to keep shadow of current guest non-zero PID,
|
|
* and use PID1 to keep shadow of guest zero PID.
|
|
* So that guest tlbe with TID=0 can be accessed at any time */
|
|
void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
preempt_disable();
|
|
vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
|
|
get_cur_as(&vcpu_e500->vcpu),
|
|
get_cur_pid(&vcpu_e500->vcpu),
|
|
get_cur_pr(&vcpu_e500->vcpu), 1);
|
|
vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
|
|
get_cur_as(&vcpu_e500->vcpu), 0,
|
|
get_cur_pr(&vcpu_e500->vcpu), 1);
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline unsigned int gtlb0_get_next_victim(
|
|
struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
unsigned int victim;
|
|
|
|
victim = vcpu_e500->gtlb_nv[0]++;
|
|
if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
|
|
vcpu_e500->gtlb_nv[0] = 0;
|
|
|
|
return victim;
|
|
}
|
|
|
|
static inline unsigned int tlb1_max_shadow_size(void)
|
|
{
|
|
/* reserve one entry for magic page */
|
|
return host_tlb_params[1].entries - tlbcam_index - 1;
|
|
}
|
|
|
|
static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
|
|
{
|
|
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
|
|
}
|
|
|
|
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
|
|
{
|
|
/* Mask off reserved bits. */
|
|
mas3 &= MAS3_ATTRIB_MASK;
|
|
|
|
if (!usermode) {
|
|
/* Guest is in supervisor mode,
|
|
* so we need to translate guest
|
|
* supervisor permissions into user permissions. */
|
|
mas3 &= ~E500_TLB_USER_PERM_MASK;
|
|
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
|
|
}
|
|
|
|
return mas3 | E500_TLB_SUPER_PERM_MASK;
|
|
}
|
|
|
|
static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
|
|
#else
|
|
return mas2 & MAS2_ATTRIB_MASK;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* writing shadow tlb entry to host TLB
|
|
*/
|
|
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
|
|
uint32_t mas0)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
mtspr(SPRN_MAS0, mas0);
|
|
mtspr(SPRN_MAS1, stlbe->mas1);
|
|
mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
|
|
mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
|
|
mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
|
|
asm volatile("isync; tlbwe" : : : "memory");
|
|
local_irq_restore(flags);
|
|
|
|
trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
|
|
stlbe->mas2, stlbe->mas7_3);
|
|
}
|
|
|
|
/*
|
|
* Acquire a mas0 with victim hint, as if we just took a TLB miss.
|
|
*
|
|
* We don't care about the address we're searching for, other than that it's
|
|
* in the right set and is not present in the TLB. Using a zero PID and a
|
|
* userspace address means we don't have to set and then restore MAS5, or
|
|
* calculate a proper MAS6 value.
|
|
*/
|
|
static u32 get_host_mas0(unsigned long eaddr)
|
|
{
|
|
unsigned long flags;
|
|
u32 mas0;
|
|
|
|
local_irq_save(flags);
|
|
mtspr(SPRN_MAS6, 0);
|
|
asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
|
|
mas0 = mfspr(SPRN_MAS0);
|
|
local_irq_restore(flags);
|
|
|
|
return mas0;
|
|
}
|
|
|
|
/* sesel is for tlb1 only */
|
|
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
|
|
{
|
|
u32 mas0;
|
|
|
|
if (tlbsel == 0) {
|
|
mas0 = get_host_mas0(stlbe->mas2);
|
|
__write_host_tlbe(stlbe, mas0);
|
|
} else {
|
|
__write_host_tlbe(stlbe,
|
|
MAS0_TLBSEL(1) |
|
|
MAS0_ESEL(to_htlb1_esel(sesel)));
|
|
}
|
|
}
|
|
|
|
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
struct kvm_book3e_206_tlb_entry magic;
|
|
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
|
|
unsigned int stid;
|
|
pfn_t pfn;
|
|
|
|
pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
|
|
get_page(pfn_to_page(pfn));
|
|
|
|
preempt_disable();
|
|
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
|
|
|
|
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
|
|
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
|
|
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
|
|
magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
|
|
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
|
|
magic.mas8 = 0;
|
|
|
|
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
|
|
preempt_enable();
|
|
}
|
|
|
|
void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
|
|
/* Shadow PID may be expired on local core */
|
|
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
|
|
}
|
|
|
|
void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
int tlbsel, int esel)
|
|
{
|
|
struct kvm_book3e_206_tlb_entry *gtlbe =
|
|
get_entry(vcpu_e500, tlbsel, esel);
|
|
struct vcpu_id_table *idt = vcpu_e500->idt;
|
|
unsigned int pr, tid, ts, pid;
|
|
u32 val, eaddr;
|
|
unsigned long flags;
|
|
|
|
ts = get_tlb_ts(gtlbe);
|
|
tid = get_tlb_tid(gtlbe);
|
|
|
|
preempt_disable();
|
|
|
|
/* One guest ID may be mapped to two shadow IDs */
|
|
for (pr = 0; pr < 2; pr++) {
|
|
/*
|
|
* The shadow PID can have a valid mapping on at most one
|
|
* host CPU. In the common case, it will be valid on this
|
|
* CPU, in which case (for TLB0) we do a local invalidation
|
|
* of the specific address.
|
|
*
|
|
* If the shadow PID is not valid on the current host CPU, or
|
|
* if we're invalidating a TLB1 entry, we invalidate the
|
|
* entire shadow PID.
|
|
*/
|
|
if (tlbsel == 1 ||
|
|
(pid = local_sid_lookup(&idt->id[ts][tid][pr])) <= 0) {
|
|
kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The guest is invalidating a TLB0 entry which is in a PID
|
|
* that has a valid shadow mapping on this host CPU. We
|
|
* search host TLB0 to invalidate it's shadow TLB entry,
|
|
* similar to __tlbil_va except that we need to look in AS1.
|
|
*/
|
|
val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
|
|
eaddr = get_tlb_eaddr(gtlbe);
|
|
|
|
local_irq_save(flags);
|
|
|
|
mtspr(SPRN_MAS6, val);
|
|
asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
|
|
val = mfspr(SPRN_MAS1);
|
|
if (val & MAS1_VALID) {
|
|
mtspr(SPRN_MAS1, val & ~MAS1_VALID);
|
|
asm volatile("tlbwe");
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static int tlb0_set_base(gva_t addr, int sets, int ways)
|
|
{
|
|
int set_base;
|
|
|
|
set_base = (addr >> PAGE_SHIFT) & (sets - 1);
|
|
set_base *= ways;
|
|
|
|
return set_base;
|
|
}
|
|
|
|
static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
|
|
{
|
|
return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
|
|
vcpu_e500->gtlb_params[0].ways);
|
|
}
|
|
|
|
static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
int esel = get_tlb_esel_bit(vcpu);
|
|
|
|
if (tlbsel == 0) {
|
|
esel &= vcpu_e500->gtlb_params[0].ways - 1;
|
|
esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
|
|
} else {
|
|
esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
|
|
}
|
|
|
|
return esel;
|
|
}
|
|
|
|
/* Search the guest TLB for a matching entry. */
|
|
static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
gva_t eaddr, int tlbsel, unsigned int pid, int as)
|
|
{
|
|
int size = vcpu_e500->gtlb_params[tlbsel].entries;
|
|
unsigned int set_base, offset;
|
|
int i;
|
|
|
|
if (tlbsel == 0) {
|
|
set_base = gtlb0_set_base(vcpu_e500, eaddr);
|
|
size = vcpu_e500->gtlb_params[0].ways;
|
|
} else {
|
|
set_base = 0;
|
|
}
|
|
|
|
offset = vcpu_e500->gtlb_offset[tlbsel];
|
|
|
|
for (i = 0; i < size; i++) {
|
|
struct kvm_book3e_206_tlb_entry *tlbe =
|
|
&vcpu_e500->gtlb_arch[offset + set_base + i];
|
|
unsigned int tid;
|
|
|
|
if (eaddr < get_tlb_eaddr(tlbe))
|
|
continue;
|
|
|
|
if (eaddr > get_tlb_end(tlbe))
|
|
continue;
|
|
|
|
tid = get_tlb_tid(tlbe);
|
|
if (tid && (tid != pid))
|
|
continue;
|
|
|
|
if (!get_tlb_v(tlbe))
|
|
continue;
|
|
|
|
if (get_tlb_ts(tlbe) != as && as != -1)
|
|
continue;
|
|
|
|
return set_base + i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
|
|
struct kvm_book3e_206_tlb_entry *gtlbe,
|
|
pfn_t pfn)
|
|
{
|
|
ref->pfn = pfn;
|
|
ref->flags = E500_TLB_VALID;
|
|
|
|
if (tlbe_is_writable(gtlbe))
|
|
ref->flags |= E500_TLB_DIRTY;
|
|
}
|
|
|
|
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
|
|
{
|
|
if (ref->flags & E500_TLB_VALID) {
|
|
if (ref->flags & E500_TLB_DIRTY)
|
|
kvm_release_pfn_dirty(ref->pfn);
|
|
else
|
|
kvm_release_pfn_clean(ref->pfn);
|
|
|
|
ref->flags = 0;
|
|
}
|
|
}
|
|
|
|
static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
int tlbsel = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
|
|
struct tlbe_ref *ref =
|
|
&vcpu_e500->gtlb_priv[tlbsel][i].ref;
|
|
kvmppc_e500_ref_release(ref);
|
|
}
|
|
}
|
|
|
|
static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
int stlbsel = 1;
|
|
int i;
|
|
|
|
kvmppc_e500_id_table_reset_all(vcpu_e500);
|
|
|
|
for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
|
|
struct tlbe_ref *ref =
|
|
&vcpu_e500->tlb_refs[stlbsel][i];
|
|
kvmppc_e500_ref_release(ref);
|
|
}
|
|
|
|
clear_tlb_privs(vcpu_e500);
|
|
}
|
|
|
|
static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
|
|
unsigned int eaddr, int as)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
unsigned int victim, pidsel, tsized;
|
|
int tlbsel;
|
|
|
|
/* since we only have two TLBs, only lower bit is used. */
|
|
tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
|
|
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
|
|
pidsel = (vcpu->arch.shared->mas4 >> 16) & 0xf;
|
|
tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
|
|
|
|
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
|
|
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
|
|
vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
|
|
| MAS1_TID(vcpu_e500->pid[pidsel])
|
|
| MAS1_TSIZE(tsized);
|
|
vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
|
|
| (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
|
|
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
|
|
vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
|
|
| (get_cur_pid(vcpu) << 16)
|
|
| (as ? MAS6_SAS : 0);
|
|
}
|
|
|
|
/* TID must be supplied by the caller */
|
|
static inline void kvmppc_e500_setup_stlbe(
|
|
struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
struct kvm_book3e_206_tlb_entry *gtlbe,
|
|
int tsize, struct tlbe_ref *ref, u64 gvaddr,
|
|
struct kvm_book3e_206_tlb_entry *stlbe)
|
|
{
|
|
pfn_t pfn = ref->pfn;
|
|
|
|
BUG_ON(!(ref->flags & E500_TLB_VALID));
|
|
|
|
/* Force TS=1 IPROT=0 for all guest mappings. */
|
|
stlbe->mas1 = MAS1_TSIZE(tsize) | MAS1_TS | MAS1_VALID;
|
|
stlbe->mas2 = (gvaddr & MAS2_EPN)
|
|
| e500_shadow_mas2_attrib(gtlbe->mas2,
|
|
vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
|
|
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT)
|
|
| e500_shadow_mas3_attrib(gtlbe->mas7_3,
|
|
vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
|
|
}
|
|
|
|
static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
|
|
int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
|
|
struct tlbe_ref *ref)
|
|
{
|
|
struct kvm_memory_slot *slot;
|
|
unsigned long pfn, hva;
|
|
int pfnmap = 0;
|
|
int tsize = BOOK3E_PAGESZ_4K;
|
|
|
|
/*
|
|
* Translate guest physical to true physical, acquiring
|
|
* a page reference if it is normal, non-reserved memory.
|
|
*
|
|
* gfn_to_memslot() must succeed because otherwise we wouldn't
|
|
* have gotten this far. Eventually we should just pass the slot
|
|
* pointer through from the first lookup.
|
|
*/
|
|
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
|
|
hva = gfn_to_hva_memslot(slot, gfn);
|
|
|
|
if (tlbsel == 1) {
|
|
struct vm_area_struct *vma;
|
|
down_read(¤t->mm->mmap_sem);
|
|
|
|
vma = find_vma(current->mm, hva);
|
|
if (vma && hva >= vma->vm_start &&
|
|
(vma->vm_flags & VM_PFNMAP)) {
|
|
/*
|
|
* This VMA is a physically contiguous region (e.g.
|
|
* /dev/mem) that bypasses normal Linux page
|
|
* management. Find the overlap between the
|
|
* vma and the memslot.
|
|
*/
|
|
|
|
unsigned long start, end;
|
|
unsigned long slot_start, slot_end;
|
|
|
|
pfnmap = 1;
|
|
|
|
start = vma->vm_pgoff;
|
|
end = start +
|
|
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
|
|
|
|
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
|
|
|
|
slot_start = pfn - (gfn - slot->base_gfn);
|
|
slot_end = slot_start + slot->npages;
|
|
|
|
if (start < slot_start)
|
|
start = slot_start;
|
|
if (end > slot_end)
|
|
end = slot_end;
|
|
|
|
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
|
|
MAS1_TSIZE_SHIFT;
|
|
|
|
/*
|
|
* e500 doesn't implement the lowest tsize bit,
|
|
* or 1K pages.
|
|
*/
|
|
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
|
|
|
|
/*
|
|
* Now find the largest tsize (up to what the guest
|
|
* requested) that will cover gfn, stay within the
|
|
* range, and for which gfn and pfn are mutually
|
|
* aligned.
|
|
*/
|
|
|
|
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
|
|
unsigned long gfn_start, gfn_end, tsize_pages;
|
|
tsize_pages = 1 << (tsize - 2);
|
|
|
|
gfn_start = gfn & ~(tsize_pages - 1);
|
|
gfn_end = gfn_start + tsize_pages;
|
|
|
|
if (gfn_start + pfn - gfn < start)
|
|
continue;
|
|
if (gfn_end + pfn - gfn > end)
|
|
continue;
|
|
if ((gfn & (tsize_pages - 1)) !=
|
|
(pfn & (tsize_pages - 1)))
|
|
continue;
|
|
|
|
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
|
|
pfn &= ~(tsize_pages - 1);
|
|
break;
|
|
}
|
|
} else if (vma && hva >= vma->vm_start &&
|
|
(vma->vm_flags & VM_HUGETLB)) {
|
|
unsigned long psize = vma_kernel_pagesize(vma);
|
|
|
|
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
|
|
MAS1_TSIZE_SHIFT;
|
|
|
|
/*
|
|
* Take the largest page size that satisfies both host
|
|
* and guest mapping
|
|
*/
|
|
tsize = min(__ilog2(psize) - 10, tsize);
|
|
|
|
/*
|
|
* e500 doesn't implement the lowest tsize bit,
|
|
* or 1K pages.
|
|
*/
|
|
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
|
|
}
|
|
|
|
up_read(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
if (likely(!pfnmap)) {
|
|
unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
|
|
pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
|
|
if (is_error_pfn(pfn)) {
|
|
printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
|
|
(long)gfn);
|
|
kvm_release_pfn_clean(pfn);
|
|
return;
|
|
}
|
|
|
|
/* Align guest and physical address to page map boundaries */
|
|
pfn &= ~(tsize_pages - 1);
|
|
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
|
|
}
|
|
|
|
/* Drop old ref and setup new one. */
|
|
kvmppc_e500_ref_release(ref);
|
|
kvmppc_e500_ref_setup(ref, gtlbe, pfn);
|
|
|
|
kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, tsize, ref, gvaddr, stlbe);
|
|
}
|
|
|
|
/* XXX only map the one-one case, for now use TLB0 */
|
|
static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
int esel,
|
|
struct kvm_book3e_206_tlb_entry *stlbe)
|
|
{
|
|
struct kvm_book3e_206_tlb_entry *gtlbe;
|
|
struct tlbe_ref *ref;
|
|
|
|
gtlbe = get_entry(vcpu_e500, 0, esel);
|
|
ref = &vcpu_e500->gtlb_priv[0][esel].ref;
|
|
|
|
kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
|
|
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
|
|
gtlbe, 0, stlbe, ref);
|
|
}
|
|
|
|
/* Caller must ensure that the specified guest TLB entry is safe to insert into
|
|
* the shadow TLB. */
|
|
/* XXX for both one-one and one-to-many , for now use TLB1 */
|
|
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
|
|
struct kvm_book3e_206_tlb_entry *stlbe)
|
|
{
|
|
struct tlbe_ref *ref;
|
|
unsigned int victim;
|
|
|
|
victim = vcpu_e500->host_tlb1_nv++;
|
|
|
|
if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
|
|
vcpu_e500->host_tlb1_nv = 0;
|
|
|
|
ref = &vcpu_e500->tlb_refs[1][victim];
|
|
kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
|
|
|
|
return victim;
|
|
}
|
|
|
|
void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
|
|
/* Recalc shadow pid since MSR changes */
|
|
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
|
|
}
|
|
|
|
static inline int kvmppc_e500_gtlbe_invalidate(
|
|
struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
int tlbsel, int esel)
|
|
{
|
|
struct kvm_book3e_206_tlb_entry *gtlbe =
|
|
get_entry(vcpu_e500, tlbsel, esel);
|
|
|
|
if (unlikely(get_tlb_iprot(gtlbe)))
|
|
return -1;
|
|
|
|
gtlbe->mas1 = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
|
|
{
|
|
int esel;
|
|
|
|
if (value & MMUCSR0_TLB0FI)
|
|
for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
|
|
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
|
|
if (value & MMUCSR0_TLB1FI)
|
|
for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
|
|
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
|
|
|
|
/* Invalidate all vcpu id mappings */
|
|
kvmppc_e500_id_table_reset_all(vcpu_e500);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
unsigned int ia;
|
|
int esel, tlbsel;
|
|
gva_t ea;
|
|
|
|
ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
|
|
|
|
ia = (ea >> 2) & 0x1;
|
|
|
|
/* since we only have two TLBs, only lower bit is used. */
|
|
tlbsel = (ea >> 3) & 0x1;
|
|
|
|
if (ia) {
|
|
/* invalidate all entries */
|
|
for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
|
|
esel++)
|
|
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
|
|
} else {
|
|
ea &= 0xfffff000;
|
|
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
|
|
get_cur_pid(vcpu), -1);
|
|
if (esel >= 0)
|
|
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
|
|
}
|
|
|
|
/* Invalidate all vcpu id mappings */
|
|
kvmppc_e500_id_table_reset_all(vcpu_e500);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
int tlbsel, esel;
|
|
struct kvm_book3e_206_tlb_entry *gtlbe;
|
|
|
|
tlbsel = get_tlb_tlbsel(vcpu);
|
|
esel = get_tlb_esel(vcpu, tlbsel);
|
|
|
|
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
|
|
vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
|
|
vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
|
|
vcpu->arch.shared->mas1 = gtlbe->mas1;
|
|
vcpu->arch.shared->mas2 = gtlbe->mas2;
|
|
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
int as = !!get_cur_sas(vcpu);
|
|
unsigned int pid = get_cur_spid(vcpu);
|
|
int esel, tlbsel;
|
|
struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
|
|
gva_t ea;
|
|
|
|
ea = kvmppc_get_gpr(vcpu, rb);
|
|
|
|
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
|
|
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
|
|
if (esel >= 0) {
|
|
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (gtlbe) {
|
|
esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
|
|
|
|
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
|
|
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
|
|
vcpu->arch.shared->mas1 = gtlbe->mas1;
|
|
vcpu->arch.shared->mas2 = gtlbe->mas2;
|
|
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
|
|
} else {
|
|
int victim;
|
|
|
|
/* since we only have two TLBs, only lower bit is used. */
|
|
tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
|
|
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
|
|
|
|
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
|
|
| MAS0_ESEL(victim)
|
|
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
|
|
vcpu->arch.shared->mas1 =
|
|
(vcpu->arch.shared->mas6 & MAS6_SPID0)
|
|
| (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
|
|
| (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
|
|
vcpu->arch.shared->mas2 &= MAS2_EPN;
|
|
vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
|
|
MAS2_ATTRIB_MASK;
|
|
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
|
|
MAS3_U2 | MAS3_U3;
|
|
}
|
|
|
|
kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/* sesel is for tlb1 only */
|
|
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
|
|
struct kvm_book3e_206_tlb_entry *gtlbe,
|
|
struct kvm_book3e_206_tlb_entry *stlbe,
|
|
int stlbsel, int sesel)
|
|
{
|
|
int stid;
|
|
|
|
preempt_disable();
|
|
stid = kvmppc_e500_get_sid(vcpu_e500, get_tlb_ts(gtlbe),
|
|
get_tlb_tid(gtlbe),
|
|
get_cur_pr(&vcpu_e500->vcpu), 0);
|
|
|
|
stlbe->mas1 |= MAS1_TID(stid);
|
|
write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
|
|
preempt_enable();
|
|
}
|
|
|
|
int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
struct kvm_book3e_206_tlb_entry *gtlbe;
|
|
int tlbsel, esel;
|
|
|
|
tlbsel = get_tlb_tlbsel(vcpu);
|
|
esel = get_tlb_esel(vcpu, tlbsel);
|
|
|
|
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
|
|
|
|
if (get_tlb_v(gtlbe))
|
|
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
|
|
|
|
gtlbe->mas1 = vcpu->arch.shared->mas1;
|
|
gtlbe->mas2 = vcpu->arch.shared->mas2;
|
|
gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
|
|
|
|
trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
|
|
gtlbe->mas2, gtlbe->mas7_3);
|
|
|
|
/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
|
|
if (tlbe_is_host_safe(vcpu, gtlbe)) {
|
|
struct kvm_book3e_206_tlb_entry stlbe;
|
|
int stlbsel, sesel;
|
|
u64 eaddr;
|
|
u64 raddr;
|
|
|
|
switch (tlbsel) {
|
|
case 0:
|
|
/* TLB0 */
|
|
gtlbe->mas1 &= ~MAS1_TSIZE(~0);
|
|
gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
|
|
|
|
stlbsel = 0;
|
|
kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
|
|
sesel = 0; /* unused */
|
|
|
|
break;
|
|
|
|
case 1:
|
|
/* TLB1 */
|
|
eaddr = get_tlb_eaddr(gtlbe);
|
|
raddr = get_tlb_raddr(gtlbe);
|
|
|
|
/* Create a 4KB mapping on the host.
|
|
* If the guest wanted a large page,
|
|
* only the first 4KB is mapped here and the rest
|
|
* are mapped on the fly. */
|
|
stlbsel = 1;
|
|
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
|
|
raddr >> PAGE_SHIFT, gtlbe, &stlbe);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
|
|
}
|
|
|
|
kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
|
|
{
|
|
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
|
|
|
|
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
|
|
}
|
|
|
|
int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
|
|
{
|
|
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
|
|
|
|
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
|
|
}
|
|
|
|
void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
|
|
|
|
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
|
|
}
|
|
|
|
void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
|
|
|
|
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
|
|
}
|
|
|
|
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
|
|
gva_t eaddr)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
struct kvm_book3e_206_tlb_entry *gtlbe;
|
|
u64 pgmask;
|
|
|
|
gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
|
|
pgmask = get_tlb_bytes(gtlbe) - 1;
|
|
|
|
return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
|
|
}
|
|
|
|
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
|
|
unsigned int index)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
struct tlbe_priv *priv;
|
|
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
|
|
int tlbsel = tlbsel_of(index);
|
|
int esel = esel_of(index);
|
|
int stlbsel, sesel;
|
|
|
|
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
|
|
|
|
switch (tlbsel) {
|
|
case 0:
|
|
stlbsel = 0;
|
|
sesel = 0; /* unused */
|
|
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
|
|
|
|
kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, BOOK3E_PAGESZ_4K,
|
|
&priv->ref, eaddr, &stlbe);
|
|
break;
|
|
|
|
case 1: {
|
|
gfn_t gfn = gpaddr >> PAGE_SHIFT;
|
|
|
|
stlbsel = 1;
|
|
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
|
|
gtlbe, &stlbe);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
|
|
}
|
|
|
|
int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
|
|
gva_t eaddr, unsigned int pid, int as)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
int esel, tlbsel;
|
|
|
|
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
|
|
esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
|
|
if (esel >= 0)
|
|
return index_of(tlbsel, esel);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
|
|
if (vcpu->arch.pid != pid) {
|
|
vcpu_e500->pid[0] = vcpu->arch.pid = pid;
|
|
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
|
|
}
|
|
}
|
|
|
|
void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
struct kvm_book3e_206_tlb_entry *tlbe;
|
|
|
|
/* Insert large initial mapping for guest. */
|
|
tlbe = get_entry(vcpu_e500, 1, 0);
|
|
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
|
|
tlbe->mas2 = 0;
|
|
tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
|
|
|
|
/* 4K map for serial output. Used by kernel wrapper. */
|
|
tlbe = get_entry(vcpu_e500, 1, 1);
|
|
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
|
|
tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
|
|
tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
|
|
}
|
|
|
|
static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
int i;
|
|
|
|
clear_tlb_refs(vcpu_e500);
|
|
kfree(vcpu_e500->gtlb_priv[0]);
|
|
kfree(vcpu_e500->gtlb_priv[1]);
|
|
|
|
if (vcpu_e500->shared_tlb_pages) {
|
|
vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
|
|
PAGE_SIZE)));
|
|
|
|
for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
|
|
set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
|
|
put_page(vcpu_e500->shared_tlb_pages[i]);
|
|
}
|
|
|
|
vcpu_e500->num_shared_tlb_pages = 0;
|
|
vcpu_e500->shared_tlb_pages = NULL;
|
|
} else {
|
|
kfree(vcpu_e500->gtlb_arch);
|
|
}
|
|
|
|
vcpu_e500->gtlb_arch = NULL;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
|
|
struct kvm_config_tlb *cfg)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
struct kvm_book3e_206_tlb_params params;
|
|
char *virt;
|
|
struct page **pages;
|
|
struct tlbe_priv *privs[2] = {};
|
|
size_t array_len;
|
|
u32 sets;
|
|
int num_pages, ret, i;
|
|
|
|
if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)cfg->params,
|
|
sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
if (params.tlb_sizes[1] > 64)
|
|
return -EINVAL;
|
|
if (params.tlb_ways[1] != params.tlb_sizes[1])
|
|
return -EINVAL;
|
|
if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
|
|
return -EINVAL;
|
|
if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
|
|
return -EINVAL;
|
|
|
|
if (!is_power_of_2(params.tlb_ways[0]))
|
|
return -EINVAL;
|
|
|
|
sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
|
|
if (!is_power_of_2(sets))
|
|
return -EINVAL;
|
|
|
|
array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
|
|
array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
|
|
|
|
if (cfg->array_len < array_len)
|
|
return -EINVAL;
|
|
|
|
num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
|
|
cfg->array / PAGE_SIZE;
|
|
pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
|
|
if (ret < 0)
|
|
goto err_pages;
|
|
|
|
if (ret != num_pages) {
|
|
num_pages = ret;
|
|
ret = -EFAULT;
|
|
goto err_put_page;
|
|
}
|
|
|
|
virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
|
|
if (!virt)
|
|
goto err_put_page;
|
|
|
|
privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
|
|
GFP_KERNEL);
|
|
privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
|
|
GFP_KERNEL);
|
|
|
|
if (!privs[0] || !privs[1])
|
|
goto err_put_page;
|
|
|
|
free_gtlb(vcpu_e500);
|
|
|
|
vcpu_e500->gtlb_priv[0] = privs[0];
|
|
vcpu_e500->gtlb_priv[1] = privs[1];
|
|
|
|
vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
|
|
(virt + (cfg->array & (PAGE_SIZE - 1)));
|
|
|
|
vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
|
|
vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
|
|
|
|
vcpu_e500->gtlb_offset[0] = 0;
|
|
vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
|
|
|
|
vcpu_e500->tlb0cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
|
|
if (params.tlb_sizes[0] <= 2048)
|
|
vcpu_e500->tlb0cfg |= params.tlb_sizes[0];
|
|
vcpu_e500->tlb0cfg |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
|
|
|
|
vcpu_e500->tlb1cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
|
|
vcpu_e500->tlb1cfg |= params.tlb_sizes[1];
|
|
vcpu_e500->tlb1cfg |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
|
|
|
|
vcpu_e500->shared_tlb_pages = pages;
|
|
vcpu_e500->num_shared_tlb_pages = num_pages;
|
|
|
|
vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
|
|
vcpu_e500->gtlb_params[0].sets = sets;
|
|
|
|
vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
|
|
vcpu_e500->gtlb_params[1].sets = 1;
|
|
|
|
return 0;
|
|
|
|
err_put_page:
|
|
kfree(privs[0]);
|
|
kfree(privs[1]);
|
|
|
|
for (i = 0; i < num_pages; i++)
|
|
put_page(pages[i]);
|
|
|
|
err_pages:
|
|
kfree(pages);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
|
|
struct kvm_dirty_tlb *dirty)
|
|
{
|
|
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
|
|
|
|
clear_tlb_refs(vcpu_e500);
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
|
|
int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
|
|
|
|
host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
|
|
host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
|
|
|
|
/*
|
|
* This should never happen on real e500 hardware, but is
|
|
* architecturally possible -- e.g. in some weird nested
|
|
* virtualization case.
|
|
*/
|
|
if (host_tlb_params[0].entries == 0 ||
|
|
host_tlb_params[1].entries == 0) {
|
|
pr_err("%s: need to know host tlb size\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
|
|
TLBnCFG_ASSOC_SHIFT;
|
|
host_tlb_params[1].ways = host_tlb_params[1].entries;
|
|
|
|
if (!is_power_of_2(host_tlb_params[0].entries) ||
|
|
!is_power_of_2(host_tlb_params[0].ways) ||
|
|
host_tlb_params[0].entries < host_tlb_params[0].ways ||
|
|
host_tlb_params[0].ways == 0) {
|
|
pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
|
|
__func__, host_tlb_params[0].entries,
|
|
host_tlb_params[0].ways);
|
|
return -ENODEV;
|
|
}
|
|
|
|
host_tlb_params[0].sets =
|
|
host_tlb_params[0].entries / host_tlb_params[0].ways;
|
|
host_tlb_params[1].sets = 1;
|
|
|
|
vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
|
|
vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
|
|
|
|
vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
|
|
vcpu_e500->gtlb_params[0].sets =
|
|
KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
|
|
|
|
vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
|
|
vcpu_e500->gtlb_params[1].sets = 1;
|
|
|
|
vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
|
|
if (!vcpu_e500->gtlb_arch)
|
|
return -ENOMEM;
|
|
|
|
vcpu_e500->gtlb_offset[0] = 0;
|
|
vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
|
|
|
|
vcpu_e500->tlb_refs[0] =
|
|
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
|
|
GFP_KERNEL);
|
|
if (!vcpu_e500->tlb_refs[0])
|
|
goto err;
|
|
|
|
vcpu_e500->tlb_refs[1] =
|
|
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
|
|
GFP_KERNEL);
|
|
if (!vcpu_e500->tlb_refs[1])
|
|
goto err;
|
|
|
|
vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
|
|
vcpu_e500->gtlb_params[0].entries,
|
|
GFP_KERNEL);
|
|
if (!vcpu_e500->gtlb_priv[0])
|
|
goto err;
|
|
|
|
vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
|
|
vcpu_e500->gtlb_params[1].entries,
|
|
GFP_KERNEL);
|
|
if (!vcpu_e500->gtlb_priv[1])
|
|
goto err;
|
|
|
|
if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
|
|
goto err;
|
|
|
|
/* Init TLB configuration register */
|
|
vcpu_e500->tlb0cfg = mfspr(SPRN_TLB0CFG) &
|
|
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
|
|
vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[0].entries;
|
|
vcpu_e500->tlb0cfg |=
|
|
vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
|
|
|
|
vcpu_e500->tlb1cfg = mfspr(SPRN_TLB1CFG) &
|
|
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
|
|
vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[1].entries;
|
|
vcpu_e500->tlb0cfg |=
|
|
vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
free_gtlb(vcpu_e500);
|
|
kfree(vcpu_e500->tlb_refs[0]);
|
|
kfree(vcpu_e500->tlb_refs[1]);
|
|
return -1;
|
|
}
|
|
|
|
void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
|
|
{
|
|
free_gtlb(vcpu_e500);
|
|
kvmppc_e500_id_table_free(vcpu_e500);
|
|
|
|
kfree(vcpu_e500->tlb_refs[0]);
|
|
kfree(vcpu_e500->tlb_refs[1]);
|
|
}
|