mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-10 03:20:49 +00:00
57b35e29cf
Since the current KMS API sets the mode independantly on each crtc, we may end up with resource conflicts. The PLL allocation is one of those cases. In the following example we have 3 crtcs in use driving 2 DVI connectors and 1 DP connector. On the initial kernel modeset for fbdev, the display topology ends up as follows: crtc0 -> DP-0 crtc1 -> DVI-0 crtc2 -> DVI-1 Because this is the first modeset, all of the PLLs are available as none have been assigned. So we end up with the following: crtc0 uses DCPLL crtc1 uses PPLL2 crtc2 uses PPLL1 When X starts, it assigns a different topology: crtc0 -> DVI-0 crtc1 -> DP-0 crtc2 -> DVI-1 However, since the KMS API is per crtc, we set the mode on each crtc independantly. When it comes time to set the mode on crtc0, the topology for crtc1 and crtc2 are still intact. crtc1 and crtc2 are already assigned PPLL2 and PPLL1 so when it comes time to set the mode on crtc0, crtc1 and crtc2 have not been torn down yet, so there appears to be no PLLs available. In reality, we are reconfiguring the entire display topology, however, since each crtc is handled independantly, we don't know that in the driver at each crtc mode set time. This patch checks to see if the same connector is being driven by another crtc, and if so, uses the PLL already associated with it. v2: store connector in the radeon crtc struct, simplify checking. Signed-off-by: Alex Deucher <alexander.deucher@amd.com> |
||
---|---|---|
.. | ||
ast | ||
cirrus | ||
exynos | ||
gma500 | ||
i2c | ||
i810 | ||
i915 | ||
mga | ||
mgag200 | ||
nouveau | ||
r128 | ||
radeon | ||
savage | ||
sis | ||
tdfx | ||
ttm | ||
udl | ||
via | ||
vmwgfx | ||
ati_pcigart.c | ||
drm_agpsupport.c | ||
drm_auth.c | ||
drm_buffer.c | ||
drm_bufs.c | ||
drm_cache.c | ||
drm_context.c | ||
drm_crtc_helper.c | ||
drm_crtc.c | ||
drm_debugfs.c | ||
drm_dma.c | ||
drm_dp_i2c_helper.c | ||
drm_drv.c | ||
drm_edid_load.c | ||
drm_edid_modes.h | ||
drm_edid.c | ||
drm_encoder_slave.c | ||
drm_fb_helper.c | ||
drm_fops.c | ||
drm_gem.c | ||
drm_global.c | ||
drm_hashtab.c | ||
drm_info.c | ||
drm_ioc32.c | ||
drm_ioctl.c | ||
drm_irq.c | ||
drm_lock.c | ||
drm_memory.c | ||
drm_mm.c | ||
drm_modes.c | ||
drm_pci.c | ||
drm_platform.c | ||
drm_prime.c | ||
drm_proc.c | ||
drm_scatter.c | ||
drm_stub.c | ||
drm_sysfs.c | ||
drm_trace_points.c | ||
drm_trace.h | ||
drm_usb.c | ||
drm_vm.c | ||
Kconfig | ||
Makefile | ||
README.drm |
************************************************************ * For the very latest on DRI development, please see: * * http://dri.freedesktop.org/ * ************************************************************ The Direct Rendering Manager (drm) is a device-independent kernel-level device driver that provides support for the XFree86 Direct Rendering Infrastructure (DRI). The DRM supports the Direct Rendering Infrastructure (DRI) in four major ways: 1. The DRM provides synchronized access to the graphics hardware via the use of an optimized two-tiered lock. 2. The DRM enforces the DRI security policy for access to the graphics hardware by only allowing authenticated X11 clients access to restricted regions of memory. 3. The DRM provides a generic DMA engine, complete with multiple queues and the ability to detect the need for an OpenGL context switch. 4. The DRM is extensible via the use of small device-specific modules that rely extensively on the API exported by the DRM module. Documentation on the DRI is available from: http://dri.freedesktop.org/wiki/Documentation http://sourceforge.net/project/showfiles.php?group_id=387 http://dri.sourceforge.net/doc/ For specific information about kernel-level support, see: The Direct Rendering Manager, Kernel Support for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/drm_low_level.html Hardware Locking for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/hardware_locking_low_level.html A Security Analysis of the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/security_low_level.html