mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-23 18:07:03 +00:00
5beb493052
The old anon_vma code can lead to scalability issues with heavily forking workloads. Specifically, each anon_vma will be shared between the parent process and all its child processes. In a workload with 1000 child processes and a VMA with 1000 anonymous pages per process that get COWed, this leads to a system with a million anonymous pages in the same anon_vma, each of which is mapped in just one of the 1000 processes. However, the current rmap code needs to walk them all, leading to O(N) scanning complexity for each page. This can result in systems where one CPU is walking the page tables of 1000 processes in page_referenced_one, while all other CPUs are stuck on the anon_vma lock. This leads to catastrophic failure for a benchmark like AIM7, where the total number of processes can reach in the tens of thousands. Real workloads are still a factor 10 less process intensive than AIM7, but they are catching up. This patch changes the way anon_vmas and VMAs are linked, which allows us to associate multiple anon_vmas with a VMA. At fork time, each child process gets its own anon_vmas, in which its COWed pages will be instantiated. The parents' anon_vma is also linked to the VMA, because non-COWed pages could be present in any of the children. This reduces rmap scanning complexity to O(1) for the pages of the 1000 child processes, with O(N) complexity for at most 1/N pages in the system. This reduces the average scanning cost in heavily forking workloads from O(N) to 2. The only real complexity in this patch stems from the fact that linking a VMA to anon_vmas now involves memory allocations. This means vma_adjust can fail, if it needs to attach a VMA to anon_vma structures. This in turn means error handling needs to be added to the calling functions. A second source of complexity is that, because there can be multiple anon_vmas, the anon_vma linking in vma_adjust can no longer be done under "the" anon_vma lock. To prevent the rmap code from walking up an incomplete VMA, this patch introduces the VM_LOCK_RMAP VMA flag. This bit flag uses the same slot as the NOMMU VM_MAPPED_COPY, with an ifdef in mm.h to make sure it is impossible to compile a kernel that needs both symbolic values for the same bitflag. Some test results: Without the anon_vma changes, when AIM7 hits around 9.7k users (on a test box with 16GB RAM and not quite enough IO), the system ends up running >99% in system time, with every CPU on the same anon_vma lock in the pageout code. With these changes, AIM7 hits the cross-over point around 29.7k users. This happens with ~99% IO wait time, there never seems to be any spike in system time. The anon_vma lock contention appears to be resolved. [akpm@linux-foundation.org: cleanups] Signed-off-by: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
720 lines
19 KiB
C
720 lines
19 KiB
C
/*
|
|
* Initialize MMU support.
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/module.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/dma.h>
|
|
#include <asm/io.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/patch.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/system.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/mca.h>
|
|
#include <asm/paravirt.h>
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
extern void ia64_tlb_init (void);
|
|
|
|
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
unsigned long VMALLOC_END = VMALLOC_END_INIT;
|
|
EXPORT_SYMBOL(VMALLOC_END);
|
|
struct page *vmem_map;
|
|
EXPORT_SYMBOL(vmem_map);
|
|
#endif
|
|
|
|
struct page *zero_page_memmap_ptr; /* map entry for zero page */
|
|
EXPORT_SYMBOL(zero_page_memmap_ptr);
|
|
|
|
void
|
|
__ia64_sync_icache_dcache (pte_t pte)
|
|
{
|
|
unsigned long addr;
|
|
struct page *page;
|
|
|
|
page = pte_page(pte);
|
|
addr = (unsigned long) page_address(page);
|
|
|
|
if (test_bit(PG_arch_1, &page->flags))
|
|
return; /* i-cache is already coherent with d-cache */
|
|
|
|
flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
|
|
set_bit(PG_arch_1, &page->flags); /* mark page as clean */
|
|
}
|
|
|
|
/*
|
|
* Since DMA is i-cache coherent, any (complete) pages that were written via
|
|
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
|
|
* flush them when they get mapped into an executable vm-area.
|
|
*/
|
|
void
|
|
dma_mark_clean(void *addr, size_t size)
|
|
{
|
|
unsigned long pg_addr, end;
|
|
|
|
pg_addr = PAGE_ALIGN((unsigned long) addr);
|
|
end = (unsigned long) addr + size;
|
|
while (pg_addr + PAGE_SIZE <= end) {
|
|
struct page *page = virt_to_page(pg_addr);
|
|
set_bit(PG_arch_1, &page->flags);
|
|
pg_addr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
inline void
|
|
ia64_set_rbs_bot (void)
|
|
{
|
|
unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
|
|
|
|
if (stack_size > MAX_USER_STACK_SIZE)
|
|
stack_size = MAX_USER_STACK_SIZE;
|
|
current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
|
|
}
|
|
|
|
/*
|
|
* This performs some platform-dependent address space initialization.
|
|
* On IA-64, we want to setup the VM area for the register backing
|
|
* store (which grows upwards) and install the gateway page which is
|
|
* used for signal trampolines, etc.
|
|
*/
|
|
void
|
|
ia64_init_addr_space (void)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
ia64_set_rbs_bot();
|
|
|
|
/*
|
|
* If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
|
|
* the problem. When the process attempts to write to the register backing store
|
|
* for the first time, it will get a SEGFAULT in this case.
|
|
*/
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
INIT_LIST_HEAD(&vma->anon_vma_chain);
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
|
|
vma->vm_end = vma->vm_start + PAGE_SIZE;
|
|
vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
|
|
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
|
|
if (!(current->personality & MMAP_PAGE_ZERO)) {
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
INIT_LIST_HEAD(&vma->anon_vma_chain);
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_end = PAGE_SIZE;
|
|
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
|
|
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
free_initmem (void)
|
|
{
|
|
unsigned long addr, eaddr;
|
|
|
|
addr = (unsigned long) ia64_imva(__init_begin);
|
|
eaddr = (unsigned long) ia64_imva(__init_end);
|
|
while (addr < eaddr) {
|
|
ClearPageReserved(virt_to_page(addr));
|
|
init_page_count(virt_to_page(addr));
|
|
free_page(addr);
|
|
++totalram_pages;
|
|
addr += PAGE_SIZE;
|
|
}
|
|
printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
|
|
(__init_end - __init_begin) >> 10);
|
|
}
|
|
|
|
void __init
|
|
free_initrd_mem (unsigned long start, unsigned long end)
|
|
{
|
|
struct page *page;
|
|
/*
|
|
* EFI uses 4KB pages while the kernel can use 4KB or bigger.
|
|
* Thus EFI and the kernel may have different page sizes. It is
|
|
* therefore possible to have the initrd share the same page as
|
|
* the end of the kernel (given current setup).
|
|
*
|
|
* To avoid freeing/using the wrong page (kernel sized) we:
|
|
* - align up the beginning of initrd
|
|
* - align down the end of initrd
|
|
*
|
|
* | |
|
|
* |=============| a000
|
|
* | |
|
|
* | |
|
|
* | | 9000
|
|
* |/////////////|
|
|
* |/////////////|
|
|
* |=============| 8000
|
|
* |///INITRD////|
|
|
* |/////////////|
|
|
* |/////////////| 7000
|
|
* | |
|
|
* |KKKKKKKKKKKKK|
|
|
* |=============| 6000
|
|
* |KKKKKKKKKKKKK|
|
|
* |KKKKKKKKKKKKK|
|
|
* K=kernel using 8KB pages
|
|
*
|
|
* In this example, we must free page 8000 ONLY. So we must align up
|
|
* initrd_start and keep initrd_end as is.
|
|
*/
|
|
start = PAGE_ALIGN(start);
|
|
end = end & PAGE_MASK;
|
|
|
|
if (start < end)
|
|
printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
|
|
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
if (!virt_addr_valid(start))
|
|
continue;
|
|
page = virt_to_page(start);
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
free_page(start);
|
|
++totalram_pages;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This installs a clean page in the kernel's page table.
|
|
*/
|
|
static struct page * __init
|
|
put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (!PageReserved(page))
|
|
printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
|
|
page_address(page));
|
|
|
|
pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
|
|
|
|
{
|
|
pud = pud_alloc(&init_mm, pgd, address);
|
|
if (!pud)
|
|
goto out;
|
|
pmd = pmd_alloc(&init_mm, pud, address);
|
|
if (!pmd)
|
|
goto out;
|
|
pte = pte_alloc_kernel(pmd, address);
|
|
if (!pte)
|
|
goto out;
|
|
if (!pte_none(*pte))
|
|
goto out;
|
|
set_pte(pte, mk_pte(page, pgprot));
|
|
}
|
|
out:
|
|
/* no need for flush_tlb */
|
|
return page;
|
|
}
|
|
|
|
static void __init
|
|
setup_gate (void)
|
|
{
|
|
void *gate_section;
|
|
struct page *page;
|
|
|
|
/*
|
|
* Map the gate page twice: once read-only to export the ELF
|
|
* headers etc. and once execute-only page to enable
|
|
* privilege-promotion via "epc":
|
|
*/
|
|
gate_section = paravirt_get_gate_section();
|
|
page = virt_to_page(ia64_imva(gate_section));
|
|
put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
|
|
#ifdef HAVE_BUGGY_SEGREL
|
|
page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
|
|
put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
|
|
#else
|
|
put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
|
|
/* Fill in the holes (if any) with read-only zero pages: */
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = GATE_ADDR + PAGE_SIZE;
|
|
addr < GATE_ADDR + PERCPU_PAGE_SIZE;
|
|
addr += PAGE_SIZE)
|
|
{
|
|
put_kernel_page(ZERO_PAGE(0), addr,
|
|
PAGE_READONLY);
|
|
put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
|
|
PAGE_READONLY);
|
|
}
|
|
}
|
|
#endif
|
|
ia64_patch_gate();
|
|
}
|
|
|
|
void __devinit
|
|
ia64_mmu_init (void *my_cpu_data)
|
|
{
|
|
unsigned long pta, impl_va_bits;
|
|
extern void __devinit tlb_init (void);
|
|
|
|
#ifdef CONFIG_DISABLE_VHPT
|
|
# define VHPT_ENABLE_BIT 0
|
|
#else
|
|
# define VHPT_ENABLE_BIT 1
|
|
#endif
|
|
|
|
/*
|
|
* Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
|
|
* address space. The IA-64 architecture guarantees that at least 50 bits of
|
|
* virtual address space are implemented but if we pick a large enough page size
|
|
* (e.g., 64KB), the mapped address space is big enough that it will overlap with
|
|
* VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
|
|
* IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
|
|
* problem in practice. Alternatively, we could truncate the top of the mapped
|
|
* address space to not permit mappings that would overlap with the VMLPT.
|
|
* --davidm 00/12/06
|
|
*/
|
|
# define pte_bits 3
|
|
# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
|
|
/*
|
|
* The virtual page table has to cover the entire implemented address space within
|
|
* a region even though not all of this space may be mappable. The reason for
|
|
* this is that the Access bit and Dirty bit fault handlers perform
|
|
* non-speculative accesses to the virtual page table, so the address range of the
|
|
* virtual page table itself needs to be covered by virtual page table.
|
|
*/
|
|
# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
|
|
# define POW2(n) (1ULL << (n))
|
|
|
|
impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
|
|
|
|
if (impl_va_bits < 51 || impl_va_bits > 61)
|
|
panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
|
|
/*
|
|
* mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
|
|
* which must fit into "vmlpt_bits - pte_bits" slots. Second half of
|
|
* the test makes sure that our mapped space doesn't overlap the
|
|
* unimplemented hole in the middle of the region.
|
|
*/
|
|
if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
|
|
(mapped_space_bits > impl_va_bits - 1))
|
|
panic("Cannot build a big enough virtual-linear page table"
|
|
" to cover mapped address space.\n"
|
|
" Try using a smaller page size.\n");
|
|
|
|
|
|
/* place the VMLPT at the end of each page-table mapped region: */
|
|
pta = POW2(61) - POW2(vmlpt_bits);
|
|
|
|
/*
|
|
* Set the (virtually mapped linear) page table address. Bit
|
|
* 8 selects between the short and long format, bits 2-7 the
|
|
* size of the table, and bit 0 whether the VHPT walker is
|
|
* enabled.
|
|
*/
|
|
ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
|
|
|
|
ia64_tlb_init();
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
|
|
ia64_srlz_d();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
int vmemmap_find_next_valid_pfn(int node, int i)
|
|
{
|
|
unsigned long end_address, hole_next_pfn;
|
|
unsigned long stop_address;
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
|
|
end_address = PAGE_ALIGN(end_address);
|
|
|
|
stop_address = (unsigned long) &vmem_map[
|
|
pgdat->node_start_pfn + pgdat->node_spanned_pages];
|
|
|
|
do {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = pgd_offset_k(end_address);
|
|
if (pgd_none(*pgd)) {
|
|
end_address += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pud = pud_offset(pgd, end_address);
|
|
if (pud_none(*pud)) {
|
|
end_address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, end_address);
|
|
if (pmd_none(*pmd)) {
|
|
end_address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, end_address);
|
|
retry_pte:
|
|
if (pte_none(*pte)) {
|
|
end_address += PAGE_SIZE;
|
|
pte++;
|
|
if ((end_address < stop_address) &&
|
|
(end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
|
|
goto retry_pte;
|
|
continue;
|
|
}
|
|
/* Found next valid vmem_map page */
|
|
break;
|
|
} while (end_address < stop_address);
|
|
|
|
end_address = min(end_address, stop_address);
|
|
end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
|
|
hole_next_pfn = end_address / sizeof(struct page);
|
|
return hole_next_pfn - pgdat->node_start_pfn;
|
|
}
|
|
|
|
int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long address, start_page, end_page;
|
|
struct page *map_start, *map_end;
|
|
int node;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
start_page = (unsigned long) map_start & PAGE_MASK;
|
|
end_page = PAGE_ALIGN((unsigned long) map_end);
|
|
node = paddr_to_nid(__pa(start));
|
|
|
|
for (address = start_page; address < end_page; address += PAGE_SIZE) {
|
|
pgd = pgd_offset_k(address);
|
|
if (pgd_none(*pgd))
|
|
pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pud = pud_offset(pgd, address);
|
|
|
|
if (pud_none(*pud))
|
|
pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
if (pmd_none(*pmd))
|
|
pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
if (pte_none(*pte))
|
|
set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
|
|
PAGE_KERNEL));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct memmap_init_callback_data {
|
|
struct page *start;
|
|
struct page *end;
|
|
int nid;
|
|
unsigned long zone;
|
|
};
|
|
|
|
static int __meminit
|
|
virtual_memmap_init(u64 start, u64 end, void *arg)
|
|
{
|
|
struct memmap_init_callback_data *args;
|
|
struct page *map_start, *map_end;
|
|
|
|
args = (struct memmap_init_callback_data *) arg;
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
if (map_start < args->start)
|
|
map_start = args->start;
|
|
if (map_end > args->end)
|
|
map_end = args->end;
|
|
|
|
/*
|
|
* We have to initialize "out of bounds" struct page elements that fit completely
|
|
* on the same pages that were allocated for the "in bounds" elements because they
|
|
* may be referenced later (and found to be "reserved").
|
|
*/
|
|
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
|
|
map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
|
|
/ sizeof(struct page));
|
|
|
|
if (map_start < map_end)
|
|
memmap_init_zone((unsigned long)(map_end - map_start),
|
|
args->nid, args->zone, page_to_pfn(map_start),
|
|
MEMMAP_EARLY);
|
|
return 0;
|
|
}
|
|
|
|
void __meminit
|
|
memmap_init (unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn)
|
|
{
|
|
if (!vmem_map)
|
|
memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
|
|
else {
|
|
struct page *start;
|
|
struct memmap_init_callback_data args;
|
|
|
|
start = pfn_to_page(start_pfn);
|
|
args.start = start;
|
|
args.end = start + size;
|
|
args.nid = nid;
|
|
args.zone = zone;
|
|
|
|
efi_memmap_walk(virtual_memmap_init, &args);
|
|
}
|
|
}
|
|
|
|
int
|
|
ia64_pfn_valid (unsigned long pfn)
|
|
{
|
|
char byte;
|
|
struct page *pg = pfn_to_page(pfn);
|
|
|
|
return (__get_user(byte, (char __user *) pg) == 0)
|
|
&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
|
|
|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
|
|
}
|
|
EXPORT_SYMBOL(ia64_pfn_valid);
|
|
|
|
int __init find_largest_hole(u64 start, u64 end, void *arg)
|
|
{
|
|
u64 *max_gap = arg;
|
|
|
|
static u64 last_end = PAGE_OFFSET;
|
|
|
|
/* NOTE: this algorithm assumes efi memmap table is ordered */
|
|
|
|
if (*max_gap < (start - last_end))
|
|
*max_gap = start - last_end;
|
|
last_end = end;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_VIRTUAL_MEM_MAP */
|
|
|
|
int __init register_active_ranges(u64 start, u64 len, int nid)
|
|
{
|
|
u64 end = start + len;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
if (start > crashk_res.start && start < crashk_res.end)
|
|
start = crashk_res.end;
|
|
if (end > crashk_res.start && end < crashk_res.end)
|
|
end = crashk_res.start;
|
|
#endif
|
|
|
|
if (start < end)
|
|
add_active_range(nid, __pa(start) >> PAGE_SHIFT,
|
|
__pa(end) >> PAGE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static int __init
|
|
count_reserved_pages(u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long num_reserved = 0;
|
|
unsigned long *count = arg;
|
|
|
|
for (; start < end; start += PAGE_SIZE)
|
|
if (PageReserved(virt_to_page(start)))
|
|
++num_reserved;
|
|
*count += num_reserved;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
find_max_min_low_pfn (u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long pfn_start, pfn_end;
|
|
#ifdef CONFIG_FLATMEM
|
|
pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
|
|
pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
|
|
#else
|
|
pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
|
|
pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
|
|
#endif
|
|
min_low_pfn = min(min_low_pfn, pfn_start);
|
|
max_low_pfn = max(max_low_pfn, pfn_end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Boot command-line option "nolwsys" can be used to disable the use of any light-weight
|
|
* system call handler. When this option is in effect, all fsyscalls will end up bubbling
|
|
* down into the kernel and calling the normal (heavy-weight) syscall handler. This is
|
|
* useful for performance testing, but conceivably could also come in handy for debugging
|
|
* purposes.
|
|
*/
|
|
|
|
static int nolwsys __initdata;
|
|
|
|
static int __init
|
|
nolwsys_setup (char *s)
|
|
{
|
|
nolwsys = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nolwsys", nolwsys_setup);
|
|
|
|
void __init
|
|
mem_init (void)
|
|
{
|
|
long reserved_pages, codesize, datasize, initsize;
|
|
pg_data_t *pgdat;
|
|
int i;
|
|
|
|
BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_PCI
|
|
/*
|
|
* This needs to be called _after_ the command line has been parsed but _before_
|
|
* any drivers that may need the PCI DMA interface are initialized or bootmem has
|
|
* been freed.
|
|
*/
|
|
platform_dma_init();
|
|
#endif
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
BUG_ON(!mem_map);
|
|
max_mapnr = max_low_pfn;
|
|
#endif
|
|
|
|
high_memory = __va(max_low_pfn * PAGE_SIZE);
|
|
|
|
for_each_online_pgdat(pgdat)
|
|
if (pgdat->bdata->node_bootmem_map)
|
|
totalram_pages += free_all_bootmem_node(pgdat);
|
|
|
|
reserved_pages = 0;
|
|
efi_memmap_walk(count_reserved_pages, &reserved_pages);
|
|
|
|
codesize = (unsigned long) _etext - (unsigned long) _stext;
|
|
datasize = (unsigned long) _edata - (unsigned long) _etext;
|
|
initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
|
|
"%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
|
|
num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
|
|
reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
|
|
|
|
|
|
/*
|
|
* For fsyscall entrpoints with no light-weight handler, use the ordinary
|
|
* (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
|
|
* code can tell them apart.
|
|
*/
|
|
for (i = 0; i < NR_syscalls; ++i) {
|
|
extern unsigned long sys_call_table[NR_syscalls];
|
|
unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
|
|
|
|
if (!fsyscall_table[i] || nolwsys)
|
|
fsyscall_table[i] = sys_call_table[i] | 1;
|
|
}
|
|
setup_gate();
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int arch_add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
pg_data_t *pgdat;
|
|
struct zone *zone;
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
pgdat = NODE_DATA(nid);
|
|
|
|
zone = pgdat->node_zones + ZONE_NORMAL;
|
|
ret = __add_pages(nid, zone, start_pfn, nr_pages);
|
|
|
|
if (ret)
|
|
printk("%s: Problem encountered in __add_pages() as ret=%d\n",
|
|
__func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Even when CONFIG_IA32_SUPPORT is not enabled it is
|
|
* useful to have the Linux/x86 domain registered to
|
|
* avoid an attempted module load when emulators call
|
|
* personality(PER_LINUX32). This saves several milliseconds
|
|
* on each such call.
|
|
*/
|
|
static struct exec_domain ia32_exec_domain;
|
|
|
|
static int __init
|
|
per_linux32_init(void)
|
|
{
|
|
ia32_exec_domain.name = "Linux/x86";
|
|
ia32_exec_domain.handler = NULL;
|
|
ia32_exec_domain.pers_low = PER_LINUX32;
|
|
ia32_exec_domain.pers_high = PER_LINUX32;
|
|
ia32_exec_domain.signal_map = default_exec_domain.signal_map;
|
|
ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
|
|
register_exec_domain(&ia32_exec_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
__initcall(per_linux32_init);
|