mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 10:03:24 +00:00
46db2f86a3
The SLB can change sizes across a live migration, which was not being handled, resulting in possible machine crashes during migration if migrating to a machine which has a smaller max SLB size than the source machine. Fix this by first reducing the SLB size to the minimum possible value, which is 32, prior to migration. Then during the device tree update which occurs after migration, we make the call to ensure the SLB gets updated. Also add the slb_size to the lparcfg output so that the migration tools can check to make sure the kernel has this capability before allowing migration in scenarios where the SLB size will change. BenH: Fixed #include <asm/mmu-hash64.h> -> <asm/mmu.h> to avoid breaking ppc32 build Signed-off-by: Brian King <brking@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
1010 lines
23 KiB
C
1010 lines
23 KiB
C
/*
|
|
*
|
|
* Procedures for interfacing to the RTAS on CHRP machines.
|
|
*
|
|
* Peter Bergner, IBM March 2001.
|
|
* Copyright (C) 2001 IBM.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/lmb.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/page.h>
|
|
#include <asm/param.h>
|
|
#include <asm/system.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/time.h>
|
|
#include <asm/mmu.h>
|
|
|
|
struct rtas_t rtas = {
|
|
.lock = __RAW_SPIN_LOCK_UNLOCKED
|
|
};
|
|
EXPORT_SYMBOL(rtas);
|
|
|
|
struct rtas_suspend_me_data {
|
|
atomic_t working; /* number of cpus accessing this struct */
|
|
atomic_t done;
|
|
int token; /* ibm,suspend-me */
|
|
int error;
|
|
struct completion *complete; /* wait on this until working == 0 */
|
|
};
|
|
|
|
DEFINE_SPINLOCK(rtas_data_buf_lock);
|
|
EXPORT_SYMBOL(rtas_data_buf_lock);
|
|
|
|
char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
|
|
EXPORT_SYMBOL(rtas_data_buf);
|
|
|
|
unsigned long rtas_rmo_buf;
|
|
|
|
/*
|
|
* If non-NULL, this gets called when the kernel terminates.
|
|
* This is done like this so rtas_flash can be a module.
|
|
*/
|
|
void (*rtas_flash_term_hook)(int);
|
|
EXPORT_SYMBOL(rtas_flash_term_hook);
|
|
|
|
/* RTAS use home made raw locking instead of spin_lock_irqsave
|
|
* because those can be called from within really nasty contexts
|
|
* such as having the timebase stopped which would lockup with
|
|
* normal locks and spinlock debugging enabled
|
|
*/
|
|
static unsigned long lock_rtas(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
preempt_disable();
|
|
__raw_spin_lock_flags(&rtas.lock, flags);
|
|
return flags;
|
|
}
|
|
|
|
static void unlock_rtas(unsigned long flags)
|
|
{
|
|
__raw_spin_unlock(&rtas.lock);
|
|
local_irq_restore(flags);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* call_rtas_display_status and call_rtas_display_status_delay
|
|
* are designed only for very early low-level debugging, which
|
|
* is why the token is hard-coded to 10.
|
|
*/
|
|
static void call_rtas_display_status(char c)
|
|
{
|
|
struct rtas_args *args = &rtas.args;
|
|
unsigned long s;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
s = lock_rtas();
|
|
|
|
args->token = 10;
|
|
args->nargs = 1;
|
|
args->nret = 1;
|
|
args->rets = (rtas_arg_t *)&(args->args[1]);
|
|
args->args[0] = (unsigned char)c;
|
|
|
|
enter_rtas(__pa(args));
|
|
|
|
unlock_rtas(s);
|
|
}
|
|
|
|
static void call_rtas_display_status_delay(char c)
|
|
{
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
static int width = 16;
|
|
|
|
if (c == '\n') {
|
|
while (width-- > 0)
|
|
call_rtas_display_status(' ');
|
|
width = 16;
|
|
mdelay(500);
|
|
pending_newline = 1;
|
|
} else {
|
|
if (pending_newline) {
|
|
call_rtas_display_status('\r');
|
|
call_rtas_display_status('\n');
|
|
}
|
|
pending_newline = 0;
|
|
if (width--) {
|
|
call_rtas_display_status(c);
|
|
udelay(10000);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init udbg_init_rtas_panel(void)
|
|
{
|
|
udbg_putc = call_rtas_display_status_delay;
|
|
}
|
|
|
|
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
|
|
|
/* If you think you're dying before early_init_dt_scan_rtas() does its
|
|
* work, you can hard code the token values for your firmware here and
|
|
* hardcode rtas.base/entry etc.
|
|
*/
|
|
static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
|
|
static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
|
|
|
|
static void udbg_rtascon_putc(char c)
|
|
{
|
|
int tries;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
/* Add CRs before LFs */
|
|
if (c == '\n')
|
|
udbg_rtascon_putc('\r');
|
|
|
|
/* if there is more than one character to be displayed, wait a bit */
|
|
for (tries = 0; tries < 16; tries++) {
|
|
if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
|
|
break;
|
|
udelay(1000);
|
|
}
|
|
}
|
|
|
|
static int udbg_rtascon_getc_poll(void)
|
|
{
|
|
int c;
|
|
|
|
if (!rtas.base)
|
|
return -1;
|
|
|
|
if (rtas_call(rtas_getchar_token, 0, 2, &c))
|
|
return -1;
|
|
|
|
return c;
|
|
}
|
|
|
|
static int udbg_rtascon_getc(void)
|
|
{
|
|
int c;
|
|
|
|
while ((c = udbg_rtascon_getc_poll()) == -1)
|
|
;
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
void __init udbg_init_rtas_console(void)
|
|
{
|
|
udbg_putc = udbg_rtascon_putc;
|
|
udbg_getc = udbg_rtascon_getc;
|
|
udbg_getc_poll = udbg_rtascon_getc_poll;
|
|
}
|
|
#endif /* CONFIG_UDBG_RTAS_CONSOLE */
|
|
|
|
void rtas_progress(char *s, unsigned short hex)
|
|
{
|
|
struct device_node *root;
|
|
int width;
|
|
const int *p;
|
|
char *os;
|
|
static int display_character, set_indicator;
|
|
static int display_width, display_lines, form_feed;
|
|
static const int *row_width;
|
|
static DEFINE_SPINLOCK(progress_lock);
|
|
static int current_line;
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
if (display_width == 0) {
|
|
display_width = 0x10;
|
|
if ((root = of_find_node_by_path("/rtas"))) {
|
|
if ((p = of_get_property(root,
|
|
"ibm,display-line-length", NULL)))
|
|
display_width = *p;
|
|
if ((p = of_get_property(root,
|
|
"ibm,form-feed", NULL)))
|
|
form_feed = *p;
|
|
if ((p = of_get_property(root,
|
|
"ibm,display-number-of-lines", NULL)))
|
|
display_lines = *p;
|
|
row_width = of_get_property(root,
|
|
"ibm,display-truncation-length", NULL);
|
|
of_node_put(root);
|
|
}
|
|
display_character = rtas_token("display-character");
|
|
set_indicator = rtas_token("set-indicator");
|
|
}
|
|
|
|
if (display_character == RTAS_UNKNOWN_SERVICE) {
|
|
/* use hex display if available */
|
|
if (set_indicator != RTAS_UNKNOWN_SERVICE)
|
|
rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&progress_lock);
|
|
|
|
/*
|
|
* Last write ended with newline, but we didn't print it since
|
|
* it would just clear the bottom line of output. Print it now
|
|
* instead.
|
|
*
|
|
* If no newline is pending and form feed is supported, clear the
|
|
* display with a form feed; otherwise, print a CR to start output
|
|
* at the beginning of the line.
|
|
*/
|
|
if (pending_newline) {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
pending_newline = 0;
|
|
} else {
|
|
current_line = 0;
|
|
if (form_feed)
|
|
rtas_call(display_character, 1, 1, NULL,
|
|
(char)form_feed);
|
|
else
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
os = s;
|
|
while (*os) {
|
|
if (*os == '\n' || *os == '\r') {
|
|
/* If newline is the last character, save it
|
|
* until next call to avoid bumping up the
|
|
* display output.
|
|
*/
|
|
if (*os == '\n' && !os[1]) {
|
|
pending_newline = 1;
|
|
current_line++;
|
|
if (current_line > display_lines-1)
|
|
current_line = display_lines-1;
|
|
spin_unlock(&progress_lock);
|
|
return;
|
|
}
|
|
|
|
/* RTAS wants CR-LF, not just LF */
|
|
|
|
if (*os == '\n') {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
} else {
|
|
/* CR might be used to re-draw a line, so we'll
|
|
* leave it alone and not add LF.
|
|
*/
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
} else {
|
|
width--;
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
os++;
|
|
|
|
/* if we overwrite the screen length */
|
|
if (width <= 0)
|
|
while ((*os != 0) && (*os != '\n') && (*os != '\r'))
|
|
os++;
|
|
}
|
|
|
|
spin_unlock(&progress_lock);
|
|
}
|
|
EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */
|
|
|
|
int rtas_token(const char *service)
|
|
{
|
|
const int *tokp;
|
|
if (rtas.dev == NULL)
|
|
return RTAS_UNKNOWN_SERVICE;
|
|
tokp = of_get_property(rtas.dev, service, NULL);
|
|
return tokp ? *tokp : RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
EXPORT_SYMBOL(rtas_token);
|
|
|
|
int rtas_service_present(const char *service)
|
|
{
|
|
return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
EXPORT_SYMBOL(rtas_service_present);
|
|
|
|
#ifdef CONFIG_RTAS_ERROR_LOGGING
|
|
/*
|
|
* Return the firmware-specified size of the error log buffer
|
|
* for all rtas calls that require an error buffer argument.
|
|
* This includes 'check-exception' and 'rtas-last-error'.
|
|
*/
|
|
int rtas_get_error_log_max(void)
|
|
{
|
|
static int rtas_error_log_max;
|
|
if (rtas_error_log_max)
|
|
return rtas_error_log_max;
|
|
|
|
rtas_error_log_max = rtas_token ("rtas-error-log-max");
|
|
if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
|
|
(rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
|
|
printk (KERN_WARNING "RTAS: bad log buffer size %d\n",
|
|
rtas_error_log_max);
|
|
rtas_error_log_max = RTAS_ERROR_LOG_MAX;
|
|
}
|
|
return rtas_error_log_max;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_error_log_max);
|
|
|
|
|
|
static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
|
|
static int rtas_last_error_token;
|
|
|
|
/** Return a copy of the detailed error text associated with the
|
|
* most recent failed call to rtas. Because the error text
|
|
* might go stale if there are any other intervening rtas calls,
|
|
* this routine must be called atomically with whatever produced
|
|
* the error (i.e. with rtas.lock still held from the previous call).
|
|
*/
|
|
static char *__fetch_rtas_last_error(char *altbuf)
|
|
{
|
|
struct rtas_args err_args, save_args;
|
|
u32 bufsz;
|
|
char *buf = NULL;
|
|
|
|
if (rtas_last_error_token == -1)
|
|
return NULL;
|
|
|
|
bufsz = rtas_get_error_log_max();
|
|
|
|
err_args.token = rtas_last_error_token;
|
|
err_args.nargs = 2;
|
|
err_args.nret = 1;
|
|
err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf);
|
|
err_args.args[1] = bufsz;
|
|
err_args.args[2] = 0;
|
|
|
|
save_args = rtas.args;
|
|
rtas.args = err_args;
|
|
|
|
enter_rtas(__pa(&rtas.args));
|
|
|
|
err_args = rtas.args;
|
|
rtas.args = save_args;
|
|
|
|
/* Log the error in the unlikely case that there was one. */
|
|
if (unlikely(err_args.args[2] == 0)) {
|
|
if (altbuf) {
|
|
buf = altbuf;
|
|
} else {
|
|
buf = rtas_err_buf;
|
|
if (mem_init_done)
|
|
buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
|
|
}
|
|
if (buf)
|
|
memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
#define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
|
|
|
|
#else /* CONFIG_RTAS_ERROR_LOGGING */
|
|
#define __fetch_rtas_last_error(x) NULL
|
|
#define get_errorlog_buffer() NULL
|
|
#endif
|
|
|
|
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
|
|
{
|
|
va_list list;
|
|
int i;
|
|
unsigned long s;
|
|
struct rtas_args *rtas_args;
|
|
char *buff_copy = NULL;
|
|
int ret;
|
|
|
|
if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
|
|
return -1;
|
|
|
|
s = lock_rtas();
|
|
rtas_args = &rtas.args;
|
|
|
|
rtas_args->token = token;
|
|
rtas_args->nargs = nargs;
|
|
rtas_args->nret = nret;
|
|
rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]);
|
|
va_start(list, outputs);
|
|
for (i = 0; i < nargs; ++i)
|
|
rtas_args->args[i] = va_arg(list, rtas_arg_t);
|
|
va_end(list);
|
|
|
|
for (i = 0; i < nret; ++i)
|
|
rtas_args->rets[i] = 0;
|
|
|
|
enter_rtas(__pa(rtas_args));
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (rtas_args->rets[0] == -1)
|
|
buff_copy = __fetch_rtas_last_error(NULL);
|
|
|
|
if (nret > 1 && outputs != NULL)
|
|
for (i = 0; i < nret-1; ++i)
|
|
outputs[i] = rtas_args->rets[i+1];
|
|
ret = (nret > 0)? rtas_args->rets[0]: 0;
|
|
|
|
unlock_rtas(s);
|
|
|
|
if (buff_copy) {
|
|
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
|
if (mem_init_done)
|
|
kfree(buff_copy);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rtas_call);
|
|
|
|
/* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status
|
|
* code of 990n, perform the hinted delay of 10^n (last digit) milliseconds.
|
|
*/
|
|
unsigned int rtas_busy_delay_time(int status)
|
|
{
|
|
int order;
|
|
unsigned int ms = 0;
|
|
|
|
if (status == RTAS_BUSY) {
|
|
ms = 1;
|
|
} else if (status >= 9900 && status <= 9905) {
|
|
order = status - 9900;
|
|
for (ms = 1; order > 0; order--)
|
|
ms *= 10;
|
|
}
|
|
|
|
return ms;
|
|
}
|
|
EXPORT_SYMBOL(rtas_busy_delay_time);
|
|
|
|
/* For an RTAS busy status code, perform the hinted delay. */
|
|
unsigned int rtas_busy_delay(int status)
|
|
{
|
|
unsigned int ms;
|
|
|
|
might_sleep();
|
|
ms = rtas_busy_delay_time(status);
|
|
if (ms)
|
|
msleep(ms);
|
|
|
|
return ms;
|
|
}
|
|
EXPORT_SYMBOL(rtas_busy_delay);
|
|
|
|
static int rtas_error_rc(int rtas_rc)
|
|
{
|
|
int rc;
|
|
|
|
switch (rtas_rc) {
|
|
case -1: /* Hardware Error */
|
|
rc = -EIO;
|
|
break;
|
|
case -3: /* Bad indicator/domain/etc */
|
|
rc = -EINVAL;
|
|
break;
|
|
case -9000: /* Isolation error */
|
|
rc = -EFAULT;
|
|
break;
|
|
case -9001: /* Outstanding TCE/PTE */
|
|
rc = -EEXIST;
|
|
break;
|
|
case -9002: /* No usable slot */
|
|
rc = -ENODEV;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unexpected RTAS error %d\n",
|
|
__func__, rtas_rc);
|
|
rc = -ERANGE;
|
|
break;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int rtas_get_power_level(int powerdomain, int *level)
|
|
{
|
|
int token = rtas_token("get-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
|
|
udelay(1);
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_power_level);
|
|
|
|
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
|
|
{
|
|
int token = rtas_token("set-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_set_power_level);
|
|
|
|
int rtas_get_sensor(int sensor, int index, int *state)
|
|
{
|
|
int token = rtas_token("get-sensor-state");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 2, 2, state, sensor, index);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_sensor);
|
|
|
|
bool rtas_indicator_present(int token, int *maxindex)
|
|
{
|
|
int proplen, count, i;
|
|
const struct indicator_elem {
|
|
u32 token;
|
|
u32 maxindex;
|
|
} *indicators;
|
|
|
|
indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
|
|
if (!indicators)
|
|
return false;
|
|
|
|
count = proplen / sizeof(struct indicator_elem);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (indicators[i].token != token)
|
|
continue;
|
|
if (maxindex)
|
|
*maxindex = indicators[i].maxindex;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(rtas_indicator_present);
|
|
|
|
int rtas_set_indicator(int indicator, int index, int new_value)
|
|
{
|
|
int token = rtas_token("set-indicator");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_set_indicator);
|
|
|
|
/*
|
|
* Ignoring RTAS extended delay
|
|
*/
|
|
int rtas_set_indicator_fast(int indicator, int index, int new_value)
|
|
{
|
|
int rc;
|
|
int token = rtas_token("set-indicator");
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
|
|
WARN_ON(rc == -2 || (rc >= 9900 && rc <= 9905));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void rtas_restart(char *cmd)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_RESTART);
|
|
printk("RTAS system-reboot returned %d\n",
|
|
rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
|
|
for (;;);
|
|
}
|
|
|
|
void rtas_power_off(void)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_POWER_OFF);
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
void rtas_halt(void)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_HALT);
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
/* Must be in the RMO region, so we place it here */
|
|
static char rtas_os_term_buf[2048];
|
|
|
|
void rtas_os_term(char *str)
|
|
{
|
|
int status;
|
|
|
|
if (panic_timeout)
|
|
return;
|
|
|
|
if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term"))
|
|
return;
|
|
|
|
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
|
|
|
|
do {
|
|
status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
|
|
__pa(rtas_os_term_buf));
|
|
} while (rtas_busy_delay(status));
|
|
|
|
if (status != 0)
|
|
printk(KERN_EMERG "ibm,os-term call failed %d\n",
|
|
status);
|
|
}
|
|
|
|
static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE;
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
static void rtas_percpu_suspend_me(void *info)
|
|
{
|
|
long rc = H_SUCCESS;
|
|
unsigned long msr_save;
|
|
u16 slb_size = mmu_slb_size;
|
|
int cpu;
|
|
struct rtas_suspend_me_data *data =
|
|
(struct rtas_suspend_me_data *)info;
|
|
|
|
atomic_inc(&data->working);
|
|
|
|
/* really need to ensure MSR.EE is off for H_JOIN */
|
|
msr_save = mfmsr();
|
|
mtmsr(msr_save & ~(MSR_EE));
|
|
|
|
while (rc == H_SUCCESS && !atomic_read(&data->done))
|
|
rc = plpar_hcall_norets(H_JOIN);
|
|
|
|
mtmsr(msr_save);
|
|
|
|
if (rc == H_SUCCESS) {
|
|
/* This cpu was prodded and the suspend is complete. */
|
|
goto out;
|
|
} else if (rc == H_CONTINUE) {
|
|
/* All other cpus are in H_JOIN, this cpu does
|
|
* the suspend.
|
|
*/
|
|
slb_set_size(SLB_MIN_SIZE);
|
|
printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n",
|
|
smp_processor_id());
|
|
data->error = rtas_call(data->token, 0, 1, NULL);
|
|
|
|
if (data->error) {
|
|
printk(KERN_DEBUG "ibm,suspend-me returned %d\n",
|
|
data->error);
|
|
slb_set_size(slb_size);
|
|
}
|
|
} else {
|
|
printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n",
|
|
smp_processor_id(), rc);
|
|
data->error = rc;
|
|
}
|
|
|
|
atomic_set(&data->done, 1);
|
|
|
|
/* This cpu did the suspend or got an error; in either case,
|
|
* we need to prod all other other cpus out of join state.
|
|
* Extra prods are harmless.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
|
|
out:
|
|
if (atomic_dec_return(&data->working) == 0)
|
|
complete(data->complete);
|
|
}
|
|
|
|
static int rtas_ibm_suspend_me(struct rtas_args *args)
|
|
{
|
|
long state;
|
|
long rc;
|
|
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
|
|
struct rtas_suspend_me_data data;
|
|
DECLARE_COMPLETION_ONSTACK(done);
|
|
|
|
if (!rtas_service_present("ibm,suspend-me"))
|
|
return -ENOSYS;
|
|
|
|
/* Make sure the state is valid */
|
|
rc = plpar_hcall(H_VASI_STATE, retbuf,
|
|
((u64)args->args[0] << 32) | args->args[1]);
|
|
|
|
state = retbuf[0];
|
|
|
|
if (rc) {
|
|
printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc);
|
|
return rc;
|
|
} else if (state == H_VASI_ENABLED) {
|
|
args->args[args->nargs] = RTAS_NOT_SUSPENDABLE;
|
|
return 0;
|
|
} else if (state != H_VASI_SUSPENDING) {
|
|
printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n",
|
|
state);
|
|
args->args[args->nargs] = -1;
|
|
return 0;
|
|
}
|
|
|
|
atomic_set(&data.working, 0);
|
|
atomic_set(&data.done, 0);
|
|
data.token = rtas_token("ibm,suspend-me");
|
|
data.error = 0;
|
|
data.complete = &done;
|
|
|
|
/* Call function on all CPUs. One of us will make the
|
|
* rtas call
|
|
*/
|
|
if (on_each_cpu(rtas_percpu_suspend_me, &data, 0))
|
|
data.error = -EINVAL;
|
|
|
|
wait_for_completion(&done);
|
|
|
|
if (data.error != 0)
|
|
printk(KERN_ERR "Error doing global join\n");
|
|
|
|
return data.error;
|
|
}
|
|
#else /* CONFIG_PPC_PSERIES */
|
|
static int rtas_ibm_suspend_me(struct rtas_args *args)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
asmlinkage int ppc_rtas(struct rtas_args __user *uargs)
|
|
{
|
|
struct rtas_args args;
|
|
unsigned long flags;
|
|
char *buff_copy, *errbuf = NULL;
|
|
int nargs;
|
|
int rc;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
|
|
return -EFAULT;
|
|
|
|
nargs = args.nargs;
|
|
if (nargs > ARRAY_SIZE(args.args)
|
|
|| args.nret > ARRAY_SIZE(args.args)
|
|
|| nargs + args.nret > ARRAY_SIZE(args.args))
|
|
return -EINVAL;
|
|
|
|
/* Copy in args. */
|
|
if (copy_from_user(args.args, uargs->args,
|
|
nargs * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
if (args.token == RTAS_UNKNOWN_SERVICE)
|
|
return -EINVAL;
|
|
|
|
args.rets = &args.args[nargs];
|
|
memset(args.rets, 0, args.nret * sizeof(rtas_arg_t));
|
|
|
|
/* Need to handle ibm,suspend_me call specially */
|
|
if (args.token == ibm_suspend_me_token) {
|
|
rc = rtas_ibm_suspend_me(&args);
|
|
if (rc)
|
|
return rc;
|
|
goto copy_return;
|
|
}
|
|
|
|
buff_copy = get_errorlog_buffer();
|
|
|
|
flags = lock_rtas();
|
|
|
|
rtas.args = args;
|
|
enter_rtas(__pa(&rtas.args));
|
|
args = rtas.args;
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (args.rets[0] == -1)
|
|
errbuf = __fetch_rtas_last_error(buff_copy);
|
|
|
|
unlock_rtas(flags);
|
|
|
|
if (buff_copy) {
|
|
if (errbuf)
|
|
log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
|
|
kfree(buff_copy);
|
|
}
|
|
|
|
copy_return:
|
|
/* Copy out args. */
|
|
if (copy_to_user(uargs->args + nargs,
|
|
args.args + nargs,
|
|
args.nret * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Call early during boot, before mem init or bootmem, to retrieve the RTAS
|
|
* informations from the device-tree and allocate the RMO buffer for userland
|
|
* accesses.
|
|
*/
|
|
void __init rtas_initialize(void)
|
|
{
|
|
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
|
|
|
|
/* Get RTAS dev node and fill up our "rtas" structure with infos
|
|
* about it.
|
|
*/
|
|
rtas.dev = of_find_node_by_name(NULL, "rtas");
|
|
if (rtas.dev) {
|
|
const u32 *basep, *entryp, *sizep;
|
|
|
|
basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
|
|
sizep = of_get_property(rtas.dev, "rtas-size", NULL);
|
|
if (basep != NULL && sizep != NULL) {
|
|
rtas.base = *basep;
|
|
rtas.size = *sizep;
|
|
entryp = of_get_property(rtas.dev,
|
|
"linux,rtas-entry", NULL);
|
|
if (entryp == NULL) /* Ugh */
|
|
rtas.entry = rtas.base;
|
|
else
|
|
rtas.entry = *entryp;
|
|
} else
|
|
rtas.dev = NULL;
|
|
}
|
|
if (!rtas.dev)
|
|
return;
|
|
|
|
/* If RTAS was found, allocate the RMO buffer for it and look for
|
|
* the stop-self token if any
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
if (machine_is(pseries) && firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX);
|
|
ibm_suspend_me_token = rtas_token("ibm,suspend-me");
|
|
}
|
|
#endif
|
|
rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region);
|
|
|
|
#ifdef CONFIG_RTAS_ERROR_LOGGING
|
|
rtas_last_error_token = rtas_token("rtas-last-error");
|
|
#endif
|
|
}
|
|
|
|
int __init early_init_dt_scan_rtas(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
u32 *basep, *entryp, *sizep;
|
|
|
|
if (depth != 1 || strcmp(uname, "rtas") != 0)
|
|
return 0;
|
|
|
|
basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
|
|
entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
|
|
sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
|
|
|
|
if (basep && entryp && sizep) {
|
|
rtas.base = *basep;
|
|
rtas.entry = *entryp;
|
|
rtas.size = *sizep;
|
|
}
|
|
|
|
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
|
basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
|
|
if (basep)
|
|
rtas_putchar_token = *basep;
|
|
|
|
basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
|
|
if (basep)
|
|
rtas_getchar_token = *basep;
|
|
|
|
if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
|
|
rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
|
|
udbg_init_rtas_console();
|
|
|
|
#endif
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
static raw_spinlock_t timebase_lock;
|
|
static u64 timebase = 0;
|
|
|
|
void __cpuinit rtas_give_timebase(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
__raw_spin_lock(&timebase_lock);
|
|
rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
|
|
timebase = get_tb();
|
|
__raw_spin_unlock(&timebase_lock);
|
|
|
|
while (timebase)
|
|
barrier();
|
|
rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void __cpuinit rtas_take_timebase(void)
|
|
{
|
|
while (!timebase)
|
|
barrier();
|
|
__raw_spin_lock(&timebase_lock);
|
|
set_tb(timebase >> 32, timebase & 0xffffffff);
|
|
timebase = 0;
|
|
__raw_spin_unlock(&timebase_lock);
|
|
}
|