mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-31 22:15:38 +00:00
6ba92fea1b
It is useless to do it if we're loaded on unsupported hardware so do that only after we have detected at least 1 supported AMD northbridge. Signed-off-by: Borislav Petkov <bp@suse.de>
3042 lines
76 KiB
C
3042 lines
76 KiB
C
#include "amd64_edac.h"
|
|
#include <asm/amd_nb.h>
|
|
|
|
static struct edac_pci_ctl_info *pci_ctl;
|
|
|
|
static int report_gart_errors;
|
|
module_param(report_gart_errors, int, 0644);
|
|
|
|
/*
|
|
* Set by command line parameter. If BIOS has enabled the ECC, this override is
|
|
* cleared to prevent re-enabling the hardware by this driver.
|
|
*/
|
|
static int ecc_enable_override;
|
|
module_param(ecc_enable_override, int, 0644);
|
|
|
|
static struct msr __percpu *msrs;
|
|
|
|
/* Per-node stuff */
|
|
static struct ecc_settings **ecc_stngs;
|
|
|
|
/*
|
|
* Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
|
|
* bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
|
|
* or higher value'.
|
|
*
|
|
*FIXME: Produce a better mapping/linearisation.
|
|
*/
|
|
static const struct scrubrate {
|
|
u32 scrubval; /* bit pattern for scrub rate */
|
|
u32 bandwidth; /* bandwidth consumed (bytes/sec) */
|
|
} scrubrates[] = {
|
|
{ 0x01, 1600000000UL},
|
|
{ 0x02, 800000000UL},
|
|
{ 0x03, 400000000UL},
|
|
{ 0x04, 200000000UL},
|
|
{ 0x05, 100000000UL},
|
|
{ 0x06, 50000000UL},
|
|
{ 0x07, 25000000UL},
|
|
{ 0x08, 12284069UL},
|
|
{ 0x09, 6274509UL},
|
|
{ 0x0A, 3121951UL},
|
|
{ 0x0B, 1560975UL},
|
|
{ 0x0C, 781440UL},
|
|
{ 0x0D, 390720UL},
|
|
{ 0x0E, 195300UL},
|
|
{ 0x0F, 97650UL},
|
|
{ 0x10, 48854UL},
|
|
{ 0x11, 24427UL},
|
|
{ 0x12, 12213UL},
|
|
{ 0x13, 6101UL},
|
|
{ 0x14, 3051UL},
|
|
{ 0x15, 1523UL},
|
|
{ 0x16, 761UL},
|
|
{ 0x00, 0UL}, /* scrubbing off */
|
|
};
|
|
|
|
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
|
|
u32 *val, const char *func)
|
|
{
|
|
int err = 0;
|
|
|
|
err = pci_read_config_dword(pdev, offset, val);
|
|
if (err)
|
|
amd64_warn("%s: error reading F%dx%03x.\n",
|
|
func, PCI_FUNC(pdev->devfn), offset);
|
|
|
|
return err;
|
|
}
|
|
|
|
int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
|
|
u32 val, const char *func)
|
|
{
|
|
int err = 0;
|
|
|
|
err = pci_write_config_dword(pdev, offset, val);
|
|
if (err)
|
|
amd64_warn("%s: error writing to F%dx%03x.\n",
|
|
func, PCI_FUNC(pdev->devfn), offset);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Select DCT to which PCI cfg accesses are routed
|
|
*/
|
|
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
|
|
{
|
|
u32 reg = 0;
|
|
|
|
amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
|
|
reg &= (pvt->model == 0x30) ? ~3 : ~1;
|
|
reg |= dct;
|
|
amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Depending on the family, F2 DCT reads need special handling:
|
|
*
|
|
* K8: has a single DCT only and no address offsets >= 0x100
|
|
*
|
|
* F10h: each DCT has its own set of regs
|
|
* DCT0 -> F2x040..
|
|
* DCT1 -> F2x140..
|
|
*
|
|
* F16h: has only 1 DCT
|
|
*
|
|
* F15h: we select which DCT we access using F1x10C[DctCfgSel]
|
|
*/
|
|
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
|
|
int offset, u32 *val)
|
|
{
|
|
switch (pvt->fam) {
|
|
case 0xf:
|
|
if (dct || offset >= 0x100)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case 0x10:
|
|
if (dct) {
|
|
/*
|
|
* Note: If ganging is enabled, barring the regs
|
|
* F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
|
|
* return 0. (cf. Section 2.8.1 F10h BKDG)
|
|
*/
|
|
if (dct_ganging_enabled(pvt))
|
|
return 0;
|
|
|
|
offset += 0x100;
|
|
}
|
|
break;
|
|
|
|
case 0x15:
|
|
/*
|
|
* F15h: F2x1xx addresses do not map explicitly to DCT1.
|
|
* We should select which DCT we access using F1x10C[DctCfgSel]
|
|
*/
|
|
dct = (dct && pvt->model == 0x30) ? 3 : dct;
|
|
f15h_select_dct(pvt, dct);
|
|
break;
|
|
|
|
case 0x16:
|
|
if (dct)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return amd64_read_pci_cfg(pvt->F2, offset, val);
|
|
}
|
|
|
|
/*
|
|
* Memory scrubber control interface. For K8, memory scrubbing is handled by
|
|
* hardware and can involve L2 cache, dcache as well as the main memory. With
|
|
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
|
|
* functionality.
|
|
*
|
|
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
|
|
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
|
|
* bytes/sec for the setting.
|
|
*
|
|
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
|
|
* other archs, we might not have access to the caches directly.
|
|
*/
|
|
|
|
/*
|
|
* scan the scrub rate mapping table for a close or matching bandwidth value to
|
|
* issue. If requested is too big, then use last maximum value found.
|
|
*/
|
|
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
|
|
{
|
|
u32 scrubval;
|
|
int i;
|
|
|
|
/*
|
|
* map the configured rate (new_bw) to a value specific to the AMD64
|
|
* memory controller and apply to register. Search for the first
|
|
* bandwidth entry that is greater or equal than the setting requested
|
|
* and program that. If at last entry, turn off DRAM scrubbing.
|
|
*
|
|
* If no suitable bandwidth is found, turn off DRAM scrubbing entirely
|
|
* by falling back to the last element in scrubrates[].
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
|
|
/*
|
|
* skip scrub rates which aren't recommended
|
|
* (see F10 BKDG, F3x58)
|
|
*/
|
|
if (scrubrates[i].scrubval < min_rate)
|
|
continue;
|
|
|
|
if (scrubrates[i].bandwidth <= new_bw)
|
|
break;
|
|
}
|
|
|
|
scrubval = scrubrates[i].scrubval;
|
|
|
|
if (pvt->fam == 0x15 && pvt->model == 0x60) {
|
|
f15h_select_dct(pvt, 0);
|
|
pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
|
|
f15h_select_dct(pvt, 1);
|
|
pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
|
|
} else {
|
|
pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
|
|
}
|
|
|
|
if (scrubval)
|
|
return scrubrates[i].bandwidth;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u32 min_scrubrate = 0x5;
|
|
|
|
if (pvt->fam == 0xf)
|
|
min_scrubrate = 0x0;
|
|
|
|
if (pvt->fam == 0x15) {
|
|
/* Erratum #505 */
|
|
if (pvt->model < 0x10)
|
|
f15h_select_dct(pvt, 0);
|
|
|
|
if (pvt->model == 0x60)
|
|
min_scrubrate = 0x6;
|
|
}
|
|
return __set_scrub_rate(pvt, bw, min_scrubrate);
|
|
}
|
|
|
|
static int get_scrub_rate(struct mem_ctl_info *mci)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u32 scrubval = 0;
|
|
int i, retval = -EINVAL;
|
|
|
|
if (pvt->fam == 0x15) {
|
|
/* Erratum #505 */
|
|
if (pvt->model < 0x10)
|
|
f15h_select_dct(pvt, 0);
|
|
|
|
if (pvt->model == 0x60)
|
|
amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
|
|
} else
|
|
amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
|
|
|
|
scrubval = scrubval & 0x001F;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
|
|
if (scrubrates[i].scrubval == scrubval) {
|
|
retval = scrubrates[i].bandwidth;
|
|
break;
|
|
}
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* returns true if the SysAddr given by sys_addr matches the
|
|
* DRAM base/limit associated with node_id
|
|
*/
|
|
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
|
|
{
|
|
u64 addr;
|
|
|
|
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
|
|
* all ones if the most significant implemented address bit is 1.
|
|
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
|
|
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
|
|
* Application Programming.
|
|
*/
|
|
addr = sys_addr & 0x000000ffffffffffull;
|
|
|
|
return ((addr >= get_dram_base(pvt, nid)) &&
|
|
(addr <= get_dram_limit(pvt, nid)));
|
|
}
|
|
|
|
/*
|
|
* Attempt to map a SysAddr to a node. On success, return a pointer to the
|
|
* mem_ctl_info structure for the node that the SysAddr maps to.
|
|
*
|
|
* On failure, return NULL.
|
|
*/
|
|
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
|
|
u64 sys_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
u8 node_id;
|
|
u32 intlv_en, bits;
|
|
|
|
/*
|
|
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
|
|
* 3.4.4.2) registers to map the SysAddr to a node ID.
|
|
*/
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* The value of this field should be the same for all DRAM Base
|
|
* registers. Therefore we arbitrarily choose to read it from the
|
|
* register for node 0.
|
|
*/
|
|
intlv_en = dram_intlv_en(pvt, 0);
|
|
|
|
if (intlv_en == 0) {
|
|
for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
|
|
if (base_limit_match(pvt, sys_addr, node_id))
|
|
goto found;
|
|
}
|
|
goto err_no_match;
|
|
}
|
|
|
|
if (unlikely((intlv_en != 0x01) &&
|
|
(intlv_en != 0x03) &&
|
|
(intlv_en != 0x07))) {
|
|
amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
|
|
return NULL;
|
|
}
|
|
|
|
bits = (((u32) sys_addr) >> 12) & intlv_en;
|
|
|
|
for (node_id = 0; ; ) {
|
|
if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
|
|
break; /* intlv_sel field matches */
|
|
|
|
if (++node_id >= DRAM_RANGES)
|
|
goto err_no_match;
|
|
}
|
|
|
|
/* sanity test for sys_addr */
|
|
if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
|
|
amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
|
|
"range for node %d with node interleaving enabled.\n",
|
|
__func__, sys_addr, node_id);
|
|
return NULL;
|
|
}
|
|
|
|
found:
|
|
return edac_mc_find((int)node_id);
|
|
|
|
err_no_match:
|
|
edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
|
|
(unsigned long)sys_addr);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* compute the CS base address of the @csrow on the DRAM controller @dct.
|
|
* For details see F2x[5C:40] in the processor's BKDG
|
|
*/
|
|
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
|
|
u64 *base, u64 *mask)
|
|
{
|
|
u64 csbase, csmask, base_bits, mask_bits;
|
|
u8 addr_shift;
|
|
|
|
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
|
|
csbase = pvt->csels[dct].csbases[csrow];
|
|
csmask = pvt->csels[dct].csmasks[csrow];
|
|
base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
|
|
mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
|
|
addr_shift = 4;
|
|
|
|
/*
|
|
* F16h and F15h, models 30h and later need two addr_shift values:
|
|
* 8 for high and 6 for low (cf. F16h BKDG).
|
|
*/
|
|
} else if (pvt->fam == 0x16 ||
|
|
(pvt->fam == 0x15 && pvt->model >= 0x30)) {
|
|
csbase = pvt->csels[dct].csbases[csrow];
|
|
csmask = pvt->csels[dct].csmasks[csrow >> 1];
|
|
|
|
*base = (csbase & GENMASK_ULL(15, 5)) << 6;
|
|
*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
|
|
|
|
*mask = ~0ULL;
|
|
/* poke holes for the csmask */
|
|
*mask &= ~((GENMASK_ULL(15, 5) << 6) |
|
|
(GENMASK_ULL(30, 19) << 8));
|
|
|
|
*mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
|
|
*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
|
|
|
|
return;
|
|
} else {
|
|
csbase = pvt->csels[dct].csbases[csrow];
|
|
csmask = pvt->csels[dct].csmasks[csrow >> 1];
|
|
addr_shift = 8;
|
|
|
|
if (pvt->fam == 0x15)
|
|
base_bits = mask_bits =
|
|
GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
|
|
else
|
|
base_bits = mask_bits =
|
|
GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
|
|
}
|
|
|
|
*base = (csbase & base_bits) << addr_shift;
|
|
|
|
*mask = ~0ULL;
|
|
/* poke holes for the csmask */
|
|
*mask &= ~(mask_bits << addr_shift);
|
|
/* OR them in */
|
|
*mask |= (csmask & mask_bits) << addr_shift;
|
|
}
|
|
|
|
#define for_each_chip_select(i, dct, pvt) \
|
|
for (i = 0; i < pvt->csels[dct].b_cnt; i++)
|
|
|
|
#define chip_select_base(i, dct, pvt) \
|
|
pvt->csels[dct].csbases[i]
|
|
|
|
#define for_each_chip_select_mask(i, dct, pvt) \
|
|
for (i = 0; i < pvt->csels[dct].m_cnt; i++)
|
|
|
|
/*
|
|
* @input_addr is an InputAddr associated with the node given by mci. Return the
|
|
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
|
|
*/
|
|
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int csrow;
|
|
u64 base, mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
for_each_chip_select(csrow, 0, pvt) {
|
|
if (!csrow_enabled(csrow, 0, pvt))
|
|
continue;
|
|
|
|
get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
|
|
|
|
mask = ~mask;
|
|
|
|
if ((input_addr & mask) == (base & mask)) {
|
|
edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
|
|
(unsigned long)input_addr, csrow,
|
|
pvt->mc_node_id);
|
|
|
|
return csrow;
|
|
}
|
|
}
|
|
edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
|
|
(unsigned long)input_addr, pvt->mc_node_id);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
|
|
* for the node represented by mci. Info is passed back in *hole_base,
|
|
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
|
|
* info is invalid. Info may be invalid for either of the following reasons:
|
|
*
|
|
* - The revision of the node is not E or greater. In this case, the DRAM Hole
|
|
* Address Register does not exist.
|
|
*
|
|
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
|
|
* indicating that its contents are not valid.
|
|
*
|
|
* The values passed back in *hole_base, *hole_offset, and *hole_size are
|
|
* complete 32-bit values despite the fact that the bitfields in the DHAR
|
|
* only represent bits 31-24 of the base and offset values.
|
|
*/
|
|
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
|
|
u64 *hole_offset, u64 *hole_size)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
/* only revE and later have the DRAM Hole Address Register */
|
|
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
|
|
edac_dbg(1, " revision %d for node %d does not support DHAR\n",
|
|
pvt->ext_model, pvt->mc_node_id);
|
|
return 1;
|
|
}
|
|
|
|
/* valid for Fam10h and above */
|
|
if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
|
|
edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
|
|
return 1;
|
|
}
|
|
|
|
if (!dhar_valid(pvt)) {
|
|
edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
|
|
pvt->mc_node_id);
|
|
return 1;
|
|
}
|
|
|
|
/* This node has Memory Hoisting */
|
|
|
|
/* +------------------+--------------------+--------------------+-----
|
|
* | memory | DRAM hole | relocated |
|
|
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
|
|
* | | | DRAM hole |
|
|
* | | | [0x100000000, |
|
|
* | | | (0x100000000+ |
|
|
* | | | (0xffffffff-x))] |
|
|
* +------------------+--------------------+--------------------+-----
|
|
*
|
|
* Above is a diagram of physical memory showing the DRAM hole and the
|
|
* relocated addresses from the DRAM hole. As shown, the DRAM hole
|
|
* starts at address x (the base address) and extends through address
|
|
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
|
|
* addresses in the hole so that they start at 0x100000000.
|
|
*/
|
|
|
|
*hole_base = dhar_base(pvt);
|
|
*hole_size = (1ULL << 32) - *hole_base;
|
|
|
|
*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
|
|
: k8_dhar_offset(pvt);
|
|
|
|
edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
|
|
pvt->mc_node_id, (unsigned long)*hole_base,
|
|
(unsigned long)*hole_offset, (unsigned long)*hole_size);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
|
|
|
|
/*
|
|
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
|
|
* assumed that sys_addr maps to the node given by mci.
|
|
*
|
|
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
|
|
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
|
|
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
|
|
* then it is also involved in translating a SysAddr to a DramAddr. Sections
|
|
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
|
|
* These parts of the documentation are unclear. I interpret them as follows:
|
|
*
|
|
* When node n receives a SysAddr, it processes the SysAddr as follows:
|
|
*
|
|
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
|
|
* Limit registers for node n. If the SysAddr is not within the range
|
|
* specified by the base and limit values, then node n ignores the Sysaddr
|
|
* (since it does not map to node n). Otherwise continue to step 2 below.
|
|
*
|
|
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
|
|
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
|
|
* the range of relocated addresses (starting at 0x100000000) from the DRAM
|
|
* hole. If not, skip to step 3 below. Else get the value of the
|
|
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
|
|
* offset defined by this value from the SysAddr.
|
|
*
|
|
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
|
|
* Base register for node n. To obtain the DramAddr, subtract the base
|
|
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
|
|
*/
|
|
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
|
|
int ret;
|
|
|
|
dram_base = get_dram_base(pvt, pvt->mc_node_id);
|
|
|
|
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
|
|
&hole_size);
|
|
if (!ret) {
|
|
if ((sys_addr >= (1ULL << 32)) &&
|
|
(sys_addr < ((1ULL << 32) + hole_size))) {
|
|
/* use DHAR to translate SysAddr to DramAddr */
|
|
dram_addr = sys_addr - hole_offset;
|
|
|
|
edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
|
|
(unsigned long)sys_addr,
|
|
(unsigned long)dram_addr);
|
|
|
|
return dram_addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Translate the SysAddr to a DramAddr as shown near the start of
|
|
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
|
|
* only deals with 40-bit values. Therefore we discard bits 63-40 of
|
|
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
|
|
* discard are all 1s. Otherwise the bits we discard are all 0s. See
|
|
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
|
|
* Programmer's Manual Volume 1 Application Programming.
|
|
*/
|
|
dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
|
|
|
|
edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
|
|
(unsigned long)sys_addr, (unsigned long)dram_addr);
|
|
return dram_addr;
|
|
}
|
|
|
|
/*
|
|
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
|
|
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
|
|
* for node interleaving.
|
|
*/
|
|
static int num_node_interleave_bits(unsigned intlv_en)
|
|
{
|
|
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
|
|
int n;
|
|
|
|
BUG_ON(intlv_en > 7);
|
|
n = intlv_shift_table[intlv_en];
|
|
return n;
|
|
}
|
|
|
|
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
|
|
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
|
|
{
|
|
struct amd64_pvt *pvt;
|
|
int intlv_shift;
|
|
u64 input_addr;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
|
|
* concerning translating a DramAddr to an InputAddr.
|
|
*/
|
|
intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
|
|
input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
|
|
(dram_addr & 0xfff);
|
|
|
|
edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
|
|
intlv_shift, (unsigned long)dram_addr,
|
|
(unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
/*
|
|
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
|
|
* assumed that @sys_addr maps to the node given by mci.
|
|
*/
|
|
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
u64 input_addr;
|
|
|
|
input_addr =
|
|
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
|
|
|
|
edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
|
|
(unsigned long)sys_addr, (unsigned long)input_addr);
|
|
|
|
return input_addr;
|
|
}
|
|
|
|
/* Map the Error address to a PAGE and PAGE OFFSET. */
|
|
static inline void error_address_to_page_and_offset(u64 error_address,
|
|
struct err_info *err)
|
|
{
|
|
err->page = (u32) (error_address >> PAGE_SHIFT);
|
|
err->offset = ((u32) error_address) & ~PAGE_MASK;
|
|
}
|
|
|
|
/*
|
|
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
|
|
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
|
|
* of a node that detected an ECC memory error. mci represents the node that
|
|
* the error address maps to (possibly different from the node that detected
|
|
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
|
|
* error.
|
|
*/
|
|
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
|
|
{
|
|
int csrow;
|
|
|
|
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
|
|
|
|
if (csrow == -1)
|
|
amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
|
|
"address 0x%lx\n", (unsigned long)sys_addr);
|
|
return csrow;
|
|
}
|
|
|
|
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
|
|
|
|
/*
|
|
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
|
|
* are ECC capable.
|
|
*/
|
|
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
|
|
{
|
|
u8 bit;
|
|
unsigned long edac_cap = EDAC_FLAG_NONE;
|
|
|
|
bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
|
|
? 19
|
|
: 17;
|
|
|
|
if (pvt->dclr0 & BIT(bit))
|
|
edac_cap = EDAC_FLAG_SECDED;
|
|
|
|
return edac_cap;
|
|
}
|
|
|
|
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
|
|
|
|
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
|
|
{
|
|
edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
|
|
|
|
if (pvt->dram_type == MEM_LRDDR3) {
|
|
u32 dcsm = pvt->csels[chan].csmasks[0];
|
|
/*
|
|
* It's assumed all LRDIMMs in a DCT are going to be of
|
|
* same 'type' until proven otherwise. So, use a cs
|
|
* value of '0' here to get dcsm value.
|
|
*/
|
|
edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
|
|
}
|
|
|
|
edac_dbg(1, "All DIMMs support ECC:%s\n",
|
|
(dclr & BIT(19)) ? "yes" : "no");
|
|
|
|
|
|
edac_dbg(1, " PAR/ERR parity: %s\n",
|
|
(dclr & BIT(8)) ? "enabled" : "disabled");
|
|
|
|
if (pvt->fam == 0x10)
|
|
edac_dbg(1, " DCT 128bit mode width: %s\n",
|
|
(dclr & BIT(11)) ? "128b" : "64b");
|
|
|
|
edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
|
|
(dclr & BIT(12)) ? "yes" : "no",
|
|
(dclr & BIT(13)) ? "yes" : "no",
|
|
(dclr & BIT(14)) ? "yes" : "no",
|
|
(dclr & BIT(15)) ? "yes" : "no");
|
|
}
|
|
|
|
/* Display and decode various NB registers for debug purposes. */
|
|
static void dump_misc_regs(struct amd64_pvt *pvt)
|
|
{
|
|
edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
|
|
|
|
edac_dbg(1, " NB two channel DRAM capable: %s\n",
|
|
(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
|
|
|
|
edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
|
|
(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
|
|
(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
|
|
|
|
debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
|
|
|
|
edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
|
|
|
|
edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
|
|
pvt->dhar, dhar_base(pvt),
|
|
(pvt->fam == 0xf) ? k8_dhar_offset(pvt)
|
|
: f10_dhar_offset(pvt));
|
|
|
|
edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
|
|
|
|
debug_display_dimm_sizes(pvt, 0);
|
|
|
|
/* everything below this point is Fam10h and above */
|
|
if (pvt->fam == 0xf)
|
|
return;
|
|
|
|
debug_display_dimm_sizes(pvt, 1);
|
|
|
|
amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
|
|
|
|
/* Only if NOT ganged does dclr1 have valid info */
|
|
if (!dct_ganging_enabled(pvt))
|
|
debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
|
|
}
|
|
|
|
/*
|
|
* See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
|
|
*/
|
|
static void prep_chip_selects(struct amd64_pvt *pvt)
|
|
{
|
|
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
|
|
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
|
|
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
|
|
} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
|
|
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
|
|
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
|
|
} else {
|
|
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
|
|
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
|
|
*/
|
|
static void read_dct_base_mask(struct amd64_pvt *pvt)
|
|
{
|
|
int cs;
|
|
|
|
prep_chip_selects(pvt);
|
|
|
|
for_each_chip_select(cs, 0, pvt) {
|
|
int reg0 = DCSB0 + (cs * 4);
|
|
int reg1 = DCSB1 + (cs * 4);
|
|
u32 *base0 = &pvt->csels[0].csbases[cs];
|
|
u32 *base1 = &pvt->csels[1].csbases[cs];
|
|
|
|
if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
|
|
edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
|
|
cs, *base0, reg0);
|
|
|
|
if (pvt->fam == 0xf)
|
|
continue;
|
|
|
|
if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
|
|
edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
|
|
cs, *base1, (pvt->fam == 0x10) ? reg1
|
|
: reg0);
|
|
}
|
|
|
|
for_each_chip_select_mask(cs, 0, pvt) {
|
|
int reg0 = DCSM0 + (cs * 4);
|
|
int reg1 = DCSM1 + (cs * 4);
|
|
u32 *mask0 = &pvt->csels[0].csmasks[cs];
|
|
u32 *mask1 = &pvt->csels[1].csmasks[cs];
|
|
|
|
if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
|
|
edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
|
|
cs, *mask0, reg0);
|
|
|
|
if (pvt->fam == 0xf)
|
|
continue;
|
|
|
|
if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
|
|
edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
|
|
cs, *mask1, (pvt->fam == 0x10) ? reg1
|
|
: reg0);
|
|
}
|
|
}
|
|
|
|
static void determine_memory_type(struct amd64_pvt *pvt)
|
|
{
|
|
u32 dram_ctrl, dcsm;
|
|
|
|
switch (pvt->fam) {
|
|
case 0xf:
|
|
if (pvt->ext_model >= K8_REV_F)
|
|
goto ddr3;
|
|
|
|
pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
|
|
return;
|
|
|
|
case 0x10:
|
|
if (pvt->dchr0 & DDR3_MODE)
|
|
goto ddr3;
|
|
|
|
pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
|
|
return;
|
|
|
|
case 0x15:
|
|
if (pvt->model < 0x60)
|
|
goto ddr3;
|
|
|
|
/*
|
|
* Model 0x60h needs special handling:
|
|
*
|
|
* We use a Chip Select value of '0' to obtain dcsm.
|
|
* Theoretically, it is possible to populate LRDIMMs of different
|
|
* 'Rank' value on a DCT. But this is not the common case. So,
|
|
* it's reasonable to assume all DIMMs are going to be of same
|
|
* 'type' until proven otherwise.
|
|
*/
|
|
amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
|
|
dcsm = pvt->csels[0].csmasks[0];
|
|
|
|
if (((dram_ctrl >> 8) & 0x7) == 0x2)
|
|
pvt->dram_type = MEM_DDR4;
|
|
else if (pvt->dclr0 & BIT(16))
|
|
pvt->dram_type = MEM_DDR3;
|
|
else if (dcsm & 0x3)
|
|
pvt->dram_type = MEM_LRDDR3;
|
|
else
|
|
pvt->dram_type = MEM_RDDR3;
|
|
|
|
return;
|
|
|
|
case 0x16:
|
|
goto ddr3;
|
|
|
|
default:
|
|
WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
|
|
pvt->dram_type = MEM_EMPTY;
|
|
}
|
|
return;
|
|
|
|
ddr3:
|
|
pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
|
|
}
|
|
|
|
/* Get the number of DCT channels the memory controller is using. */
|
|
static int k8_early_channel_count(struct amd64_pvt *pvt)
|
|
{
|
|
int flag;
|
|
|
|
if (pvt->ext_model >= K8_REV_F)
|
|
/* RevF (NPT) and later */
|
|
flag = pvt->dclr0 & WIDTH_128;
|
|
else
|
|
/* RevE and earlier */
|
|
flag = pvt->dclr0 & REVE_WIDTH_128;
|
|
|
|
/* not used */
|
|
pvt->dclr1 = 0;
|
|
|
|
return (flag) ? 2 : 1;
|
|
}
|
|
|
|
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
|
|
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
|
|
{
|
|
u16 mce_nid = amd_get_nb_id(m->extcpu);
|
|
struct mem_ctl_info *mci;
|
|
u8 start_bit = 1;
|
|
u8 end_bit = 47;
|
|
u64 addr;
|
|
|
|
mci = edac_mc_find(mce_nid);
|
|
if (!mci)
|
|
return 0;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
if (pvt->fam == 0xf) {
|
|
start_bit = 3;
|
|
end_bit = 39;
|
|
}
|
|
|
|
addr = m->addr & GENMASK_ULL(end_bit, start_bit);
|
|
|
|
/*
|
|
* Erratum 637 workaround
|
|
*/
|
|
if (pvt->fam == 0x15) {
|
|
u64 cc6_base, tmp_addr;
|
|
u32 tmp;
|
|
u8 intlv_en;
|
|
|
|
if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
|
|
return addr;
|
|
|
|
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
|
|
intlv_en = tmp >> 21 & 0x7;
|
|
|
|
/* add [47:27] + 3 trailing bits */
|
|
cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
|
|
|
|
/* reverse and add DramIntlvEn */
|
|
cc6_base |= intlv_en ^ 0x7;
|
|
|
|
/* pin at [47:24] */
|
|
cc6_base <<= 24;
|
|
|
|
if (!intlv_en)
|
|
return cc6_base | (addr & GENMASK_ULL(23, 0));
|
|
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
|
|
|
|
/* faster log2 */
|
|
tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
|
|
|
|
/* OR DramIntlvSel into bits [14:12] */
|
|
tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
|
|
|
|
/* add remaining [11:0] bits from original MC4_ADDR */
|
|
tmp_addr |= addr & GENMASK_ULL(11, 0);
|
|
|
|
return cc6_base | tmp_addr;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static struct pci_dev *pci_get_related_function(unsigned int vendor,
|
|
unsigned int device,
|
|
struct pci_dev *related)
|
|
{
|
|
struct pci_dev *dev = NULL;
|
|
|
|
while ((dev = pci_get_device(vendor, device, dev))) {
|
|
if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
|
|
(dev->bus->number == related->bus->number) &&
|
|
(PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
|
|
break;
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
|
|
{
|
|
struct amd_northbridge *nb;
|
|
struct pci_dev *f1 = NULL;
|
|
unsigned int pci_func;
|
|
int off = range << 3;
|
|
u32 llim;
|
|
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
|
|
|
|
if (pvt->fam == 0xf)
|
|
return;
|
|
|
|
if (!dram_rw(pvt, range))
|
|
return;
|
|
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
|
|
|
|
/* F15h: factor in CC6 save area by reading dst node's limit reg */
|
|
if (pvt->fam != 0x15)
|
|
return;
|
|
|
|
nb = node_to_amd_nb(dram_dst_node(pvt, range));
|
|
if (WARN_ON(!nb))
|
|
return;
|
|
|
|
if (pvt->model == 0x60)
|
|
pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
|
|
else if (pvt->model == 0x30)
|
|
pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
|
|
else
|
|
pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
|
|
|
|
f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
|
|
if (WARN_ON(!f1))
|
|
return;
|
|
|
|
amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
|
|
|
|
pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
|
|
|
|
/* {[39:27],111b} */
|
|
pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
|
|
|
|
pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
|
|
|
|
/* [47:40] */
|
|
pvt->ranges[range].lim.hi |= llim >> 13;
|
|
|
|
pci_dev_put(f1);
|
|
}
|
|
|
|
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
|
|
struct err_info *err)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
error_address_to_page_and_offset(sys_addr, err);
|
|
|
|
/*
|
|
* Find out which node the error address belongs to. This may be
|
|
* different from the node that detected the error.
|
|
*/
|
|
err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
|
|
if (!err->src_mci) {
|
|
amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
|
|
(unsigned long)sys_addr);
|
|
err->err_code = ERR_NODE;
|
|
return;
|
|
}
|
|
|
|
/* Now map the sys_addr to a CSROW */
|
|
err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
|
|
if (err->csrow < 0) {
|
|
err->err_code = ERR_CSROW;
|
|
return;
|
|
}
|
|
|
|
/* CHIPKILL enabled */
|
|
if (pvt->nbcfg & NBCFG_CHIPKILL) {
|
|
err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
|
|
if (err->channel < 0) {
|
|
/*
|
|
* Syndrome didn't map, so we don't know which of the
|
|
* 2 DIMMs is in error. So we need to ID 'both' of them
|
|
* as suspect.
|
|
*/
|
|
amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
|
|
"possible error reporting race\n",
|
|
err->syndrome);
|
|
err->err_code = ERR_CHANNEL;
|
|
return;
|
|
}
|
|
} else {
|
|
/*
|
|
* non-chipkill ecc mode
|
|
*
|
|
* The k8 documentation is unclear about how to determine the
|
|
* channel number when using non-chipkill memory. This method
|
|
* was obtained from email communication with someone at AMD.
|
|
* (Wish the email was placed in this comment - norsk)
|
|
*/
|
|
err->channel = ((sys_addr & BIT(3)) != 0);
|
|
}
|
|
}
|
|
|
|
static int ddr2_cs_size(unsigned i, bool dct_width)
|
|
{
|
|
unsigned shift = 0;
|
|
|
|
if (i <= 2)
|
|
shift = i;
|
|
else if (!(i & 0x1))
|
|
shift = i >> 1;
|
|
else
|
|
shift = (i + 1) >> 1;
|
|
|
|
return 128 << (shift + !!dct_width);
|
|
}
|
|
|
|
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
|
|
unsigned cs_mode, int cs_mask_nr)
|
|
{
|
|
u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
|
|
|
|
if (pvt->ext_model >= K8_REV_F) {
|
|
WARN_ON(cs_mode > 11);
|
|
return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
|
|
}
|
|
else if (pvt->ext_model >= K8_REV_D) {
|
|
unsigned diff;
|
|
WARN_ON(cs_mode > 10);
|
|
|
|
/*
|
|
* the below calculation, besides trying to win an obfuscated C
|
|
* contest, maps cs_mode values to DIMM chip select sizes. The
|
|
* mappings are:
|
|
*
|
|
* cs_mode CS size (mb)
|
|
* ======= ============
|
|
* 0 32
|
|
* 1 64
|
|
* 2 128
|
|
* 3 128
|
|
* 4 256
|
|
* 5 512
|
|
* 6 256
|
|
* 7 512
|
|
* 8 1024
|
|
* 9 1024
|
|
* 10 2048
|
|
*
|
|
* Basically, it calculates a value with which to shift the
|
|
* smallest CS size of 32MB.
|
|
*
|
|
* ddr[23]_cs_size have a similar purpose.
|
|
*/
|
|
diff = cs_mode/3 + (unsigned)(cs_mode > 5);
|
|
|
|
return 32 << (cs_mode - diff);
|
|
}
|
|
else {
|
|
WARN_ON(cs_mode > 6);
|
|
return 32 << cs_mode;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the number of DCT channels in use.
|
|
*
|
|
* Return:
|
|
* number of Memory Channels in operation
|
|
* Pass back:
|
|
* contents of the DCL0_LOW register
|
|
*/
|
|
static int f1x_early_channel_count(struct amd64_pvt *pvt)
|
|
{
|
|
int i, j, channels = 0;
|
|
|
|
/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
|
|
if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
|
|
return 2;
|
|
|
|
/*
|
|
* Need to check if in unganged mode: In such, there are 2 channels,
|
|
* but they are not in 128 bit mode and thus the above 'dclr0' status
|
|
* bit will be OFF.
|
|
*
|
|
* Need to check DCT0[0] and DCT1[0] to see if only one of them has
|
|
* their CSEnable bit on. If so, then SINGLE DIMM case.
|
|
*/
|
|
edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
|
|
|
|
/*
|
|
* Check DRAM Bank Address Mapping values for each DIMM to see if there
|
|
* is more than just one DIMM present in unganged mode. Need to check
|
|
* both controllers since DIMMs can be placed in either one.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
if (DBAM_DIMM(j, dbam) > 0) {
|
|
channels++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (channels > 2)
|
|
channels = 2;
|
|
|
|
amd64_info("MCT channel count: %d\n", channels);
|
|
|
|
return channels;
|
|
}
|
|
|
|
static int ddr3_cs_size(unsigned i, bool dct_width)
|
|
{
|
|
unsigned shift = 0;
|
|
int cs_size = 0;
|
|
|
|
if (i == 0 || i == 3 || i == 4)
|
|
cs_size = -1;
|
|
else if (i <= 2)
|
|
shift = i;
|
|
else if (i == 12)
|
|
shift = 7;
|
|
else if (!(i & 0x1))
|
|
shift = i >> 1;
|
|
else
|
|
shift = (i + 1) >> 1;
|
|
|
|
if (cs_size != -1)
|
|
cs_size = (128 * (1 << !!dct_width)) << shift;
|
|
|
|
return cs_size;
|
|
}
|
|
|
|
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
|
|
{
|
|
unsigned shift = 0;
|
|
int cs_size = 0;
|
|
|
|
if (i < 4 || i == 6)
|
|
cs_size = -1;
|
|
else if (i == 12)
|
|
shift = 7;
|
|
else if (!(i & 0x1))
|
|
shift = i >> 1;
|
|
else
|
|
shift = (i + 1) >> 1;
|
|
|
|
if (cs_size != -1)
|
|
cs_size = rank_multiply * (128 << shift);
|
|
|
|
return cs_size;
|
|
}
|
|
|
|
static int ddr4_cs_size(unsigned i)
|
|
{
|
|
int cs_size = 0;
|
|
|
|
if (i == 0)
|
|
cs_size = -1;
|
|
else if (i == 1)
|
|
cs_size = 1024;
|
|
else
|
|
/* Min cs_size = 1G */
|
|
cs_size = 1024 * (1 << (i >> 1));
|
|
|
|
return cs_size;
|
|
}
|
|
|
|
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
|
|
unsigned cs_mode, int cs_mask_nr)
|
|
{
|
|
u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
|
|
|
|
WARN_ON(cs_mode > 11);
|
|
|
|
if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
|
|
return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
|
|
else
|
|
return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
|
|
}
|
|
|
|
/*
|
|
* F15h supports only 64bit DCT interfaces
|
|
*/
|
|
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
|
|
unsigned cs_mode, int cs_mask_nr)
|
|
{
|
|
WARN_ON(cs_mode > 12);
|
|
|
|
return ddr3_cs_size(cs_mode, false);
|
|
}
|
|
|
|
/* F15h M60h supports DDR4 mapping as well.. */
|
|
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
|
|
unsigned cs_mode, int cs_mask_nr)
|
|
{
|
|
int cs_size;
|
|
u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
|
|
|
|
WARN_ON(cs_mode > 12);
|
|
|
|
if (pvt->dram_type == MEM_DDR4) {
|
|
if (cs_mode > 9)
|
|
return -1;
|
|
|
|
cs_size = ddr4_cs_size(cs_mode);
|
|
} else if (pvt->dram_type == MEM_LRDDR3) {
|
|
unsigned rank_multiply = dcsm & 0xf;
|
|
|
|
if (rank_multiply == 3)
|
|
rank_multiply = 4;
|
|
cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
|
|
} else {
|
|
/* Minimum cs size is 512mb for F15hM60h*/
|
|
if (cs_mode == 0x1)
|
|
return -1;
|
|
|
|
cs_size = ddr3_cs_size(cs_mode, false);
|
|
}
|
|
|
|
return cs_size;
|
|
}
|
|
|
|
/*
|
|
* F16h and F15h model 30h have only limited cs_modes.
|
|
*/
|
|
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
|
|
unsigned cs_mode, int cs_mask_nr)
|
|
{
|
|
WARN_ON(cs_mode > 12);
|
|
|
|
if (cs_mode == 6 || cs_mode == 8 ||
|
|
cs_mode == 9 || cs_mode == 12)
|
|
return -1;
|
|
else
|
|
return ddr3_cs_size(cs_mode, false);
|
|
}
|
|
|
|
static void read_dram_ctl_register(struct amd64_pvt *pvt)
|
|
{
|
|
|
|
if (pvt->fam == 0xf)
|
|
return;
|
|
|
|
if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
|
|
edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
|
|
pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
|
|
|
|
edac_dbg(0, " DCTs operate in %s mode\n",
|
|
(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
|
|
|
|
if (!dct_ganging_enabled(pvt))
|
|
edac_dbg(0, " Address range split per DCT: %s\n",
|
|
(dct_high_range_enabled(pvt) ? "yes" : "no"));
|
|
|
|
edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
|
|
(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
|
|
(dct_memory_cleared(pvt) ? "yes" : "no"));
|
|
|
|
edac_dbg(0, " channel interleave: %s, "
|
|
"interleave bits selector: 0x%x\n",
|
|
(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
|
|
dct_sel_interleave_addr(pvt));
|
|
}
|
|
|
|
amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
|
|
}
|
|
|
|
/*
|
|
* Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
|
|
* 2.10.12 Memory Interleaving Modes).
|
|
*/
|
|
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
|
|
u8 intlv_en, int num_dcts_intlv,
|
|
u32 dct_sel)
|
|
{
|
|
u8 channel = 0;
|
|
u8 select;
|
|
|
|
if (!(intlv_en))
|
|
return (u8)(dct_sel);
|
|
|
|
if (num_dcts_intlv == 2) {
|
|
select = (sys_addr >> 8) & 0x3;
|
|
channel = select ? 0x3 : 0;
|
|
} else if (num_dcts_intlv == 4) {
|
|
u8 intlv_addr = dct_sel_interleave_addr(pvt);
|
|
switch (intlv_addr) {
|
|
case 0x4:
|
|
channel = (sys_addr >> 8) & 0x3;
|
|
break;
|
|
case 0x5:
|
|
channel = (sys_addr >> 9) & 0x3;
|
|
break;
|
|
}
|
|
}
|
|
return channel;
|
|
}
|
|
|
|
/*
|
|
* Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
|
|
* Interleaving Modes.
|
|
*/
|
|
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
|
|
bool hi_range_sel, u8 intlv_en)
|
|
{
|
|
u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
|
|
|
|
if (dct_ganging_enabled(pvt))
|
|
return 0;
|
|
|
|
if (hi_range_sel)
|
|
return dct_sel_high;
|
|
|
|
/*
|
|
* see F2x110[DctSelIntLvAddr] - channel interleave mode
|
|
*/
|
|
if (dct_interleave_enabled(pvt)) {
|
|
u8 intlv_addr = dct_sel_interleave_addr(pvt);
|
|
|
|
/* return DCT select function: 0=DCT0, 1=DCT1 */
|
|
if (!intlv_addr)
|
|
return sys_addr >> 6 & 1;
|
|
|
|
if (intlv_addr & 0x2) {
|
|
u8 shift = intlv_addr & 0x1 ? 9 : 6;
|
|
u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
|
|
|
|
return ((sys_addr >> shift) & 1) ^ temp;
|
|
}
|
|
|
|
return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
|
|
}
|
|
|
|
if (dct_high_range_enabled(pvt))
|
|
return ~dct_sel_high & 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Convert the sys_addr to the normalized DCT address */
|
|
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
|
|
u64 sys_addr, bool hi_rng,
|
|
u32 dct_sel_base_addr)
|
|
{
|
|
u64 chan_off;
|
|
u64 dram_base = get_dram_base(pvt, range);
|
|
u64 hole_off = f10_dhar_offset(pvt);
|
|
u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
|
|
|
|
if (hi_rng) {
|
|
/*
|
|
* if
|
|
* base address of high range is below 4Gb
|
|
* (bits [47:27] at [31:11])
|
|
* DRAM address space on this DCT is hoisted above 4Gb &&
|
|
* sys_addr > 4Gb
|
|
*
|
|
* remove hole offset from sys_addr
|
|
* else
|
|
* remove high range offset from sys_addr
|
|
*/
|
|
if ((!(dct_sel_base_addr >> 16) ||
|
|
dct_sel_base_addr < dhar_base(pvt)) &&
|
|
dhar_valid(pvt) &&
|
|
(sys_addr >= BIT_64(32)))
|
|
chan_off = hole_off;
|
|
else
|
|
chan_off = dct_sel_base_off;
|
|
} else {
|
|
/*
|
|
* if
|
|
* we have a valid hole &&
|
|
* sys_addr > 4Gb
|
|
*
|
|
* remove hole
|
|
* else
|
|
* remove dram base to normalize to DCT address
|
|
*/
|
|
if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
|
|
chan_off = hole_off;
|
|
else
|
|
chan_off = dram_base;
|
|
}
|
|
|
|
return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
|
|
}
|
|
|
|
/*
|
|
* checks if the csrow passed in is marked as SPARED, if so returns the new
|
|
* spare row
|
|
*/
|
|
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
|
|
{
|
|
int tmp_cs;
|
|
|
|
if (online_spare_swap_done(pvt, dct) &&
|
|
csrow == online_spare_bad_dramcs(pvt, dct)) {
|
|
|
|
for_each_chip_select(tmp_cs, dct, pvt) {
|
|
if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
|
|
csrow = tmp_cs;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return csrow;
|
|
}
|
|
|
|
/*
|
|
* Iterate over the DRAM DCT "base" and "mask" registers looking for a
|
|
* SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
|
|
*
|
|
* Return:
|
|
* -EINVAL: NOT FOUND
|
|
* 0..csrow = Chip-Select Row
|
|
*/
|
|
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct amd64_pvt *pvt;
|
|
u64 cs_base, cs_mask;
|
|
int cs_found = -EINVAL;
|
|
int csrow;
|
|
|
|
mci = edac_mc_find(nid);
|
|
if (!mci)
|
|
return cs_found;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
|
|
|
|
for_each_chip_select(csrow, dct, pvt) {
|
|
if (!csrow_enabled(csrow, dct, pvt))
|
|
continue;
|
|
|
|
get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
|
|
|
|
edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
|
|
csrow, cs_base, cs_mask);
|
|
|
|
cs_mask = ~cs_mask;
|
|
|
|
edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
|
|
(in_addr & cs_mask), (cs_base & cs_mask));
|
|
|
|
if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
|
|
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
|
|
cs_found = csrow;
|
|
break;
|
|
}
|
|
cs_found = f10_process_possible_spare(pvt, dct, csrow);
|
|
|
|
edac_dbg(1, " MATCH csrow=%d\n", cs_found);
|
|
break;
|
|
}
|
|
}
|
|
return cs_found;
|
|
}
|
|
|
|
/*
|
|
* See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
|
|
* swapped with a region located at the bottom of memory so that the GPU can use
|
|
* the interleaved region and thus two channels.
|
|
*/
|
|
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
|
|
{
|
|
u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
|
|
|
|
if (pvt->fam == 0x10) {
|
|
/* only revC3 and revE have that feature */
|
|
if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
|
|
return sys_addr;
|
|
}
|
|
|
|
amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
|
|
|
|
if (!(swap_reg & 0x1))
|
|
return sys_addr;
|
|
|
|
swap_base = (swap_reg >> 3) & 0x7f;
|
|
swap_limit = (swap_reg >> 11) & 0x7f;
|
|
rgn_size = (swap_reg >> 20) & 0x7f;
|
|
tmp_addr = sys_addr >> 27;
|
|
|
|
if (!(sys_addr >> 34) &&
|
|
(((tmp_addr >= swap_base) &&
|
|
(tmp_addr <= swap_limit)) ||
|
|
(tmp_addr < rgn_size)))
|
|
return sys_addr ^ (u64)swap_base << 27;
|
|
|
|
return sys_addr;
|
|
}
|
|
|
|
/* For a given @dram_range, check if @sys_addr falls within it. */
|
|
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
|
|
u64 sys_addr, int *chan_sel)
|
|
{
|
|
int cs_found = -EINVAL;
|
|
u64 chan_addr;
|
|
u32 dct_sel_base;
|
|
u8 channel;
|
|
bool high_range = false;
|
|
|
|
u8 node_id = dram_dst_node(pvt, range);
|
|
u8 intlv_en = dram_intlv_en(pvt, range);
|
|
u32 intlv_sel = dram_intlv_sel(pvt, range);
|
|
|
|
edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
|
|
range, sys_addr, get_dram_limit(pvt, range));
|
|
|
|
if (dhar_valid(pvt) &&
|
|
dhar_base(pvt) <= sys_addr &&
|
|
sys_addr < BIT_64(32)) {
|
|
amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
|
|
sys_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
|
|
return -EINVAL;
|
|
|
|
sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
|
|
|
|
dct_sel_base = dct_sel_baseaddr(pvt);
|
|
|
|
/*
|
|
* check whether addresses >= DctSelBaseAddr[47:27] are to be used to
|
|
* select between DCT0 and DCT1.
|
|
*/
|
|
if (dct_high_range_enabled(pvt) &&
|
|
!dct_ganging_enabled(pvt) &&
|
|
((sys_addr >> 27) >= (dct_sel_base >> 11)))
|
|
high_range = true;
|
|
|
|
channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
|
|
|
|
chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
|
|
high_range, dct_sel_base);
|
|
|
|
/* Remove node interleaving, see F1x120 */
|
|
if (intlv_en)
|
|
chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
|
|
(chan_addr & 0xfff);
|
|
|
|
/* remove channel interleave */
|
|
if (dct_interleave_enabled(pvt) &&
|
|
!dct_high_range_enabled(pvt) &&
|
|
!dct_ganging_enabled(pvt)) {
|
|
|
|
if (dct_sel_interleave_addr(pvt) != 1) {
|
|
if (dct_sel_interleave_addr(pvt) == 0x3)
|
|
/* hash 9 */
|
|
chan_addr = ((chan_addr >> 10) << 9) |
|
|
(chan_addr & 0x1ff);
|
|
else
|
|
/* A[6] or hash 6 */
|
|
chan_addr = ((chan_addr >> 7) << 6) |
|
|
(chan_addr & 0x3f);
|
|
} else
|
|
/* A[12] */
|
|
chan_addr = ((chan_addr >> 13) << 12) |
|
|
(chan_addr & 0xfff);
|
|
}
|
|
|
|
edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
|
|
|
|
cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
|
|
|
|
if (cs_found >= 0)
|
|
*chan_sel = channel;
|
|
|
|
return cs_found;
|
|
}
|
|
|
|
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
|
|
u64 sys_addr, int *chan_sel)
|
|
{
|
|
int cs_found = -EINVAL;
|
|
int num_dcts_intlv = 0;
|
|
u64 chan_addr, chan_offset;
|
|
u64 dct_base, dct_limit;
|
|
u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
|
|
u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
|
|
|
|
u64 dhar_offset = f10_dhar_offset(pvt);
|
|
u8 intlv_addr = dct_sel_interleave_addr(pvt);
|
|
u8 node_id = dram_dst_node(pvt, range);
|
|
u8 intlv_en = dram_intlv_en(pvt, range);
|
|
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
|
|
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
|
|
|
|
dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
|
|
dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
|
|
|
|
edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
|
|
range, sys_addr, get_dram_limit(pvt, range));
|
|
|
|
if (!(get_dram_base(pvt, range) <= sys_addr) &&
|
|
!(get_dram_limit(pvt, range) >= sys_addr))
|
|
return -EINVAL;
|
|
|
|
if (dhar_valid(pvt) &&
|
|
dhar_base(pvt) <= sys_addr &&
|
|
sys_addr < BIT_64(32)) {
|
|
amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
|
|
sys_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Verify sys_addr is within DCT Range. */
|
|
dct_base = (u64) dct_sel_baseaddr(pvt);
|
|
dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
|
|
|
|
if (!(dct_cont_base_reg & BIT(0)) &&
|
|
!(dct_base <= (sys_addr >> 27) &&
|
|
dct_limit >= (sys_addr >> 27)))
|
|
return -EINVAL;
|
|
|
|
/* Verify number of dct's that participate in channel interleaving. */
|
|
num_dcts_intlv = (int) hweight8(intlv_en);
|
|
|
|
if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
|
|
return -EINVAL;
|
|
|
|
channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
|
|
num_dcts_intlv, dct_sel);
|
|
|
|
/* Verify we stay within the MAX number of channels allowed */
|
|
if (channel > 3)
|
|
return -EINVAL;
|
|
|
|
leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
|
|
|
|
/* Get normalized DCT addr */
|
|
if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
|
|
chan_offset = dhar_offset;
|
|
else
|
|
chan_offset = dct_base << 27;
|
|
|
|
chan_addr = sys_addr - chan_offset;
|
|
|
|
/* remove channel interleave */
|
|
if (num_dcts_intlv == 2) {
|
|
if (intlv_addr == 0x4)
|
|
chan_addr = ((chan_addr >> 9) << 8) |
|
|
(chan_addr & 0xff);
|
|
else if (intlv_addr == 0x5)
|
|
chan_addr = ((chan_addr >> 10) << 9) |
|
|
(chan_addr & 0x1ff);
|
|
else
|
|
return -EINVAL;
|
|
|
|
} else if (num_dcts_intlv == 4) {
|
|
if (intlv_addr == 0x4)
|
|
chan_addr = ((chan_addr >> 10) << 8) |
|
|
(chan_addr & 0xff);
|
|
else if (intlv_addr == 0x5)
|
|
chan_addr = ((chan_addr >> 11) << 9) |
|
|
(chan_addr & 0x1ff);
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dct_offset_en) {
|
|
amd64_read_pci_cfg(pvt->F1,
|
|
DRAM_CONT_HIGH_OFF + (int) channel * 4,
|
|
&tmp);
|
|
chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
|
|
}
|
|
|
|
f15h_select_dct(pvt, channel);
|
|
|
|
edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
|
|
|
|
/*
|
|
* Find Chip select:
|
|
* if channel = 3, then alias it to 1. This is because, in F15 M30h,
|
|
* there is support for 4 DCT's, but only 2 are currently functional.
|
|
* They are DCT0 and DCT3. But we have read all registers of DCT3 into
|
|
* pvt->csels[1]. So we need to use '1' here to get correct info.
|
|
* Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
|
|
*/
|
|
alias_channel = (channel == 3) ? 1 : channel;
|
|
|
|
cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
|
|
|
|
if (cs_found >= 0)
|
|
*chan_sel = alias_channel;
|
|
|
|
return cs_found;
|
|
}
|
|
|
|
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
|
|
u64 sys_addr,
|
|
int *chan_sel)
|
|
{
|
|
int cs_found = -EINVAL;
|
|
unsigned range;
|
|
|
|
for (range = 0; range < DRAM_RANGES; range++) {
|
|
if (!dram_rw(pvt, range))
|
|
continue;
|
|
|
|
if (pvt->fam == 0x15 && pvt->model >= 0x30)
|
|
cs_found = f15_m30h_match_to_this_node(pvt, range,
|
|
sys_addr,
|
|
chan_sel);
|
|
|
|
else if ((get_dram_base(pvt, range) <= sys_addr) &&
|
|
(get_dram_limit(pvt, range) >= sys_addr)) {
|
|
cs_found = f1x_match_to_this_node(pvt, range,
|
|
sys_addr, chan_sel);
|
|
if (cs_found >= 0)
|
|
break;
|
|
}
|
|
}
|
|
return cs_found;
|
|
}
|
|
|
|
/*
|
|
* For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
|
|
* a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
|
|
*
|
|
* The @sys_addr is usually an error address received from the hardware
|
|
* (MCX_ADDR).
|
|
*/
|
|
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
|
|
struct err_info *err)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
error_address_to_page_and_offset(sys_addr, err);
|
|
|
|
err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
|
|
if (err->csrow < 0) {
|
|
err->err_code = ERR_CSROW;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need the syndromes for channel detection only when we're
|
|
* ganged. Otherwise @chan should already contain the channel at
|
|
* this point.
|
|
*/
|
|
if (dct_ganging_enabled(pvt))
|
|
err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
|
|
}
|
|
|
|
/*
|
|
* debug routine to display the memory sizes of all logical DIMMs and its
|
|
* CSROWs
|
|
*/
|
|
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
|
|
{
|
|
int dimm, size0, size1;
|
|
u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
|
|
u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
|
|
|
|
if (pvt->fam == 0xf) {
|
|
/* K8 families < revF not supported yet */
|
|
if (pvt->ext_model < K8_REV_F)
|
|
return;
|
|
else
|
|
WARN_ON(ctrl != 0);
|
|
}
|
|
|
|
if (pvt->fam == 0x10) {
|
|
dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
|
|
: pvt->dbam0;
|
|
dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
|
|
pvt->csels[1].csbases :
|
|
pvt->csels[0].csbases;
|
|
} else if (ctrl) {
|
|
dbam = pvt->dbam0;
|
|
dcsb = pvt->csels[1].csbases;
|
|
}
|
|
edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
|
|
ctrl, dbam);
|
|
|
|
edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
|
|
|
|
/* Dump memory sizes for DIMM and its CSROWs */
|
|
for (dimm = 0; dimm < 4; dimm++) {
|
|
|
|
size0 = 0;
|
|
if (dcsb[dimm*2] & DCSB_CS_ENABLE)
|
|
/* For f15m60h, need multiplier for LRDIMM cs_size
|
|
* calculation. We pass 'dimm' value to the dbam_to_cs
|
|
* mapper so we can find the multiplier from the
|
|
* corresponding DCSM.
|
|
*/
|
|
size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
|
|
DBAM_DIMM(dimm, dbam),
|
|
dimm);
|
|
|
|
size1 = 0;
|
|
if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
|
|
size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
|
|
DBAM_DIMM(dimm, dbam),
|
|
dimm);
|
|
|
|
amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
|
|
dimm * 2, size0,
|
|
dimm * 2 + 1, size1);
|
|
}
|
|
}
|
|
|
|
static struct amd64_family_type family_types[] = {
|
|
[K8_CPUS] = {
|
|
.ctl_name = "K8",
|
|
.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
|
|
.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
|
|
.ops = {
|
|
.early_channel_count = k8_early_channel_count,
|
|
.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
|
|
.dbam_to_cs = k8_dbam_to_chip_select,
|
|
}
|
|
},
|
|
[F10_CPUS] = {
|
|
.ctl_name = "F10h",
|
|
.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
|
|
.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
|
|
.ops = {
|
|
.early_channel_count = f1x_early_channel_count,
|
|
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
|
|
.dbam_to_cs = f10_dbam_to_chip_select,
|
|
}
|
|
},
|
|
[F15_CPUS] = {
|
|
.ctl_name = "F15h",
|
|
.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
|
|
.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
|
|
.ops = {
|
|
.early_channel_count = f1x_early_channel_count,
|
|
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
|
|
.dbam_to_cs = f15_dbam_to_chip_select,
|
|
}
|
|
},
|
|
[F15_M30H_CPUS] = {
|
|
.ctl_name = "F15h_M30h",
|
|
.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
|
|
.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
|
|
.ops = {
|
|
.early_channel_count = f1x_early_channel_count,
|
|
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
|
|
.dbam_to_cs = f16_dbam_to_chip_select,
|
|
}
|
|
},
|
|
[F15_M60H_CPUS] = {
|
|
.ctl_name = "F15h_M60h",
|
|
.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
|
|
.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
|
|
.ops = {
|
|
.early_channel_count = f1x_early_channel_count,
|
|
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
|
|
.dbam_to_cs = f15_m60h_dbam_to_chip_select,
|
|
}
|
|
},
|
|
[F16_CPUS] = {
|
|
.ctl_name = "F16h",
|
|
.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
|
|
.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
|
|
.ops = {
|
|
.early_channel_count = f1x_early_channel_count,
|
|
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
|
|
.dbam_to_cs = f16_dbam_to_chip_select,
|
|
}
|
|
},
|
|
[F16_M30H_CPUS] = {
|
|
.ctl_name = "F16h_M30h",
|
|
.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
|
|
.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
|
|
.ops = {
|
|
.early_channel_count = f1x_early_channel_count,
|
|
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
|
|
.dbam_to_cs = f16_dbam_to_chip_select,
|
|
}
|
|
},
|
|
};
|
|
|
|
/*
|
|
* These are tables of eigenvectors (one per line) which can be used for the
|
|
* construction of the syndrome tables. The modified syndrome search algorithm
|
|
* uses those to find the symbol in error and thus the DIMM.
|
|
*
|
|
* Algorithm courtesy of Ross LaFetra from AMD.
|
|
*/
|
|
static const u16 x4_vectors[] = {
|
|
0x2f57, 0x1afe, 0x66cc, 0xdd88,
|
|
0x11eb, 0x3396, 0x7f4c, 0xeac8,
|
|
0x0001, 0x0002, 0x0004, 0x0008,
|
|
0x1013, 0x3032, 0x4044, 0x8088,
|
|
0x106b, 0x30d6, 0x70fc, 0xe0a8,
|
|
0x4857, 0xc4fe, 0x13cc, 0x3288,
|
|
0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
|
|
0x1f39, 0x251e, 0xbd6c, 0x6bd8,
|
|
0x15c1, 0x2a42, 0x89ac, 0x4758,
|
|
0x2b03, 0x1602, 0x4f0c, 0xca08,
|
|
0x1f07, 0x3a0e, 0x6b04, 0xbd08,
|
|
0x8ba7, 0x465e, 0x244c, 0x1cc8,
|
|
0x2b87, 0x164e, 0x642c, 0xdc18,
|
|
0x40b9, 0x80de, 0x1094, 0x20e8,
|
|
0x27db, 0x1eb6, 0x9dac, 0x7b58,
|
|
0x11c1, 0x2242, 0x84ac, 0x4c58,
|
|
0x1be5, 0x2d7a, 0x5e34, 0xa718,
|
|
0x4b39, 0x8d1e, 0x14b4, 0x28d8,
|
|
0x4c97, 0xc87e, 0x11fc, 0x33a8,
|
|
0x8e97, 0x497e, 0x2ffc, 0x1aa8,
|
|
0x16b3, 0x3d62, 0x4f34, 0x8518,
|
|
0x1e2f, 0x391a, 0x5cac, 0xf858,
|
|
0x1d9f, 0x3b7a, 0x572c, 0xfe18,
|
|
0x15f5, 0x2a5a, 0x5264, 0xa3b8,
|
|
0x1dbb, 0x3b66, 0x715c, 0xe3f8,
|
|
0x4397, 0xc27e, 0x17fc, 0x3ea8,
|
|
0x1617, 0x3d3e, 0x6464, 0xb8b8,
|
|
0x23ff, 0x12aa, 0xab6c, 0x56d8,
|
|
0x2dfb, 0x1ba6, 0x913c, 0x7328,
|
|
0x185d, 0x2ca6, 0x7914, 0x9e28,
|
|
0x171b, 0x3e36, 0x7d7c, 0xebe8,
|
|
0x4199, 0x82ee, 0x19f4, 0x2e58,
|
|
0x4807, 0xc40e, 0x130c, 0x3208,
|
|
0x1905, 0x2e0a, 0x5804, 0xac08,
|
|
0x213f, 0x132a, 0xadfc, 0x5ba8,
|
|
0x19a9, 0x2efe, 0xb5cc, 0x6f88,
|
|
};
|
|
|
|
static const u16 x8_vectors[] = {
|
|
0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
|
|
0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
|
|
0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
|
|
0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
|
|
0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
|
|
0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
|
|
0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
|
|
0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
|
|
0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
|
|
0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
|
|
0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
|
|
0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
|
|
0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
|
|
0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
|
|
0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
|
|
0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
|
|
0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
|
|
0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
|
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
|
|
};
|
|
|
|
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
|
|
unsigned v_dim)
|
|
{
|
|
unsigned int i, err_sym;
|
|
|
|
for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
|
|
u16 s = syndrome;
|
|
unsigned v_idx = err_sym * v_dim;
|
|
unsigned v_end = (err_sym + 1) * v_dim;
|
|
|
|
/* walk over all 16 bits of the syndrome */
|
|
for (i = 1; i < (1U << 16); i <<= 1) {
|
|
|
|
/* if bit is set in that eigenvector... */
|
|
if (v_idx < v_end && vectors[v_idx] & i) {
|
|
u16 ev_comp = vectors[v_idx++];
|
|
|
|
/* ... and bit set in the modified syndrome, */
|
|
if (s & i) {
|
|
/* remove it. */
|
|
s ^= ev_comp;
|
|
|
|
if (!s)
|
|
return err_sym;
|
|
}
|
|
|
|
} else if (s & i)
|
|
/* can't get to zero, move to next symbol */
|
|
break;
|
|
}
|
|
}
|
|
|
|
edac_dbg(0, "syndrome(%x) not found\n", syndrome);
|
|
return -1;
|
|
}
|
|
|
|
static int map_err_sym_to_channel(int err_sym, int sym_size)
|
|
{
|
|
if (sym_size == 4)
|
|
switch (err_sym) {
|
|
case 0x20:
|
|
case 0x21:
|
|
return 0;
|
|
break;
|
|
case 0x22:
|
|
case 0x23:
|
|
return 1;
|
|
break;
|
|
default:
|
|
return err_sym >> 4;
|
|
break;
|
|
}
|
|
/* x8 symbols */
|
|
else
|
|
switch (err_sym) {
|
|
/* imaginary bits not in a DIMM */
|
|
case 0x10:
|
|
WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
|
|
err_sym);
|
|
return -1;
|
|
break;
|
|
|
|
case 0x11:
|
|
return 0;
|
|
break;
|
|
case 0x12:
|
|
return 1;
|
|
break;
|
|
default:
|
|
return err_sym >> 3;
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
int err_sym = -1;
|
|
|
|
if (pvt->ecc_sym_sz == 8)
|
|
err_sym = decode_syndrome(syndrome, x8_vectors,
|
|
ARRAY_SIZE(x8_vectors),
|
|
pvt->ecc_sym_sz);
|
|
else if (pvt->ecc_sym_sz == 4)
|
|
err_sym = decode_syndrome(syndrome, x4_vectors,
|
|
ARRAY_SIZE(x4_vectors),
|
|
pvt->ecc_sym_sz);
|
|
else {
|
|
amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
|
|
return err_sym;
|
|
}
|
|
|
|
return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
|
|
}
|
|
|
|
static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
|
|
u8 ecc_type)
|
|
{
|
|
enum hw_event_mc_err_type err_type;
|
|
const char *string;
|
|
|
|
if (ecc_type == 2)
|
|
err_type = HW_EVENT_ERR_CORRECTED;
|
|
else if (ecc_type == 1)
|
|
err_type = HW_EVENT_ERR_UNCORRECTED;
|
|
else {
|
|
WARN(1, "Something is rotten in the state of Denmark.\n");
|
|
return;
|
|
}
|
|
|
|
switch (err->err_code) {
|
|
case DECODE_OK:
|
|
string = "";
|
|
break;
|
|
case ERR_NODE:
|
|
string = "Failed to map error addr to a node";
|
|
break;
|
|
case ERR_CSROW:
|
|
string = "Failed to map error addr to a csrow";
|
|
break;
|
|
case ERR_CHANNEL:
|
|
string = "unknown syndrome - possible error reporting race";
|
|
break;
|
|
default:
|
|
string = "WTF error";
|
|
break;
|
|
}
|
|
|
|
edac_mc_handle_error(err_type, mci, 1,
|
|
err->page, err->offset, err->syndrome,
|
|
err->csrow, err->channel, -1,
|
|
string, "");
|
|
}
|
|
|
|
static inline void decode_bus_error(int node_id, struct mce *m)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct amd64_pvt *pvt;
|
|
u8 ecc_type = (m->status >> 45) & 0x3;
|
|
u8 xec = XEC(m->status, 0x1f);
|
|
u16 ec = EC(m->status);
|
|
u64 sys_addr;
|
|
struct err_info err;
|
|
|
|
mci = edac_mc_find(node_id);
|
|
if (!mci)
|
|
return;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Bail out early if this was an 'observed' error */
|
|
if (PP(ec) == NBSL_PP_OBS)
|
|
return;
|
|
|
|
/* Do only ECC errors */
|
|
if (xec && xec != F10_NBSL_EXT_ERR_ECC)
|
|
return;
|
|
|
|
memset(&err, 0, sizeof(err));
|
|
|
|
sys_addr = get_error_address(pvt, m);
|
|
|
|
if (ecc_type == 2)
|
|
err.syndrome = extract_syndrome(m->status);
|
|
|
|
pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
|
|
|
|
__log_bus_error(mci, &err, ecc_type);
|
|
}
|
|
|
|
/*
|
|
* Use pvt->F3 which contains the F3 CPU PCI device to get the related
|
|
* F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
|
|
*/
|
|
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f2_id)
|
|
{
|
|
/* Reserve the ADDRESS MAP Device */
|
|
pvt->F1 = pci_get_related_function(pvt->F3->vendor, f1_id, pvt->F3);
|
|
if (!pvt->F1) {
|
|
amd64_err("error address map device not found: "
|
|
"vendor %x device 0x%x (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_AMD, f1_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Reserve the DCT Device */
|
|
pvt->F2 = pci_get_related_function(pvt->F3->vendor, f2_id, pvt->F3);
|
|
if (!pvt->F2) {
|
|
pci_dev_put(pvt->F1);
|
|
pvt->F1 = NULL;
|
|
|
|
amd64_err("error F2 device not found: "
|
|
"vendor %x device 0x%x (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_AMD, f2_id);
|
|
|
|
return -ENODEV;
|
|
}
|
|
edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
|
|
edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
|
|
edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
|
|
{
|
|
pci_dev_put(pvt->F1);
|
|
pci_dev_put(pvt->F2);
|
|
}
|
|
|
|
/*
|
|
* Retrieve the hardware registers of the memory controller (this includes the
|
|
* 'Address Map' and 'Misc' device regs)
|
|
*/
|
|
static void read_mc_regs(struct amd64_pvt *pvt)
|
|
{
|
|
unsigned range;
|
|
u64 msr_val;
|
|
u32 tmp;
|
|
|
|
/*
|
|
* Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
|
|
* those are Read-As-Zero
|
|
*/
|
|
rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
|
|
edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
|
|
|
|
/* check first whether TOP_MEM2 is enabled */
|
|
rdmsrl(MSR_K8_SYSCFG, msr_val);
|
|
if (msr_val & (1U << 21)) {
|
|
rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
|
|
edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
|
|
} else
|
|
edac_dbg(0, " TOP_MEM2 disabled\n");
|
|
|
|
amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
|
|
|
|
read_dram_ctl_register(pvt);
|
|
|
|
for (range = 0; range < DRAM_RANGES; range++) {
|
|
u8 rw;
|
|
|
|
/* read settings for this DRAM range */
|
|
read_dram_base_limit_regs(pvt, range);
|
|
|
|
rw = dram_rw(pvt, range);
|
|
if (!rw)
|
|
continue;
|
|
|
|
edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
|
|
range,
|
|
get_dram_base(pvt, range),
|
|
get_dram_limit(pvt, range));
|
|
|
|
edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
|
|
dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
|
|
(rw & 0x1) ? "R" : "-",
|
|
(rw & 0x2) ? "W" : "-",
|
|
dram_intlv_sel(pvt, range),
|
|
dram_dst_node(pvt, range));
|
|
}
|
|
|
|
read_dct_base_mask(pvt);
|
|
|
|
amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
|
|
amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
|
|
|
|
amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
|
|
|
|
amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
|
|
amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
|
|
|
|
if (!dct_ganging_enabled(pvt)) {
|
|
amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
|
|
amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
|
|
}
|
|
|
|
pvt->ecc_sym_sz = 4;
|
|
determine_memory_type(pvt);
|
|
edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
|
|
|
|
if (pvt->fam >= 0x10) {
|
|
amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
|
|
/* F16h has only DCT0, so no need to read dbam1 */
|
|
if (pvt->fam != 0x16)
|
|
amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
|
|
|
|
/* F10h, revD and later can do x8 ECC too */
|
|
if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
|
|
pvt->ecc_sym_sz = 8;
|
|
}
|
|
dump_misc_regs(pvt);
|
|
}
|
|
|
|
/*
|
|
* NOTE: CPU Revision Dependent code
|
|
*
|
|
* Input:
|
|
* @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
|
|
* k8 private pointer to -->
|
|
* DRAM Bank Address mapping register
|
|
* node_id
|
|
* DCL register where dual_channel_active is
|
|
*
|
|
* The DBAM register consists of 4 sets of 4 bits each definitions:
|
|
*
|
|
* Bits: CSROWs
|
|
* 0-3 CSROWs 0 and 1
|
|
* 4-7 CSROWs 2 and 3
|
|
* 8-11 CSROWs 4 and 5
|
|
* 12-15 CSROWs 6 and 7
|
|
*
|
|
* Values range from: 0 to 15
|
|
* The meaning of the values depends on CPU revision and dual-channel state,
|
|
* see relevant BKDG more info.
|
|
*
|
|
* The memory controller provides for total of only 8 CSROWs in its current
|
|
* architecture. Each "pair" of CSROWs normally represents just one DIMM in
|
|
* single channel or two (2) DIMMs in dual channel mode.
|
|
*
|
|
* The following code logic collapses the various tables for CSROW based on CPU
|
|
* revision.
|
|
*
|
|
* Returns:
|
|
* The number of PAGE_SIZE pages on the specified CSROW number it
|
|
* encompasses
|
|
*
|
|
*/
|
|
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
|
|
{
|
|
u32 cs_mode, nr_pages;
|
|
u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
|
|
|
|
|
|
/*
|
|
* The math on this doesn't look right on the surface because x/2*4 can
|
|
* be simplified to x*2 but this expression makes use of the fact that
|
|
* it is integral math where 1/2=0. This intermediate value becomes the
|
|
* number of bits to shift the DBAM register to extract the proper CSROW
|
|
* field.
|
|
*/
|
|
cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
|
|
|
|
nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
|
|
<< (20 - PAGE_SHIFT);
|
|
|
|
edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
|
|
csrow_nr, dct, cs_mode);
|
|
edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
/*
|
|
* Initialize the array of csrow attribute instances, based on the values
|
|
* from pci config hardware registers.
|
|
*/
|
|
static int init_csrows(struct mem_ctl_info *mci)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
struct csrow_info *csrow;
|
|
struct dimm_info *dimm;
|
|
enum edac_type edac_mode;
|
|
int i, j, empty = 1;
|
|
int nr_pages = 0;
|
|
u32 val;
|
|
|
|
amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
|
|
|
|
pvt->nbcfg = val;
|
|
|
|
edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
|
|
pvt->mc_node_id, val,
|
|
!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
|
|
|
|
/*
|
|
* We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
|
|
*/
|
|
for_each_chip_select(i, 0, pvt) {
|
|
bool row_dct0 = !!csrow_enabled(i, 0, pvt);
|
|
bool row_dct1 = false;
|
|
|
|
if (pvt->fam != 0xf)
|
|
row_dct1 = !!csrow_enabled(i, 1, pvt);
|
|
|
|
if (!row_dct0 && !row_dct1)
|
|
continue;
|
|
|
|
csrow = mci->csrows[i];
|
|
empty = 0;
|
|
|
|
edac_dbg(1, "MC node: %d, csrow: %d\n",
|
|
pvt->mc_node_id, i);
|
|
|
|
if (row_dct0) {
|
|
nr_pages = get_csrow_nr_pages(pvt, 0, i);
|
|
csrow->channels[0]->dimm->nr_pages = nr_pages;
|
|
}
|
|
|
|
/* K8 has only one DCT */
|
|
if (pvt->fam != 0xf && row_dct1) {
|
|
int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
|
|
|
|
csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
|
|
nr_pages += row_dct1_pages;
|
|
}
|
|
|
|
edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
|
|
|
|
/*
|
|
* determine whether CHIPKILL or JUST ECC or NO ECC is operating
|
|
*/
|
|
if (pvt->nbcfg & NBCFG_ECC_ENABLE)
|
|
edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
|
|
EDAC_S4ECD4ED : EDAC_SECDED;
|
|
else
|
|
edac_mode = EDAC_NONE;
|
|
|
|
for (j = 0; j < pvt->channel_count; j++) {
|
|
dimm = csrow->channels[j]->dimm;
|
|
dimm->mtype = pvt->dram_type;
|
|
dimm->edac_mode = edac_mode;
|
|
}
|
|
}
|
|
|
|
return empty;
|
|
}
|
|
|
|
/* get all cores on this DCT */
|
|
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu)
|
|
if (amd_get_nb_id(cpu) == nid)
|
|
cpumask_set_cpu(cpu, mask);
|
|
}
|
|
|
|
/* check MCG_CTL on all the cpus on this node */
|
|
static bool nb_mce_bank_enabled_on_node(u16 nid)
|
|
{
|
|
cpumask_var_t mask;
|
|
int cpu, nbe;
|
|
bool ret = false;
|
|
|
|
if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
|
|
amd64_warn("%s: Error allocating mask\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
get_cpus_on_this_dct_cpumask(mask, nid);
|
|
|
|
rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
struct msr *reg = per_cpu_ptr(msrs, cpu);
|
|
nbe = reg->l & MSR_MCGCTL_NBE;
|
|
|
|
edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
|
|
cpu, reg->q,
|
|
(nbe ? "enabled" : "disabled"));
|
|
|
|
if (!nbe)
|
|
goto out;
|
|
}
|
|
ret = true;
|
|
|
|
out:
|
|
free_cpumask_var(mask);
|
|
return ret;
|
|
}
|
|
|
|
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
|
|
{
|
|
cpumask_var_t cmask;
|
|
int cpu;
|
|
|
|
if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
|
|
amd64_warn("%s: error allocating mask\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
get_cpus_on_this_dct_cpumask(cmask, nid);
|
|
|
|
rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
|
|
|
|
for_each_cpu(cpu, cmask) {
|
|
|
|
struct msr *reg = per_cpu_ptr(msrs, cpu);
|
|
|
|
if (on) {
|
|
if (reg->l & MSR_MCGCTL_NBE)
|
|
s->flags.nb_mce_enable = 1;
|
|
|
|
reg->l |= MSR_MCGCTL_NBE;
|
|
} else {
|
|
/*
|
|
* Turn off NB MCE reporting only when it was off before
|
|
*/
|
|
if (!s->flags.nb_mce_enable)
|
|
reg->l &= ~MSR_MCGCTL_NBE;
|
|
}
|
|
}
|
|
wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
|
|
|
|
free_cpumask_var(cmask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
|
|
struct pci_dev *F3)
|
|
{
|
|
bool ret = true;
|
|
u32 value, mask = 0x3; /* UECC/CECC enable */
|
|
|
|
if (toggle_ecc_err_reporting(s, nid, ON)) {
|
|
amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
|
|
return false;
|
|
}
|
|
|
|
amd64_read_pci_cfg(F3, NBCTL, &value);
|
|
|
|
s->old_nbctl = value & mask;
|
|
s->nbctl_valid = true;
|
|
|
|
value |= mask;
|
|
amd64_write_pci_cfg(F3, NBCTL, value);
|
|
|
|
amd64_read_pci_cfg(F3, NBCFG, &value);
|
|
|
|
edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
|
|
nid, value, !!(value & NBCFG_ECC_ENABLE));
|
|
|
|
if (!(value & NBCFG_ECC_ENABLE)) {
|
|
amd64_warn("DRAM ECC disabled on this node, enabling...\n");
|
|
|
|
s->flags.nb_ecc_prev = 0;
|
|
|
|
/* Attempt to turn on DRAM ECC Enable */
|
|
value |= NBCFG_ECC_ENABLE;
|
|
amd64_write_pci_cfg(F3, NBCFG, value);
|
|
|
|
amd64_read_pci_cfg(F3, NBCFG, &value);
|
|
|
|
if (!(value & NBCFG_ECC_ENABLE)) {
|
|
amd64_warn("Hardware rejected DRAM ECC enable,"
|
|
"check memory DIMM configuration.\n");
|
|
ret = false;
|
|
} else {
|
|
amd64_info("Hardware accepted DRAM ECC Enable\n");
|
|
}
|
|
} else {
|
|
s->flags.nb_ecc_prev = 1;
|
|
}
|
|
|
|
edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
|
|
nid, value, !!(value & NBCFG_ECC_ENABLE));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
|
|
struct pci_dev *F3)
|
|
{
|
|
u32 value, mask = 0x3; /* UECC/CECC enable */
|
|
|
|
|
|
if (!s->nbctl_valid)
|
|
return;
|
|
|
|
amd64_read_pci_cfg(F3, NBCTL, &value);
|
|
value &= ~mask;
|
|
value |= s->old_nbctl;
|
|
|
|
amd64_write_pci_cfg(F3, NBCTL, value);
|
|
|
|
/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
|
|
if (!s->flags.nb_ecc_prev) {
|
|
amd64_read_pci_cfg(F3, NBCFG, &value);
|
|
value &= ~NBCFG_ECC_ENABLE;
|
|
amd64_write_pci_cfg(F3, NBCFG, value);
|
|
}
|
|
|
|
/* restore the NB Enable MCGCTL bit */
|
|
if (toggle_ecc_err_reporting(s, nid, OFF))
|
|
amd64_warn("Error restoring NB MCGCTL settings!\n");
|
|
}
|
|
|
|
/*
|
|
* EDAC requires that the BIOS have ECC enabled before
|
|
* taking over the processing of ECC errors. A command line
|
|
* option allows to force-enable hardware ECC later in
|
|
* enable_ecc_error_reporting().
|
|
*/
|
|
static const char *ecc_msg =
|
|
"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
|
|
" Either enable ECC checking or force module loading by setting "
|
|
"'ecc_enable_override'.\n"
|
|
" (Note that use of the override may cause unknown side effects.)\n";
|
|
|
|
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
|
|
{
|
|
u32 value;
|
|
u8 ecc_en = 0;
|
|
bool nb_mce_en = false;
|
|
|
|
amd64_read_pci_cfg(F3, NBCFG, &value);
|
|
|
|
ecc_en = !!(value & NBCFG_ECC_ENABLE);
|
|
amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
|
|
|
|
nb_mce_en = nb_mce_bank_enabled_on_node(nid);
|
|
if (!nb_mce_en)
|
|
amd64_notice("NB MCE bank disabled, set MSR "
|
|
"0x%08x[4] on node %d to enable.\n",
|
|
MSR_IA32_MCG_CTL, nid);
|
|
|
|
if (!ecc_en || !nb_mce_en) {
|
|
amd64_notice("%s", ecc_msg);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
|
|
struct amd64_family_type *fam)
|
|
{
|
|
struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
|
mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
|
|
if (pvt->nbcap & NBCAP_SECDED)
|
|
mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
|
|
|
|
if (pvt->nbcap & NBCAP_CHIPKILL)
|
|
mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
|
|
|
|
mci->edac_cap = determine_edac_cap(pvt);
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
mci->mod_ver = EDAC_AMD64_VERSION;
|
|
mci->ctl_name = fam->ctl_name;
|
|
mci->dev_name = pci_name(pvt->F2);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/* memory scrubber interface */
|
|
mci->set_sdram_scrub_rate = set_scrub_rate;
|
|
mci->get_sdram_scrub_rate = get_scrub_rate;
|
|
}
|
|
|
|
/*
|
|
* returns a pointer to the family descriptor on success, NULL otherwise.
|
|
*/
|
|
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
|
|
{
|
|
struct amd64_family_type *fam_type = NULL;
|
|
|
|
pvt->ext_model = boot_cpu_data.x86_model >> 4;
|
|
pvt->stepping = boot_cpu_data.x86_mask;
|
|
pvt->model = boot_cpu_data.x86_model;
|
|
pvt->fam = boot_cpu_data.x86;
|
|
|
|
switch (pvt->fam) {
|
|
case 0xf:
|
|
fam_type = &family_types[K8_CPUS];
|
|
pvt->ops = &family_types[K8_CPUS].ops;
|
|
break;
|
|
|
|
case 0x10:
|
|
fam_type = &family_types[F10_CPUS];
|
|
pvt->ops = &family_types[F10_CPUS].ops;
|
|
break;
|
|
|
|
case 0x15:
|
|
if (pvt->model == 0x30) {
|
|
fam_type = &family_types[F15_M30H_CPUS];
|
|
pvt->ops = &family_types[F15_M30H_CPUS].ops;
|
|
break;
|
|
} else if (pvt->model == 0x60) {
|
|
fam_type = &family_types[F15_M60H_CPUS];
|
|
pvt->ops = &family_types[F15_M60H_CPUS].ops;
|
|
break;
|
|
}
|
|
|
|
fam_type = &family_types[F15_CPUS];
|
|
pvt->ops = &family_types[F15_CPUS].ops;
|
|
break;
|
|
|
|
case 0x16:
|
|
if (pvt->model == 0x30) {
|
|
fam_type = &family_types[F16_M30H_CPUS];
|
|
pvt->ops = &family_types[F16_M30H_CPUS].ops;
|
|
break;
|
|
}
|
|
fam_type = &family_types[F16_CPUS];
|
|
pvt->ops = &family_types[F16_CPUS].ops;
|
|
break;
|
|
|
|
default:
|
|
amd64_err("Unsupported family!\n");
|
|
return NULL;
|
|
}
|
|
|
|
amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
|
|
(pvt->fam == 0xf ?
|
|
(pvt->ext_model >= K8_REV_F ? "revF or later "
|
|
: "revE or earlier ")
|
|
: ""), pvt->mc_node_id);
|
|
return fam_type;
|
|
}
|
|
|
|
static const struct attribute_group *amd64_edac_attr_groups[] = {
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
&amd64_edac_dbg_group,
|
|
#endif
|
|
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
|
|
&amd64_edac_inj_group,
|
|
#endif
|
|
NULL
|
|
};
|
|
|
|
static int init_one_instance(unsigned int nid)
|
|
{
|
|
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
|
|
struct amd64_family_type *fam_type = NULL;
|
|
struct mem_ctl_info *mci = NULL;
|
|
struct edac_mc_layer layers[2];
|
|
struct amd64_pvt *pvt = NULL;
|
|
int err = 0, ret;
|
|
|
|
ret = -ENOMEM;
|
|
pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
|
|
if (!pvt)
|
|
goto err_ret;
|
|
|
|
pvt->mc_node_id = nid;
|
|
pvt->F3 = F3;
|
|
|
|
ret = -EINVAL;
|
|
fam_type = per_family_init(pvt);
|
|
if (!fam_type)
|
|
goto err_free;
|
|
|
|
ret = -ENODEV;
|
|
err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f2_id);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
read_mc_regs(pvt);
|
|
|
|
/*
|
|
* We need to determine how many memory channels there are. Then use
|
|
* that information for calculating the size of the dynamic instance
|
|
* tables in the 'mci' structure.
|
|
*/
|
|
ret = -EINVAL;
|
|
pvt->channel_count = pvt->ops->early_channel_count(pvt);
|
|
if (pvt->channel_count < 0)
|
|
goto err_siblings;
|
|
|
|
ret = -ENOMEM;
|
|
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
|
|
layers[0].size = pvt->csels[0].b_cnt;
|
|
layers[0].is_virt_csrow = true;
|
|
layers[1].type = EDAC_MC_LAYER_CHANNEL;
|
|
|
|
/*
|
|
* Always allocate two channels since we can have setups with DIMMs on
|
|
* only one channel. Also, this simplifies handling later for the price
|
|
* of a couple of KBs tops.
|
|
*/
|
|
layers[1].size = 2;
|
|
layers[1].is_virt_csrow = false;
|
|
|
|
mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
|
|
if (!mci)
|
|
goto err_siblings;
|
|
|
|
mci->pvt_info = pvt;
|
|
mci->pdev = &pvt->F3->dev;
|
|
|
|
setup_mci_misc_attrs(mci, fam_type);
|
|
|
|
if (init_csrows(mci))
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
|
|
ret = -ENODEV;
|
|
if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
|
|
edac_dbg(1, "failed edac_mc_add_mc()\n");
|
|
goto err_add_mc;
|
|
}
|
|
|
|
/* register stuff with EDAC MCE */
|
|
if (report_gart_errors)
|
|
amd_report_gart_errors(true);
|
|
|
|
amd_register_ecc_decoder(decode_bus_error);
|
|
|
|
return 0;
|
|
|
|
err_add_mc:
|
|
edac_mc_free(mci);
|
|
|
|
err_siblings:
|
|
free_mc_sibling_devs(pvt);
|
|
|
|
err_free:
|
|
kfree(pvt);
|
|
|
|
err_ret:
|
|
return ret;
|
|
}
|
|
|
|
static int probe_one_instance(unsigned int nid)
|
|
{
|
|
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
|
|
struct ecc_settings *s;
|
|
int ret;
|
|
|
|
ret = -ENOMEM;
|
|
s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
|
|
if (!s)
|
|
goto err_out;
|
|
|
|
ecc_stngs[nid] = s;
|
|
|
|
if (!ecc_enabled(F3, nid)) {
|
|
ret = -ENODEV;
|
|
|
|
if (!ecc_enable_override)
|
|
goto err_enable;
|
|
|
|
amd64_warn("Forcing ECC on!\n");
|
|
|
|
if (!enable_ecc_error_reporting(s, nid, F3))
|
|
goto err_enable;
|
|
}
|
|
|
|
ret = init_one_instance(nid);
|
|
if (ret < 0) {
|
|
amd64_err("Error probing instance: %d\n", nid);
|
|
restore_ecc_error_reporting(s, nid, F3);
|
|
}
|
|
|
|
return ret;
|
|
|
|
err_enable:
|
|
kfree(s);
|
|
ecc_stngs[nid] = NULL;
|
|
|
|
err_out:
|
|
return ret;
|
|
}
|
|
|
|
static void remove_one_instance(unsigned int nid)
|
|
{
|
|
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
|
|
struct ecc_settings *s = ecc_stngs[nid];
|
|
struct mem_ctl_info *mci;
|
|
struct amd64_pvt *pvt;
|
|
|
|
mci = find_mci_by_dev(&F3->dev);
|
|
WARN_ON(!mci);
|
|
|
|
/* Remove from EDAC CORE tracking list */
|
|
mci = edac_mc_del_mc(&F3->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
restore_ecc_error_reporting(s, nid, F3);
|
|
|
|
free_mc_sibling_devs(pvt);
|
|
|
|
/* unregister from EDAC MCE */
|
|
amd_report_gart_errors(false);
|
|
amd_unregister_ecc_decoder(decode_bus_error);
|
|
|
|
kfree(ecc_stngs[nid]);
|
|
ecc_stngs[nid] = NULL;
|
|
|
|
/* Free the EDAC CORE resources */
|
|
mci->pvt_info = NULL;
|
|
|
|
kfree(pvt);
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
static void setup_pci_device(void)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct amd64_pvt *pvt;
|
|
|
|
if (pci_ctl)
|
|
return;
|
|
|
|
mci = edac_mc_find(0);
|
|
if (!mci)
|
|
return;
|
|
|
|
pvt = mci->pvt_info;
|
|
pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
|
|
if (!pci_ctl) {
|
|
pr_warn("%s(): Unable to create PCI control\n", __func__);
|
|
pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
|
|
}
|
|
}
|
|
|
|
static int __init amd64_edac_init(void)
|
|
{
|
|
int err = -ENODEV;
|
|
int i;
|
|
|
|
if (amd_cache_northbridges() < 0)
|
|
goto err_ret;
|
|
|
|
opstate_init();
|
|
|
|
err = -ENOMEM;
|
|
ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
|
|
if (!ecc_stngs)
|
|
goto err_free;
|
|
|
|
msrs = msrs_alloc();
|
|
if (!msrs)
|
|
goto err_free;
|
|
|
|
for (i = 0; i < amd_nb_num(); i++)
|
|
if (probe_one_instance(i)) {
|
|
/* unwind properly */
|
|
while (--i >= 0)
|
|
remove_one_instance(i);
|
|
|
|
goto err_pci;
|
|
}
|
|
|
|
setup_pci_device();
|
|
|
|
#ifdef CONFIG_X86_32
|
|
amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
|
|
#endif
|
|
|
|
printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
|
|
|
|
return 0;
|
|
|
|
err_pci:
|
|
msrs_free(msrs);
|
|
msrs = NULL;
|
|
|
|
err_free:
|
|
kfree(ecc_stngs);
|
|
ecc_stngs = NULL;
|
|
|
|
err_ret:
|
|
return err;
|
|
}
|
|
|
|
static void __exit amd64_edac_exit(void)
|
|
{
|
|
int i;
|
|
|
|
if (pci_ctl)
|
|
edac_pci_release_generic_ctl(pci_ctl);
|
|
|
|
for (i = 0; i < amd_nb_num(); i++)
|
|
remove_one_instance(i);
|
|
|
|
kfree(ecc_stngs);
|
|
ecc_stngs = NULL;
|
|
|
|
msrs_free(msrs);
|
|
msrs = NULL;
|
|
}
|
|
|
|
module_init(amd64_edac_init);
|
|
module_exit(amd64_edac_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
|
|
"Dave Peterson, Thayne Harbaugh");
|
|
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
|
|
EDAC_AMD64_VERSION);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|