linux/arch/sparc/kernel/sun4d_smp.c
David S. Miller 5d83d66635 sparc32: Move cache and TLB flushes over to method ops.
This eliminated most of the remaining users of btfixup.

There are some complications because of the special cases we
have for sun4d, leon, and some flavors of viking.

It was found that there are no cases where a flush_page_for_dma
method was not hooked up to something, so the "noflush" iommu
methods were removed.

Add some documentation to the viking_sun4d_smp_ops to describe exactly
the hardware bug which causes us to need special TLB flushing on
sun4d.

Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-13 20:49:31 -07:00

433 lines
10 KiB
C

/* Sparc SS1000/SC2000 SMP support.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
* Based on sun4m's smp.c, which is:
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/profile.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/cpu.h>
#include <asm/cacheflush.h>
#include <asm/switch_to.h>
#include <asm/tlbflush.h>
#include <asm/timer.h>
#include <asm/oplib.h>
#include <asm/sbi.h>
#include <asm/mmu.h>
#include "kernel.h"
#include "irq.h"
#define IRQ_CROSS_CALL 15
static volatile int smp_processors_ready;
static int smp_highest_cpu;
static inline unsigned long sun4d_swap(volatile unsigned long *ptr, unsigned long val)
{
__asm__ __volatile__("swap [%1], %0\n\t" :
"=&r" (val), "=&r" (ptr) :
"0" (val), "1" (ptr));
return val;
}
static void smp4d_ipi_init(void);
static unsigned char cpu_leds[32];
static inline void show_leds(int cpuid)
{
cpuid &= 0x1e;
__asm__ __volatile__ ("stba %0, [%1] %2" : :
"r" ((cpu_leds[cpuid] << 4) | cpu_leds[cpuid+1]),
"r" (ECSR_BASE(cpuid) | BB_LEDS),
"i" (ASI_M_CTL));
}
void __cpuinit smp4d_callin(void)
{
int cpuid = hard_smp4d_processor_id();
unsigned long flags;
/* Show we are alive */
cpu_leds[cpuid] = 0x6;
show_leds(cpuid);
/* Enable level15 interrupt, disable level14 interrupt for now */
cc_set_imsk((cc_get_imsk() & ~0x8000) | 0x4000);
local_ops->cache_all();
local_ops->tlb_all();
notify_cpu_starting(cpuid);
/*
* Unblock the master CPU _only_ when the scheduler state
* of all secondary CPUs will be up-to-date, so after
* the SMP initialization the master will be just allowed
* to call the scheduler code.
*/
/* Get our local ticker going. */
register_percpu_ce(cpuid);
calibrate_delay();
smp_store_cpu_info(cpuid);
local_ops->cache_all();
local_ops->tlb_all();
/* Allow master to continue. */
sun4d_swap((unsigned long *)&cpu_callin_map[cpuid], 1);
local_ops->cache_all();
local_ops->tlb_all();
while ((unsigned long)current_set[cpuid] < PAGE_OFFSET)
barrier();
while (current_set[cpuid]->cpu != cpuid)
barrier();
/* Fix idle thread fields. */
__asm__ __volatile__("ld [%0], %%g6\n\t"
: : "r" (&current_set[cpuid])
: "memory" /* paranoid */);
cpu_leds[cpuid] = 0x9;
show_leds(cpuid);
/* Attach to the address space of init_task. */
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
local_ops->cache_all();
local_ops->tlb_all();
local_irq_enable(); /* We don't allow PIL 14 yet */
while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
barrier();
spin_lock_irqsave(&sun4d_imsk_lock, flags);
cc_set_imsk(cc_get_imsk() & ~0x4000); /* Allow PIL 14 as well */
spin_unlock_irqrestore(&sun4d_imsk_lock, flags);
set_cpu_online(cpuid, true);
}
/*
* Cycle through the processors asking the PROM to start each one.
*/
void __init smp4d_boot_cpus(void)
{
smp4d_ipi_init();
if (boot_cpu_id)
current_set[0] = NULL;
local_ops->cache_all();
}
int __cpuinit smp4d_boot_one_cpu(int i)
{
unsigned long *entry = &sun4d_cpu_startup;
struct task_struct *p;
int timeout;
int cpu_node;
cpu_find_by_instance(i, &cpu_node, NULL);
/* Cook up an idler for this guy. */
p = fork_idle(i);
current_set[i] = task_thread_info(p);
/*
* Initialize the contexts table
* Since the call to prom_startcpu() trashes the structure,
* we need to re-initialize it for each cpu
*/
smp_penguin_ctable.which_io = 0;
smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
smp_penguin_ctable.reg_size = 0;
/* whirrr, whirrr, whirrrrrrrrr... */
printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
local_ops->cache_all();
prom_startcpu(cpu_node,
&smp_penguin_ctable, 0, (char *)entry);
printk(KERN_INFO "prom_startcpu returned :)\n");
/* wheee... it's going... */
for (timeout = 0; timeout < 10000; timeout++) {
if (cpu_callin_map[i])
break;
udelay(200);
}
if (!(cpu_callin_map[i])) {
printk(KERN_ERR "Processor %d is stuck.\n", i);
return -ENODEV;
}
local_ops->cache_all();
return 0;
}
void __init smp4d_smp_done(void)
{
int i, first;
int *prev;
/* setup cpu list for irq rotation */
first = 0;
prev = &first;
for_each_online_cpu(i) {
*prev = i;
prev = &cpu_data(i).next;
}
*prev = first;
local_ops->cache_all();
/* Ok, they are spinning and ready to go. */
smp_processors_ready = 1;
sun4d_distribute_irqs();
}
/* Memory structure giving interrupt handler information about IPI generated */
struct sun4d_ipi_work {
int single;
int msk;
int resched;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct sun4d_ipi_work, sun4d_ipi_work);
/* Initialize IPIs on the SUN4D SMP machine */
static void __init smp4d_ipi_init(void)
{
int cpu;
struct sun4d_ipi_work *work;
printk(KERN_INFO "smp4d: setup IPI at IRQ %d\n", SUN4D_IPI_IRQ);
for_each_possible_cpu(cpu) {
work = &per_cpu(sun4d_ipi_work, cpu);
work->single = work->msk = work->resched = 0;
}
}
void sun4d_ipi_interrupt(void)
{
struct sun4d_ipi_work *work = &__get_cpu_var(sun4d_ipi_work);
if (work->single) {
work->single = 0;
smp_call_function_single_interrupt();
}
if (work->msk) {
work->msk = 0;
smp_call_function_interrupt();
}
if (work->resched) {
work->resched = 0;
smp_resched_interrupt();
}
}
static void smp4d_ipi_single(int cpu)
{
struct sun4d_ipi_work *work = &per_cpu(sun4d_ipi_work, cpu);
/* Mark work */
work->single = 1;
/* Generate IRQ on the CPU */
sun4d_send_ipi(cpu, SUN4D_IPI_IRQ);
}
static void smp4d_ipi_mask_one(int cpu)
{
struct sun4d_ipi_work *work = &per_cpu(sun4d_ipi_work, cpu);
/* Mark work */
work->msk = 1;
/* Generate IRQ on the CPU */
sun4d_send_ipi(cpu, SUN4D_IPI_IRQ);
}
static void smp4d_ipi_resched(int cpu)
{
struct sun4d_ipi_work *work = &per_cpu(sun4d_ipi_work, cpu);
/* Mark work */
work->resched = 1;
/* Generate IRQ on the CPU (any IRQ will cause resched) */
sun4d_send_ipi(cpu, SUN4D_IPI_IRQ);
}
static struct smp_funcall {
smpfunc_t func;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned char processors_in[NR_CPUS]; /* Set when ipi entered. */
unsigned char processors_out[NR_CPUS]; /* Set when ipi exited. */
} ccall_info __attribute__((aligned(8)));
static DEFINE_SPINLOCK(cross_call_lock);
/* Cross calls must be serialized, at least currently. */
static void smp4d_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
unsigned long arg2, unsigned long arg3,
unsigned long arg4)
{
if (smp_processors_ready) {
register int high = smp_highest_cpu;
unsigned long flags;
spin_lock_irqsave(&cross_call_lock, flags);
{
/*
* If you make changes here, make sure
* gcc generates proper code...
*/
register smpfunc_t f asm("i0") = func;
register unsigned long a1 asm("i1") = arg1;
register unsigned long a2 asm("i2") = arg2;
register unsigned long a3 asm("i3") = arg3;
register unsigned long a4 asm("i4") = arg4;
register unsigned long a5 asm("i5") = 0;
__asm__ __volatile__(
"std %0, [%6]\n\t"
"std %2, [%6 + 8]\n\t"
"std %4, [%6 + 16]\n\t" : :
"r"(f), "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5),
"r" (&ccall_info.func));
}
/* Init receive/complete mapping, plus fire the IPI's off. */
{
register int i;
cpumask_clear_cpu(smp_processor_id(), &mask);
cpumask_and(&mask, cpu_online_mask, &mask);
for (i = 0; i <= high; i++) {
if (cpumask_test_cpu(i, &mask)) {
ccall_info.processors_in[i] = 0;
ccall_info.processors_out[i] = 0;
sun4d_send_ipi(i, IRQ_CROSS_CALL);
}
}
}
{
register int i;
i = 0;
do {
if (!cpumask_test_cpu(i, &mask))
continue;
while (!ccall_info.processors_in[i])
barrier();
} while (++i <= high);
i = 0;
do {
if (!cpumask_test_cpu(i, &mask))
continue;
while (!ccall_info.processors_out[i])
barrier();
} while (++i <= high);
}
spin_unlock_irqrestore(&cross_call_lock, flags);
}
}
/* Running cross calls. */
void smp4d_cross_call_irq(void)
{
int i = hard_smp4d_processor_id();
ccall_info.processors_in[i] = 1;
ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
ccall_info.arg4, ccall_info.arg5);
ccall_info.processors_out[i] = 1;
}
void smp4d_percpu_timer_interrupt(struct pt_regs *regs)
{
struct pt_regs *old_regs;
int cpu = hard_smp4d_processor_id();
struct clock_event_device *ce;
static int cpu_tick[NR_CPUS];
static char led_mask[] = { 0xe, 0xd, 0xb, 0x7, 0xb, 0xd };
old_regs = set_irq_regs(regs);
bw_get_prof_limit(cpu);
bw_clear_intr_mask(0, 1); /* INTR_TABLE[0] & 1 is Profile IRQ */
cpu_tick[cpu]++;
if (!(cpu_tick[cpu] & 15)) {
if (cpu_tick[cpu] == 0x60)
cpu_tick[cpu] = 0;
cpu_leds[cpu] = led_mask[cpu_tick[cpu] >> 4];
show_leds(cpu);
}
ce = &per_cpu(sparc32_clockevent, cpu);
irq_enter();
ce->event_handler(ce);
irq_exit();
set_irq_regs(old_regs);
}
void __init smp4d_blackbox_id(unsigned *addr)
{
int rd = *addr & 0x3e000000;
addr[0] = 0xc0800800 | rd; /* lda [%g0] ASI_M_VIKING_TMP1, reg */
addr[1] = 0x01000000; /* nop */
addr[2] = 0x01000000; /* nop */
}
void __init smp4d_blackbox_current(unsigned *addr)
{
int rd = *addr & 0x3e000000;
addr[0] = 0xc0800800 | rd; /* lda [%g0] ASI_M_VIKING_TMP1, reg */
addr[2] = 0x81282002 | rd | (rd >> 11); /* sll reg, 2, reg */
addr[4] = 0x01000000; /* nop */
}
void __init sun4d_init_smp(void)
{
int i;
/* Patch ipi15 trap table */
t_nmi[1] = t_nmi[1] + (linux_trap_ipi15_sun4d - linux_trap_ipi15_sun4m);
/* And set btfixup... */
BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4d_blackbox_id);
BTFIXUPSET_BLACKBOX(load_current, smp4d_blackbox_current);
BTFIXUPSET_CALL(smp_cross_call, smp4d_cross_call, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4d_processor_id, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(smp_ipi_resched, smp4d_ipi_resched, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(smp_ipi_single, smp4d_ipi_single, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(smp_ipi_mask_one, smp4d_ipi_mask_one, BTFIXUPCALL_NORM);
for (i = 0; i < NR_CPUS; i++) {
ccall_info.processors_in[i] = 1;
ccall_info.processors_out[i] = 1;
}
}