linux/drivers/net/mv643xx_eth.c
Lennert Buytenhek 5dc4d174e2 mv643xx_eth: kill superfluous comments
Half of the functions in the mv643xx_eth driver are prefixed by
useless and baroque comment blocks on _what_ those functions do (which
is obvious from the code itself) rather than why, and there's no point
in keeping those comments around.

Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Acked-by: Dale Farnsworth <dale@farnsworth.org>
2008-06-12 08:40:30 +02:00

2446 lines
68 KiB
C

/*
* Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports
* Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
*
* Based on the 64360 driver from:
* Copyright (C) 2002 Rabeeh Khoury <rabeeh@galileo.co.il>
* Rabeeh Khoury <rabeeh@marvell.com>
*
* Copyright (C) 2003 PMC-Sierra, Inc.,
* written by Manish Lachwani
*
* Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
*
* Copyright (C) 2004-2006 MontaVista Software, Inc.
* Dale Farnsworth <dale@farnsworth.org>
*
* Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
* <sjhill@realitydiluted.com>
*
* Copyright (C) 2007-2008 Marvell Semiconductor
* Lennert Buytenhek <buytenh@marvell.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/in.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/mii.h>
#include <linux/mv643xx_eth.h>
#include <asm/io.h>
#include <asm/types.h>
#include <asm/system.h>
static char mv643xx_eth_driver_name[] = "mv643xx_eth";
static char mv643xx_eth_driver_version[] = "1.0";
#define MV643XX_ETH_CHECKSUM_OFFLOAD_TX
#define MV643XX_ETH_NAPI
#define MV643XX_ETH_TX_FAST_REFILL
#undef MV643XX_ETH_COAL
#define MV643XX_ETH_TX_COAL 100
#ifdef MV643XX_ETH_COAL
#define MV643XX_ETH_RX_COAL 100
#endif
#ifdef MV643XX_ETH_CHECKSUM_OFFLOAD_TX
#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
#else
#define MAX_DESCS_PER_SKB 1
#endif
#define ETH_VLAN_HLEN 4
#define ETH_FCS_LEN 4
#define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
#define ETH_WRAPPER_LEN (ETH_HW_IP_ALIGN + ETH_HLEN + \
ETH_VLAN_HLEN + ETH_FCS_LEN)
#define ETH_RX_SKB_SIZE (dev->mtu + ETH_WRAPPER_LEN + \
dma_get_cache_alignment())
/*
* Registers shared between all ports.
*/
#define PHY_ADDR 0x0000
#define SMI_REG 0x0004
#define WINDOW_BASE(w) (0x0200 + ((w) << 3))
#define WINDOW_SIZE(w) (0x0204 + ((w) << 3))
#define WINDOW_REMAP_HIGH(w) (0x0280 + ((w) << 2))
#define WINDOW_BAR_ENABLE 0x0290
#define WINDOW_PROTECT(w) (0x0294 + ((w) << 4))
/*
* Per-port registers.
*/
#define PORT_CONFIG(p) (0x0400 + ((p) << 10))
#define UNICAST_PROMISCUOUS_MODE 0x00000001
#define PORT_CONFIG_EXT(p) (0x0404 + ((p) << 10))
#define MAC_ADDR_LOW(p) (0x0414 + ((p) << 10))
#define MAC_ADDR_HIGH(p) (0x0418 + ((p) << 10))
#define SDMA_CONFIG(p) (0x041c + ((p) << 10))
#define PORT_SERIAL_CONTROL(p) (0x043c + ((p) << 10))
#define PORT_STATUS(p) (0x0444 + ((p) << 10))
#define TX_FIFO_EMPTY 0x00000400
#define TXQ_COMMAND(p) (0x0448 + ((p) << 10))
#define TX_BW_MTU(p) (0x0458 + ((p) << 10))
#define INT_CAUSE(p) (0x0460 + ((p) << 10))
#define INT_RX 0x00000804
#define INT_EXT 0x00000002
#define INT_CAUSE_EXT(p) (0x0464 + ((p) << 10))
#define INT_EXT_LINK 0x00100000
#define INT_EXT_PHY 0x00010000
#define INT_EXT_TX_ERROR_0 0x00000100
#define INT_EXT_TX_0 0x00000001
#define INT_EXT_TX 0x00000101
#define INT_MASK(p) (0x0468 + ((p) << 10))
#define INT_MASK_EXT(p) (0x046c + ((p) << 10))
#define TX_FIFO_URGENT_THRESHOLD(p) (0x0474 + ((p) << 10))
#define RXQ_CURRENT_DESC_PTR(p) (0x060c + ((p) << 10))
#define RXQ_COMMAND(p) (0x0680 + ((p) << 10))
#define TXQ_CURRENT_DESC_PTR(p) (0x06c0 + ((p) << 10))
#define MIB_COUNTERS(p) (0x1000 + ((p) << 7))
#define SPECIAL_MCAST_TABLE(p) (0x1400 + ((p) << 10))
#define OTHER_MCAST_TABLE(p) (0x1500 + ((p) << 10))
#define UNICAST_TABLE(p) (0x1600 + ((p) << 10))
/*
* SDMA configuration register.
*/
#define RX_BURST_SIZE_4_64BIT (2 << 1)
#define BLM_RX_NO_SWAP (1 << 4)
#define BLM_TX_NO_SWAP (1 << 5)
#define TX_BURST_SIZE_4_64BIT (2 << 22)
#if defined(__BIG_ENDIAN)
#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
RX_BURST_SIZE_4_64BIT | \
TX_BURST_SIZE_4_64BIT
#elif defined(__LITTLE_ENDIAN)
#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
RX_BURST_SIZE_4_64BIT | \
BLM_RX_NO_SWAP | \
BLM_TX_NO_SWAP | \
TX_BURST_SIZE_4_64BIT
#else
#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
#endif
/*
* Port serial control register.
*/
#define SET_MII_SPEED_TO_100 (1 << 24)
#define SET_GMII_SPEED_TO_1000 (1 << 23)
#define SET_FULL_DUPLEX_MODE (1 << 21)
#define MAX_RX_PACKET_1522BYTE (1 << 17)
#define MAX_RX_PACKET_9700BYTE (5 << 17)
#define MAX_RX_PACKET_MASK (7 << 17)
#define DISABLE_AUTO_NEG_SPEED_GMII (1 << 13)
#define DO_NOT_FORCE_LINK_FAIL (1 << 10)
#define SERIAL_PORT_CONTROL_RESERVED (1 << 9)
#define DISABLE_AUTO_NEG_FOR_FLOW_CTRL (1 << 3)
#define DISABLE_AUTO_NEG_FOR_DUPLEX (1 << 2)
#define FORCE_LINK_PASS (1 << 1)
#define SERIAL_PORT_ENABLE (1 << 0)
#define DEFAULT_RX_QUEUE_SIZE 400
#define DEFAULT_TX_QUEUE_SIZE 800
/* SMI reg */
#define SMI_BUSY 0x10000000 /* 0 - Write, 1 - Read */
#define SMI_READ_VALID 0x08000000 /* 0 - Write, 1 - Read */
#define SMI_OPCODE_WRITE 0 /* Completion of Read */
#define SMI_OPCODE_READ 0x04000000 /* Operation is in progress */
/* typedefs */
typedef enum _func_ret_status {
ETH_OK, /* Returned as expected. */
ETH_ERROR, /* Fundamental error. */
ETH_RETRY, /* Could not process request. Try later.*/
ETH_END_OF_JOB, /* Ring has nothing to process. */
ETH_QUEUE_FULL, /* Ring resource error. */
ETH_QUEUE_LAST_RESOURCE /* Ring resources about to exhaust. */
} FUNC_RET_STATUS;
/*
* RX/TX descriptors.
*/
#if defined(__BIG_ENDIAN)
struct rx_desc {
u16 byte_cnt; /* Descriptor buffer byte count */
u16 buf_size; /* Buffer size */
u32 cmd_sts; /* Descriptor command status */
u32 next_desc_ptr; /* Next descriptor pointer */
u32 buf_ptr; /* Descriptor buffer pointer */
};
struct tx_desc {
u16 byte_cnt; /* buffer byte count */
u16 l4i_chk; /* CPU provided TCP checksum */
u32 cmd_sts; /* Command/status field */
u32 next_desc_ptr; /* Pointer to next descriptor */
u32 buf_ptr; /* pointer to buffer for this descriptor*/
};
#elif defined(__LITTLE_ENDIAN)
struct rx_desc {
u32 cmd_sts; /* Descriptor command status */
u16 buf_size; /* Buffer size */
u16 byte_cnt; /* Descriptor buffer byte count */
u32 buf_ptr; /* Descriptor buffer pointer */
u32 next_desc_ptr; /* Next descriptor pointer */
};
struct tx_desc {
u32 cmd_sts; /* Command/status field */
u16 l4i_chk; /* CPU provided TCP checksum */
u16 byte_cnt; /* buffer byte count */
u32 buf_ptr; /* pointer to buffer for this descriptor*/
u32 next_desc_ptr; /* Pointer to next descriptor */
};
#else
#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
#endif
/* RX & TX descriptor command */
#define BUFFER_OWNED_BY_DMA 0x80000000
/* RX & TX descriptor status */
#define ERROR_SUMMARY 0x00000001
/* RX descriptor status */
#define LAYER_4_CHECKSUM_OK 0x40000000
#define RX_ENABLE_INTERRUPT 0x20000000
#define RX_FIRST_DESC 0x08000000
#define RX_LAST_DESC 0x04000000
/* TX descriptor command */
#define TX_ENABLE_INTERRUPT 0x00800000
#define GEN_CRC 0x00400000
#define TX_FIRST_DESC 0x00200000
#define TX_LAST_DESC 0x00100000
#define ZERO_PADDING 0x00080000
#define GEN_IP_V4_CHECKSUM 0x00040000
#define GEN_TCP_UDP_CHECKSUM 0x00020000
#define UDP_FRAME 0x00010000
#define TX_IHL_SHIFT 11
/* Unified struct for Rx and Tx operations. The user is not required to */
/* be familier with neither Tx nor Rx descriptors. */
struct pkt_info {
unsigned short byte_cnt; /* Descriptor buffer byte count */
unsigned short l4i_chk; /* Tx CPU provided TCP Checksum */
unsigned int cmd_sts; /* Descriptor command status */
dma_addr_t buf_ptr; /* Descriptor buffer pointer */
struct sk_buff *return_info; /* User resource return information */
};
/* global *******************************************************************/
struct mv643xx_eth_shared_private {
void __iomem *base;
/* used to protect SMI_REG, which is shared across ports */
spinlock_t phy_lock;
u32 win_protect;
unsigned int t_clk;
};
/* per-port *****************************************************************/
struct mib_counters {
u64 good_octets_received;
u32 bad_octets_received;
u32 internal_mac_transmit_err;
u32 good_frames_received;
u32 bad_frames_received;
u32 broadcast_frames_received;
u32 multicast_frames_received;
u32 frames_64_octets;
u32 frames_65_to_127_octets;
u32 frames_128_to_255_octets;
u32 frames_256_to_511_octets;
u32 frames_512_to_1023_octets;
u32 frames_1024_to_max_octets;
u64 good_octets_sent;
u32 good_frames_sent;
u32 excessive_collision;
u32 multicast_frames_sent;
u32 broadcast_frames_sent;
u32 unrec_mac_control_received;
u32 fc_sent;
u32 good_fc_received;
u32 bad_fc_received;
u32 undersize_received;
u32 fragments_received;
u32 oversize_received;
u32 jabber_received;
u32 mac_receive_error;
u32 bad_crc_event;
u32 collision;
u32 late_collision;
};
struct mv643xx_eth_private {
struct mv643xx_eth_shared_private *shared;
int port_num; /* User Ethernet port number */
struct mv643xx_eth_shared_private *shared_smi;
u32 rx_sram_addr; /* Base address of rx sram area */
u32 rx_sram_size; /* Size of rx sram area */
u32 tx_sram_addr; /* Base address of tx sram area */
u32 tx_sram_size; /* Size of tx sram area */
int rx_resource_err; /* Rx ring resource error flag */
/* Tx/Rx rings managment indexes fields. For driver use */
/* Next available and first returning Rx resource */
int rx_curr_desc_q, rx_used_desc_q;
/* Next available and first returning Tx resource */
int tx_curr_desc_q, tx_used_desc_q;
#ifdef MV643XX_ETH_TX_FAST_REFILL
u32 tx_clean_threshold;
#endif
struct rx_desc *p_rx_desc_area;
dma_addr_t rx_desc_dma;
int rx_desc_area_size;
struct sk_buff **rx_skb;
struct tx_desc *p_tx_desc_area;
dma_addr_t tx_desc_dma;
int tx_desc_area_size;
struct sk_buff **tx_skb;
struct work_struct tx_timeout_task;
struct net_device *dev;
struct napi_struct napi;
struct net_device_stats stats;
struct mib_counters mib_counters;
spinlock_t lock;
/* Size of Tx Ring per queue */
int tx_ring_size;
/* Number of tx descriptors in use */
int tx_desc_count;
/* Size of Rx Ring per queue */
int rx_ring_size;
/* Number of rx descriptors in use */
int rx_desc_count;
/*
* Used in case RX Ring is empty, which can be caused when
* system does not have resources (skb's)
*/
struct timer_list timeout;
u32 rx_int_coal;
u32 tx_int_coal;
struct mii_if_info mii;
};
/* port register accessors **************************************************/
static inline u32 rdl(struct mv643xx_eth_private *mp, int offset)
{
return readl(mp->shared->base + offset);
}
static inline void wrl(struct mv643xx_eth_private *mp, int offset, u32 data)
{
writel(data, mp->shared->base + offset);
}
/* rxq/txq helper functions *************************************************/
static void mv643xx_eth_port_enable_rx(struct mv643xx_eth_private *mp,
unsigned int queues)
{
wrl(mp, RXQ_COMMAND(mp->port_num), queues);
}
static unsigned int mv643xx_eth_port_disable_rx(struct mv643xx_eth_private *mp)
{
unsigned int port_num = mp->port_num;
u32 queues;
/* Stop Rx port activity. Check port Rx activity. */
queues = rdl(mp, RXQ_COMMAND(port_num)) & 0xFF;
if (queues) {
/* Issue stop command for active queues only */
wrl(mp, RXQ_COMMAND(port_num), (queues << 8));
/* Wait for all Rx activity to terminate. */
/* Check port cause register that all Rx queues are stopped */
while (rdl(mp, RXQ_COMMAND(port_num)) & 0xFF)
udelay(10);
}
return queues;
}
static void mv643xx_eth_port_enable_tx(struct mv643xx_eth_private *mp,
unsigned int queues)
{
wrl(mp, TXQ_COMMAND(mp->port_num), queues);
}
static unsigned int mv643xx_eth_port_disable_tx(struct mv643xx_eth_private *mp)
{
unsigned int port_num = mp->port_num;
u32 queues;
/* Stop Tx port activity. Check port Tx activity. */
queues = rdl(mp, TXQ_COMMAND(port_num)) & 0xFF;
if (queues) {
/* Issue stop command for active queues only */
wrl(mp, TXQ_COMMAND(port_num), (queues << 8));
/* Wait for all Tx activity to terminate. */
/* Check port cause register that all Tx queues are stopped */
while (rdl(mp, TXQ_COMMAND(port_num)) & 0xFF)
udelay(10);
/* Wait for Tx FIFO to empty */
while (rdl(mp, PORT_STATUS(port_num)) & TX_FIFO_EMPTY)
udelay(10);
}
return queues;
}
/* rx ***********************************************************************/
static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev);
static FUNC_RET_STATUS rx_return_buff(struct mv643xx_eth_private *mp,
struct pkt_info *p_pkt_info)
{
int used_rx_desc; /* Where to return Rx resource */
volatile struct rx_desc *p_used_rx_desc;
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
/* Get 'used' Rx descriptor */
used_rx_desc = mp->rx_used_desc_q;
p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
/* Flush the write pipe */
/* Return the descriptor to DMA ownership */
wmb();
p_used_rx_desc->cmd_sts = BUFFER_OWNED_BY_DMA | RX_ENABLE_INTERRUPT;
wmb();
/* Move the used descriptor pointer to the next descriptor */
mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
/* Any Rx return cancels the Rx resource error status */
mp->rx_resource_err = 0;
spin_unlock_irqrestore(&mp->lock, flags);
return ETH_OK;
}
static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
struct pkt_info pkt_info;
struct sk_buff *skb;
int unaligned;
while (mp->rx_desc_count < mp->rx_ring_size) {
skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
if (!skb)
break;
mp->rx_desc_count++;
unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
if (unaligned)
skb_reserve(skb, dma_get_cache_alignment() - unaligned);
pkt_info.cmd_sts = RX_ENABLE_INTERRUPT;
pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
pkt_info.return_info = skb;
if (rx_return_buff(mp, &pkt_info) != ETH_OK) {
printk(KERN_ERR
"%s: Error allocating RX Ring\n", dev->name);
break;
}
skb_reserve(skb, ETH_HW_IP_ALIGN);
}
/*
* If RX ring is empty of SKB, set a timer to try allocating
* again at a later time.
*/
if (mp->rx_desc_count == 0) {
printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
add_timer(&mp->timeout);
}
}
static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
{
mv643xx_eth_rx_refill_descs((struct net_device *)data);
}
static FUNC_RET_STATUS port_receive(struct mv643xx_eth_private *mp,
struct pkt_info *p_pkt_info)
{
int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
volatile struct rx_desc *p_rx_desc;
unsigned int command_status;
unsigned long flags;
/* Do not process Rx ring in case of Rx ring resource error */
if (mp->rx_resource_err)
return ETH_QUEUE_FULL;
spin_lock_irqsave(&mp->lock, flags);
/* Get the Rx Desc ring 'curr and 'used' indexes */
rx_curr_desc = mp->rx_curr_desc_q;
rx_used_desc = mp->rx_used_desc_q;
p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
/* The following parameters are used to save readings from memory */
command_status = p_rx_desc->cmd_sts;
rmb();
/* Nothing to receive... */
if (command_status & BUFFER_OWNED_BY_DMA) {
spin_unlock_irqrestore(&mp->lock, flags);
return ETH_END_OF_JOB;
}
p_pkt_info->byte_cnt = p_rx_desc->byte_cnt - ETH_HW_IP_ALIGN;
p_pkt_info->cmd_sts = command_status;
p_pkt_info->buf_ptr = p_rx_desc->buf_ptr + ETH_HW_IP_ALIGN;
p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
p_pkt_info->l4i_chk = p_rx_desc->buf_size;
/*
* Clean the return info field to indicate that the
* packet has been moved to the upper layers
*/
mp->rx_skb[rx_curr_desc] = NULL;
/* Update current index in data structure */
rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
mp->rx_curr_desc_q = rx_next_curr_desc;
/* Rx descriptors exhausted. Set the Rx ring resource error flag */
if (rx_next_curr_desc == rx_used_desc)
mp->rx_resource_err = 1;
spin_unlock_irqrestore(&mp->lock, flags);
return ETH_OK;
}
static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
unsigned int received_packets = 0;
struct sk_buff *skb;
struct pkt_info pkt_info;
while (budget-- > 0 && port_receive(mp, &pkt_info) == ETH_OK) {
dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
DMA_FROM_DEVICE);
mp->rx_desc_count--;
received_packets++;
/*
* Update statistics.
* Note byte count includes 4 byte CRC count
*/
stats->rx_packets++;
stats->rx_bytes += pkt_info.byte_cnt;
skb = pkt_info.return_info;
/*
* In case received a packet without first / last bits on OR
* the error summary bit is on, the packets needs to be dropeed.
*/
if (((pkt_info.cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
(RX_FIRST_DESC | RX_LAST_DESC))
|| (pkt_info.cmd_sts & ERROR_SUMMARY)) {
stats->rx_dropped++;
if ((pkt_info.cmd_sts & (RX_FIRST_DESC |
RX_LAST_DESC)) !=
(RX_FIRST_DESC | RX_LAST_DESC)) {
if (net_ratelimit())
printk(KERN_ERR
"%s: Received packet spread "
"on multiple descriptors\n",
dev->name);
}
if (pkt_info.cmd_sts & ERROR_SUMMARY)
stats->rx_errors++;
dev_kfree_skb_irq(skb);
} else {
/*
* The -4 is for the CRC in the trailer of the
* received packet
*/
skb_put(skb, pkt_info.byte_cnt - 4);
if (pkt_info.cmd_sts & LAYER_4_CHECKSUM_OK) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum = htons(
(pkt_info.cmd_sts & 0x0007fff8) >> 3);
}
skb->protocol = eth_type_trans(skb, dev);
#ifdef MV643XX_ETH_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
}
dev->last_rx = jiffies;
}
mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
return received_packets;
}
#ifdef MV643XX_ETH_NAPI
static int mv643xx_eth_poll(struct napi_struct *napi, int budget)
{
struct mv643xx_eth_private *mp = container_of(napi, struct mv643xx_eth_private, napi);
struct net_device *dev = mp->dev;
unsigned int port_num = mp->port_num;
int work_done;
#ifdef MV643XX_ETH_TX_FAST_REFILL
if (++mp->tx_clean_threshold > 5) {
mv643xx_eth_free_completed_tx_descs(dev);
mp->tx_clean_threshold = 0;
}
#endif
work_done = 0;
if ((rdl(mp, RXQ_CURRENT_DESC_PTR(port_num)))
!= (u32) mp->rx_used_desc_q)
work_done = mv643xx_eth_receive_queue(dev, budget);
if (work_done < budget) {
netif_rx_complete(dev, napi);
wrl(mp, INT_CAUSE(port_num), 0);
wrl(mp, INT_CAUSE_EXT(port_num), 0);
wrl(mp, INT_MASK(port_num), INT_RX | INT_EXT);
}
return work_done;
}
#endif
/* tx ***********************************************************************/
static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
{
unsigned int frag;
skb_frag_t *fragp;
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
fragp = &skb_shinfo(skb)->frags[frag];
if (fragp->size <= 8 && fragp->page_offset & 0x7)
return 1;
}
return 0;
}
static int alloc_tx_desc_index(struct mv643xx_eth_private *mp)
{
int tx_desc_curr;
BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
tx_desc_curr = mp->tx_curr_desc_q;
mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
return tx_desc_curr;
}
static void tx_fill_frag_descs(struct mv643xx_eth_private *mp,
struct sk_buff *skb)
{
int frag;
int tx_index;
struct tx_desc *desc;
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
tx_index = alloc_tx_desc_index(mp);
desc = &mp->p_tx_desc_area[tx_index];
desc->cmd_sts = BUFFER_OWNED_BY_DMA;
/* Last Frag enables interrupt and frees the skb */
if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
desc->cmd_sts |= ZERO_PADDING |
TX_LAST_DESC |
TX_ENABLE_INTERRUPT;
mp->tx_skb[tx_index] = skb;
} else
mp->tx_skb[tx_index] = NULL;
desc = &mp->p_tx_desc_area[tx_index];
desc->l4i_chk = 0;
desc->byte_cnt = this_frag->size;
desc->buf_ptr = dma_map_page(NULL, this_frag->page,
this_frag->page_offset,
this_frag->size,
DMA_TO_DEVICE);
}
}
static inline __be16 sum16_as_be(__sum16 sum)
{
return (__force __be16)sum;
}
static void tx_submit_descs_for_skb(struct mv643xx_eth_private *mp,
struct sk_buff *skb)
{
int tx_index;
struct tx_desc *desc;
u32 cmd_sts;
int length;
int nr_frags = skb_shinfo(skb)->nr_frags;
cmd_sts = TX_FIRST_DESC | GEN_CRC | BUFFER_OWNED_BY_DMA;
tx_index = alloc_tx_desc_index(mp);
desc = &mp->p_tx_desc_area[tx_index];
if (nr_frags) {
tx_fill_frag_descs(mp, skb);
length = skb_headlen(skb);
mp->tx_skb[tx_index] = NULL;
} else {
cmd_sts |= ZERO_PADDING | TX_LAST_DESC | TX_ENABLE_INTERRUPT;
length = skb->len;
mp->tx_skb[tx_index] = skb;
}
desc->byte_cnt = length;
desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
BUG_ON(skb->protocol != htons(ETH_P_IP));
cmd_sts |= GEN_TCP_UDP_CHECKSUM |
GEN_IP_V4_CHECKSUM |
ip_hdr(skb)->ihl << TX_IHL_SHIFT;
switch (ip_hdr(skb)->protocol) {
case IPPROTO_UDP:
cmd_sts |= UDP_FRAME;
desc->l4i_chk = ntohs(sum16_as_be(udp_hdr(skb)->check));
break;
case IPPROTO_TCP:
desc->l4i_chk = ntohs(sum16_as_be(tcp_hdr(skb)->check));
break;
default:
BUG();
}
} else {
/* Errata BTS #50, IHL must be 5 if no HW checksum */
cmd_sts |= 5 << TX_IHL_SHIFT;
desc->l4i_chk = 0;
}
/* ensure all other descriptors are written before first cmd_sts */
wmb();
desc->cmd_sts = cmd_sts;
/* ensure all descriptors are written before poking hardware */
wmb();
mv643xx_eth_port_enable_tx(mp, 1);
mp->tx_desc_count += nr_frags + 1;
}
static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
unsigned long flags;
BUG_ON(netif_queue_stopped(dev));
if (has_tiny_unaligned_frags(skb) && __skb_linearize(skb)) {
stats->tx_dropped++;
printk(KERN_DEBUG "%s: failed to linearize tiny "
"unaligned fragment\n", dev->name);
return NETDEV_TX_BUSY;
}
spin_lock_irqsave(&mp->lock, flags);
if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
netif_stop_queue(dev);
spin_unlock_irqrestore(&mp->lock, flags);
return NETDEV_TX_BUSY;
}
tx_submit_descs_for_skb(mp, skb);
stats->tx_bytes += skb->len;
stats->tx_packets++;
dev->trans_start = jiffies;
if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
netif_stop_queue(dev);
spin_unlock_irqrestore(&mp->lock, flags);
return NETDEV_TX_OK;
}
/* mii management interface *************************************************/
static int phy_addr_get(struct mv643xx_eth_private *mp);
static void read_smi_reg(struct mv643xx_eth_private *mp,
unsigned int phy_reg, unsigned int *value)
{
void __iomem *smi_reg = mp->shared_smi->base + SMI_REG;
int phy_addr = phy_addr_get(mp);
unsigned long flags;
int i;
/* the SMI register is a shared resource */
spin_lock_irqsave(&mp->shared_smi->phy_lock, flags);
/* wait for the SMI register to become available */
for (i = 0; readl(smi_reg) & SMI_BUSY; i++) {
if (i == 1000) {
printk("%s: PHY busy timeout\n", mp->dev->name);
goto out;
}
udelay(10);
}
writel((phy_addr << 16) | (phy_reg << 21) | SMI_OPCODE_READ, smi_reg);
/* now wait for the data to be valid */
for (i = 0; !(readl(smi_reg) & SMI_READ_VALID); i++) {
if (i == 1000) {
printk("%s: PHY read timeout\n", mp->dev->name);
goto out;
}
udelay(10);
}
*value = readl(smi_reg) & 0xffff;
out:
spin_unlock_irqrestore(&mp->shared_smi->phy_lock, flags);
}
static void write_smi_reg(struct mv643xx_eth_private *mp,
unsigned int phy_reg, unsigned int value)
{
void __iomem *smi_reg = mp->shared_smi->base + SMI_REG;
int phy_addr = phy_addr_get(mp);
unsigned long flags;
int i;
/* the SMI register is a shared resource */
spin_lock_irqsave(&mp->shared_smi->phy_lock, flags);
/* wait for the SMI register to become available */
for (i = 0; readl(smi_reg) & SMI_BUSY; i++) {
if (i == 1000) {
printk("%s: PHY busy timeout\n", mp->dev->name);
goto out;
}
udelay(10);
}
writel((phy_addr << 16) | (phy_reg << 21) |
SMI_OPCODE_WRITE | (value & 0xffff), smi_reg);
out:
spin_unlock_irqrestore(&mp->shared_smi->phy_lock, flags);
}
/* mib counters *************************************************************/
static void clear_mib_counters(struct mv643xx_eth_private *mp)
{
unsigned int port_num = mp->port_num;
int i;
/* Perform dummy reads from MIB counters */
for (i = 0; i < 0x80; i += 4)
rdl(mp, MIB_COUNTERS(port_num) + i);
}
static inline u32 read_mib(struct mv643xx_eth_private *mp, int offset)
{
return rdl(mp, MIB_COUNTERS(mp->port_num) + offset);
}
static void update_mib_counters(struct mv643xx_eth_private *mp)
{
struct mib_counters *p = &mp->mib_counters;
p->good_octets_received += read_mib(mp, 0x00);
p->good_octets_received += (u64)read_mib(mp, 0x04) << 32;
p->bad_octets_received += read_mib(mp, 0x08);
p->internal_mac_transmit_err += read_mib(mp, 0x0c);
p->good_frames_received += read_mib(mp, 0x10);
p->bad_frames_received += read_mib(mp, 0x14);
p->broadcast_frames_received += read_mib(mp, 0x18);
p->multicast_frames_received += read_mib(mp, 0x1c);
p->frames_64_octets += read_mib(mp, 0x20);
p->frames_65_to_127_octets += read_mib(mp, 0x24);
p->frames_128_to_255_octets += read_mib(mp, 0x28);
p->frames_256_to_511_octets += read_mib(mp, 0x2c);
p->frames_512_to_1023_octets += read_mib(mp, 0x30);
p->frames_1024_to_max_octets += read_mib(mp, 0x34);
p->good_octets_sent += read_mib(mp, 0x38);
p->good_octets_sent += (u64)read_mib(mp, 0x3c) << 32;
p->good_frames_sent += read_mib(mp, 0x40);
p->excessive_collision += read_mib(mp, 0x44);
p->multicast_frames_sent += read_mib(mp, 0x48);
p->broadcast_frames_sent += read_mib(mp, 0x4c);
p->unrec_mac_control_received += read_mib(mp, 0x50);
p->fc_sent += read_mib(mp, 0x54);
p->good_fc_received += read_mib(mp, 0x58);
p->bad_fc_received += read_mib(mp, 0x5c);
p->undersize_received += read_mib(mp, 0x60);
p->fragments_received += read_mib(mp, 0x64);
p->oversize_received += read_mib(mp, 0x68);
p->jabber_received += read_mib(mp, 0x6c);
p->mac_receive_error += read_mib(mp, 0x70);
p->bad_crc_event += read_mib(mp, 0x74);
p->collision += read_mib(mp, 0x78);
p->late_collision += read_mib(mp, 0x7c);
}
/* ethtool ******************************************************************/
struct mv643xx_eth_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int stat_offset;
};
#define MV643XX_ETH_STAT(m) FIELD_SIZEOF(struct mv643xx_eth_private, m), \
offsetof(struct mv643xx_eth_private, m)
static const struct mv643xx_eth_stats mv643xx_eth_gstrings_stats[] = {
{ "rx_packets", MV643XX_ETH_STAT(stats.rx_packets) },
{ "tx_packets", MV643XX_ETH_STAT(stats.tx_packets) },
{ "rx_bytes", MV643XX_ETH_STAT(stats.rx_bytes) },
{ "tx_bytes", MV643XX_ETH_STAT(stats.tx_bytes) },
{ "rx_errors", MV643XX_ETH_STAT(stats.rx_errors) },
{ "tx_errors", MV643XX_ETH_STAT(stats.tx_errors) },
{ "rx_dropped", MV643XX_ETH_STAT(stats.rx_dropped) },
{ "tx_dropped", MV643XX_ETH_STAT(stats.tx_dropped) },
{ "good_octets_received", MV643XX_ETH_STAT(mib_counters.good_octets_received) },
{ "bad_octets_received", MV643XX_ETH_STAT(mib_counters.bad_octets_received) },
{ "internal_mac_transmit_err", MV643XX_ETH_STAT(mib_counters.internal_mac_transmit_err) },
{ "good_frames_received", MV643XX_ETH_STAT(mib_counters.good_frames_received) },
{ "bad_frames_received", MV643XX_ETH_STAT(mib_counters.bad_frames_received) },
{ "broadcast_frames_received", MV643XX_ETH_STAT(mib_counters.broadcast_frames_received) },
{ "multicast_frames_received", MV643XX_ETH_STAT(mib_counters.multicast_frames_received) },
{ "frames_64_octets", MV643XX_ETH_STAT(mib_counters.frames_64_octets) },
{ "frames_65_to_127_octets", MV643XX_ETH_STAT(mib_counters.frames_65_to_127_octets) },
{ "frames_128_to_255_octets", MV643XX_ETH_STAT(mib_counters.frames_128_to_255_octets) },
{ "frames_256_to_511_octets", MV643XX_ETH_STAT(mib_counters.frames_256_to_511_octets) },
{ "frames_512_to_1023_octets", MV643XX_ETH_STAT(mib_counters.frames_512_to_1023_octets) },
{ "frames_1024_to_max_octets", MV643XX_ETH_STAT(mib_counters.frames_1024_to_max_octets) },
{ "good_octets_sent", MV643XX_ETH_STAT(mib_counters.good_octets_sent) },
{ "good_frames_sent", MV643XX_ETH_STAT(mib_counters.good_frames_sent) },
{ "excessive_collision", MV643XX_ETH_STAT(mib_counters.excessive_collision) },
{ "multicast_frames_sent", MV643XX_ETH_STAT(mib_counters.multicast_frames_sent) },
{ "broadcast_frames_sent", MV643XX_ETH_STAT(mib_counters.broadcast_frames_sent) },
{ "unrec_mac_control_received", MV643XX_ETH_STAT(mib_counters.unrec_mac_control_received) },
{ "fc_sent", MV643XX_ETH_STAT(mib_counters.fc_sent) },
{ "good_fc_received", MV643XX_ETH_STAT(mib_counters.good_fc_received) },
{ "bad_fc_received", MV643XX_ETH_STAT(mib_counters.bad_fc_received) },
{ "undersize_received", MV643XX_ETH_STAT(mib_counters.undersize_received) },
{ "fragments_received", MV643XX_ETH_STAT(mib_counters.fragments_received) },
{ "oversize_received", MV643XX_ETH_STAT(mib_counters.oversize_received) },
{ "jabber_received", MV643XX_ETH_STAT(mib_counters.jabber_received) },
{ "mac_receive_error", MV643XX_ETH_STAT(mib_counters.mac_receive_error) },
{ "bad_crc_event", MV643XX_ETH_STAT(mib_counters.bad_crc_event) },
{ "collision", MV643XX_ETH_STAT(mib_counters.collision) },
{ "late_collision", MV643XX_ETH_STAT(mib_counters.late_collision) },
};
#define MV643XX_ETH_STATS_LEN ARRAY_SIZE(mv643xx_eth_gstrings_stats)
static int mv643xx_eth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int err;
spin_lock_irq(&mp->lock);
err = mii_ethtool_gset(&mp->mii, cmd);
spin_unlock_irq(&mp->lock);
/* The PHY may support 1000baseT_Half, but the mv643xx does not */
cmd->supported &= ~SUPPORTED_1000baseT_Half;
cmd->advertising &= ~ADVERTISED_1000baseT_Half;
return err;
}
static int mv643xx_eth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int err;
spin_lock_irq(&mp->lock);
err = mii_ethtool_sset(&mp->mii, cmd);
spin_unlock_irq(&mp->lock);
return err;
}
static void mv643xx_eth_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
strncpy(drvinfo->driver, mv643xx_eth_driver_name, 32);
strncpy(drvinfo->version, mv643xx_eth_driver_version, 32);
strncpy(drvinfo->fw_version, "N/A", 32);
strncpy(drvinfo->bus_info, "mv643xx", 32);
drvinfo->n_stats = MV643XX_ETH_STATS_LEN;
}
static int mv643xx_eth_nway_restart(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
return mii_nway_restart(&mp->mii);
}
static u32 mv643xx_eth_get_link(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
return mii_link_ok(&mp->mii);
}
static void mv643xx_eth_get_strings(struct net_device *netdev, uint32_t stringset,
uint8_t *data)
{
int i;
switch(stringset) {
case ETH_SS_STATS:
for (i=0; i < MV643XX_ETH_STATS_LEN; i++) {
memcpy(data + i * ETH_GSTRING_LEN,
mv643xx_eth_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
}
break;
}
}
static void mv643xx_eth_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, uint64_t *data)
{
struct mv643xx_eth_private *mp = netdev->priv;
int i;
update_mib_counters(mp);
for (i = 0; i < MV643XX_ETH_STATS_LEN; i++) {
char *p = (char *)mp+mv643xx_eth_gstrings_stats[i].stat_offset;
data[i] = (mv643xx_eth_gstrings_stats[i].sizeof_stat ==
sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
}
}
static int mv643xx_eth_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return MV643XX_ETH_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static const struct ethtool_ops mv643xx_eth_ethtool_ops = {
.get_settings = mv643xx_eth_get_settings,
.set_settings = mv643xx_eth_set_settings,
.get_drvinfo = mv643xx_eth_get_drvinfo,
.get_link = mv643xx_eth_get_link,
.set_sg = ethtool_op_set_sg,
.get_sset_count = mv643xx_eth_get_sset_count,
.get_ethtool_stats = mv643xx_eth_get_ethtool_stats,
.get_strings = mv643xx_eth_get_strings,
.nway_reset = mv643xx_eth_nway_restart,
};
/* address handling *********************************************************/
static void uc_addr_get(struct mv643xx_eth_private *mp, unsigned char *p_addr)
{
unsigned int port_num = mp->port_num;
unsigned int mac_h;
unsigned int mac_l;
mac_h = rdl(mp, MAC_ADDR_HIGH(port_num));
mac_l = rdl(mp, MAC_ADDR_LOW(port_num));
p_addr[0] = (mac_h >> 24) & 0xff;
p_addr[1] = (mac_h >> 16) & 0xff;
p_addr[2] = (mac_h >> 8) & 0xff;
p_addr[3] = mac_h & 0xff;
p_addr[4] = (mac_l >> 8) & 0xff;
p_addr[5] = mac_l & 0xff;
}
static void init_mac_tables(struct mv643xx_eth_private *mp)
{
unsigned int port_num = mp->port_num;
int table_index;
/* Clear DA filter unicast table (Ex_dFUT) */
for (table_index = 0; table_index <= 0xC; table_index += 4)
wrl(mp, UNICAST_TABLE(port_num) + table_index, 0);
for (table_index = 0; table_index <= 0xFC; table_index += 4) {
/* Clear DA filter special multicast table (Ex_dFSMT) */
wrl(mp, SPECIAL_MCAST_TABLE(port_num) + table_index, 0);
/* Clear DA filter other multicast table (Ex_dFOMT) */
wrl(mp, OTHER_MCAST_TABLE(port_num) + table_index, 0);
}
}
static void set_filter_table_entry(struct mv643xx_eth_private *mp,
int table, unsigned char entry)
{
unsigned int table_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
reg_offset = entry % 4; /* Entry offset within the register */
/* Set "accepts frame bit" at specified table entry */
table_reg = rdl(mp, table + tbl_offset);
table_reg |= 0x01 << (8 * reg_offset);
wrl(mp, table + tbl_offset, table_reg);
}
static void uc_addr_set(struct mv643xx_eth_private *mp, unsigned char *p_addr)
{
unsigned int port_num = mp->port_num;
unsigned int mac_h;
unsigned int mac_l;
int table;
mac_l = (p_addr[4] << 8) | (p_addr[5]);
mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
(p_addr[3] << 0);
wrl(mp, MAC_ADDR_LOW(port_num), mac_l);
wrl(mp, MAC_ADDR_HIGH(port_num), mac_h);
/* Accept frames with this address */
table = UNICAST_TABLE(port_num);
set_filter_table_entry(mp, table, p_addr[5] & 0x0f);
}
static void mv643xx_eth_update_mac_address(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
init_mac_tables(mp);
uc_addr_set(mp, dev->dev_addr);
}
static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
{
int i;
for (i = 0; i < 6; i++)
/* +2 is for the offset of the HW addr type */
dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
mv643xx_eth_update_mac_address(dev);
return 0;
}
static void mc_addr(struct mv643xx_eth_private *mp, unsigned char *p_addr)
{
unsigned int port_num = mp->port_num;
unsigned int mac_h;
unsigned int mac_l;
unsigned char crc_result = 0;
int table;
int mac_array[48];
int crc[8];
int i;
if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
(p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
table = SPECIAL_MCAST_TABLE(port_num);
set_filter_table_entry(mp, table, p_addr[5]);
return;
}
/* Calculate CRC-8 out of the given address */
mac_h = (p_addr[0] << 8) | (p_addr[1]);
mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
(p_addr[4] << 8) | (p_addr[5] << 0);
for (i = 0; i < 32; i++)
mac_array[i] = (mac_l >> i) & 0x1;
for (i = 32; i < 48; i++)
mac_array[i] = (mac_h >> (i - 32)) & 0x1;
crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
mac_array[3] ^ mac_array[2] ^ mac_array[1];
crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
mac_array[3] ^ mac_array[2];
crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
mac_array[4] ^ mac_array[3];
crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
mac_array[4];
crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
for (i = 0; i < 8; i++)
crc_result = crc_result | (crc[i] << i);
table = OTHER_MCAST_TABLE(port_num);
set_filter_table_entry(mp, table, crc_result);
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *mc_list;
int i;
int table_index;
struct mv643xx_eth_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
/* If the device is in promiscuous mode or in all multicast mode,
* we will fully populate both multicast tables with accept.
* This is guaranteed to yield a match on all multicast addresses...
*/
if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
for (table_index = 0; table_index <= 0xFC; table_index += 4) {
/* Set all entries in DA filter special multicast
* table (Ex_dFSMT)
* Set for ETH_Q0 for now
* Bits
* 0 Accept=1, Drop=0
* 3-1 Queue ETH_Q0=0
* 7-4 Reserved = 0;
*/
wrl(mp, SPECIAL_MCAST_TABLE(port_num) + table_index, 0x01010101);
/* Set all entries in DA filter other multicast
* table (Ex_dFOMT)
* Set for ETH_Q0 for now
* Bits
* 0 Accept=1, Drop=0
* 3-1 Queue ETH_Q0=0
* 7-4 Reserved = 0;
*/
wrl(mp, OTHER_MCAST_TABLE(port_num) + table_index, 0x01010101);
}
return;
}
/* We will clear out multicast tables every time we get the list.
* Then add the entire new list...
*/
for (table_index = 0; table_index <= 0xFC; table_index += 4) {
/* Clear DA filter special multicast table (Ex_dFSMT) */
wrl(mp, SPECIAL_MCAST_TABLE(port_num) + table_index, 0);
/* Clear DA filter other multicast table (Ex_dFOMT) */
wrl(mp, OTHER_MCAST_TABLE(port_num) + table_index, 0);
}
/* Get pointer to net_device multicast list and add each one... */
for (i = 0, mc_list = dev->mc_list;
(i < 256) && (mc_list != NULL) && (i < dev->mc_count);
i++, mc_list = mc_list->next)
if (mc_list->dmi_addrlen == 6)
mc_addr(mp, mc_list->dmi_addr);
}
static void mv643xx_eth_set_rx_mode(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
u32 config_reg;
config_reg = rdl(mp, PORT_CONFIG(mp->port_num));
if (dev->flags & IFF_PROMISC)
config_reg |= UNICAST_PROMISCUOUS_MODE;
else
config_reg &= ~UNICAST_PROMISCUOUS_MODE;
wrl(mp, PORT_CONFIG(mp->port_num), config_reg);
set_multicast_list(dev);
}
/* rx/tx queue initialisation ***********************************************/
static void ether_init_rx_desc_ring(struct mv643xx_eth_private *mp)
{
volatile struct rx_desc *p_rx_desc;
int rx_desc_num = mp->rx_ring_size;
int i;
/* initialize the next_desc_ptr links in the Rx descriptors ring */
p_rx_desc = (struct rx_desc *)mp->p_rx_desc_area;
for (i = 0; i < rx_desc_num; i++) {
p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
}
/* Save Rx desc pointer to driver struct. */
mp->rx_curr_desc_q = 0;
mp->rx_used_desc_q = 0;
mp->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
}
static void mv643xx_eth_free_rx_rings(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int curr;
/* Stop RX Queues */
mv643xx_eth_port_disable_rx(mp);
/* Free preallocated skb's on RX rings */
for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
if (mp->rx_skb[curr]) {
dev_kfree_skb(mp->rx_skb[curr]);
mp->rx_desc_count--;
}
}
if (mp->rx_desc_count)
printk(KERN_ERR
"%s: Error in freeing Rx Ring. %d skb's still"
" stuck in RX Ring - ignoring them\n", dev->name,
mp->rx_desc_count);
/* Free RX ring */
if (mp->rx_sram_size)
iounmap(mp->p_rx_desc_area);
else
dma_free_coherent(NULL, mp->rx_desc_area_size,
mp->p_rx_desc_area, mp->rx_desc_dma);
}
static void ether_init_tx_desc_ring(struct mv643xx_eth_private *mp)
{
int tx_desc_num = mp->tx_ring_size;
struct tx_desc *p_tx_desc;
int i;
/* Initialize the next_desc_ptr links in the Tx descriptors ring */
p_tx_desc = (struct tx_desc *)mp->p_tx_desc_area;
for (i = 0; i < tx_desc_num; i++) {
p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
}
mp->tx_curr_desc_q = 0;
mp->tx_used_desc_q = 0;
mp->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
}
static int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
struct tx_desc *desc;
u32 cmd_sts;
struct sk_buff *skb;
unsigned long flags;
int tx_index;
dma_addr_t addr;
int count;
int released = 0;
while (mp->tx_desc_count > 0) {
spin_lock_irqsave(&mp->lock, flags);
/* tx_desc_count might have changed before acquiring the lock */
if (mp->tx_desc_count <= 0) {
spin_unlock_irqrestore(&mp->lock, flags);
return released;
}
tx_index = mp->tx_used_desc_q;
desc = &mp->p_tx_desc_area[tx_index];
cmd_sts = desc->cmd_sts;
if (!force && (cmd_sts & BUFFER_OWNED_BY_DMA)) {
spin_unlock_irqrestore(&mp->lock, flags);
return released;
}
mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
mp->tx_desc_count--;
addr = desc->buf_ptr;
count = desc->byte_cnt;
skb = mp->tx_skb[tx_index];
if (skb)
mp->tx_skb[tx_index] = NULL;
if (cmd_sts & ERROR_SUMMARY) {
printk("%s: Error in TX\n", dev->name);
dev->stats.tx_errors++;
}
spin_unlock_irqrestore(&mp->lock, flags);
if (cmd_sts & TX_FIRST_DESC)
dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
else
dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
if (skb)
dev_kfree_skb_irq(skb);
released = 1;
}
return released;
}
static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
if (mv643xx_eth_free_tx_descs(dev, 0) &&
mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
netif_wake_queue(dev);
}
static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
{
mv643xx_eth_free_tx_descs(dev, 1);
}
static void mv643xx_eth_free_tx_rings(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
/* Stop Tx Queues */
mv643xx_eth_port_disable_tx(mp);
/* Free outstanding skb's on TX ring */
mv643xx_eth_free_all_tx_descs(dev);
BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
/* Free TX ring */
if (mp->tx_sram_size)
iounmap(mp->p_tx_desc_area);
else
dma_free_coherent(NULL, mp->tx_desc_area_size,
mp->p_tx_desc_area, mp->tx_desc_dma);
}
/* netdev ops and related ***************************************************/
static void port_reset(struct mv643xx_eth_private *mp);
static void mv643xx_eth_update_pscr(struct net_device *dev,
struct ethtool_cmd *ecmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int port_num = mp->port_num;
u32 o_pscr, n_pscr;
unsigned int queues;
o_pscr = rdl(mp, PORT_SERIAL_CONTROL(port_num));
n_pscr = o_pscr;
/* clear speed, duplex and rx buffer size fields */
n_pscr &= ~(SET_MII_SPEED_TO_100 |
SET_GMII_SPEED_TO_1000 |
SET_FULL_DUPLEX_MODE |
MAX_RX_PACKET_MASK);
if (ecmd->duplex == DUPLEX_FULL)
n_pscr |= SET_FULL_DUPLEX_MODE;
if (ecmd->speed == SPEED_1000)
n_pscr |= SET_GMII_SPEED_TO_1000 |
MAX_RX_PACKET_9700BYTE;
else {
if (ecmd->speed == SPEED_100)
n_pscr |= SET_MII_SPEED_TO_100;
n_pscr |= MAX_RX_PACKET_1522BYTE;
}
if (n_pscr != o_pscr) {
if ((o_pscr & SERIAL_PORT_ENABLE) == 0)
wrl(mp, PORT_SERIAL_CONTROL(port_num), n_pscr);
else {
queues = mv643xx_eth_port_disable_tx(mp);
o_pscr &= ~SERIAL_PORT_ENABLE;
wrl(mp, PORT_SERIAL_CONTROL(port_num), o_pscr);
wrl(mp, PORT_SERIAL_CONTROL(port_num), n_pscr);
wrl(mp, PORT_SERIAL_CONTROL(port_num), n_pscr);
if (queues)
mv643xx_eth_port_enable_tx(mp, queues);
}
}
}
static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct mv643xx_eth_private *mp = netdev_priv(dev);
u32 int_cause, int_cause_ext = 0;
unsigned int port_num = mp->port_num;
/* Read interrupt cause registers */
int_cause = rdl(mp, INT_CAUSE(port_num)) & (INT_RX | INT_EXT);
if (int_cause & INT_EXT) {
int_cause_ext = rdl(mp, INT_CAUSE_EXT(port_num))
& (INT_EXT_LINK | INT_EXT_PHY | INT_EXT_TX);
wrl(mp, INT_CAUSE_EXT(port_num), ~int_cause_ext);
}
/* PHY status changed */
if (int_cause_ext & (INT_EXT_LINK | INT_EXT_PHY)) {
struct ethtool_cmd cmd;
if (mii_link_ok(&mp->mii)) {
mii_ethtool_gset(&mp->mii, &cmd);
mv643xx_eth_update_pscr(dev, &cmd);
mv643xx_eth_port_enable_tx(mp, 1);
if (!netif_carrier_ok(dev)) {
netif_carrier_on(dev);
if (mp->tx_ring_size - mp->tx_desc_count >=
MAX_DESCS_PER_SKB)
netif_wake_queue(dev);
}
} else if (netif_carrier_ok(dev)) {
netif_stop_queue(dev);
netif_carrier_off(dev);
}
}
#ifdef MV643XX_ETH_NAPI
if (int_cause & INT_RX) {
/* schedule the NAPI poll routine to maintain port */
wrl(mp, INT_MASK(port_num), 0x00000000);
/* wait for previous write to complete */
rdl(mp, INT_MASK(port_num));
netif_rx_schedule(dev, &mp->napi);
}
#else
if (int_cause & INT_RX)
mv643xx_eth_receive_queue(dev, INT_MAX);
#endif
if (int_cause_ext & INT_EXT_TX)
mv643xx_eth_free_completed_tx_descs(dev);
/*
* If no real interrupt occured, exit.
* This can happen when using gigE interrupt coalescing mechanism.
*/
if ((int_cause == 0x0) && (int_cause_ext == 0x0))
return IRQ_NONE;
return IRQ_HANDLED;
}
static void phy_reset(struct mv643xx_eth_private *mp)
{
unsigned int phy_reg_data;
/* Reset the PHY */
read_smi_reg(mp, 0, &phy_reg_data);
phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
write_smi_reg(mp, 0, phy_reg_data);
/* wait for PHY to come out of reset */
do {
udelay(1);
read_smi_reg(mp, 0, &phy_reg_data);
} while (phy_reg_data & 0x8000);
}
static void port_start(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
int tx_curr_desc, rx_curr_desc;
u32 pscr;
struct ethtool_cmd ethtool_cmd;
/* Assignment of Tx CTRP of given queue */
tx_curr_desc = mp->tx_curr_desc_q;
wrl(mp, TXQ_CURRENT_DESC_PTR(port_num),
(u32)((struct tx_desc *)mp->tx_desc_dma + tx_curr_desc));
/* Assignment of Rx CRDP of given queue */
rx_curr_desc = mp->rx_curr_desc_q;
wrl(mp, RXQ_CURRENT_DESC_PTR(port_num),
(u32)((struct rx_desc *)mp->rx_desc_dma + rx_curr_desc));
/* Add the assigned Ethernet address to the port's address table */
uc_addr_set(mp, dev->dev_addr);
/*
* Receive all unmatched unicast, TCP, UDP, BPDU and broadcast
* frames to RX queue #0.
*/
wrl(mp, PORT_CONFIG(port_num), 0x00000000);
/*
* Treat BPDUs as normal multicasts, and disable partition mode.
*/
wrl(mp, PORT_CONFIG_EXT(port_num), 0x00000000);
pscr = rdl(mp, PORT_SERIAL_CONTROL(port_num));
pscr &= ~(SERIAL_PORT_ENABLE | FORCE_LINK_PASS);
wrl(mp, PORT_SERIAL_CONTROL(port_num), pscr);
pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
DISABLE_AUTO_NEG_SPEED_GMII |
DISABLE_AUTO_NEG_FOR_DUPLEX |
DO_NOT_FORCE_LINK_FAIL |
SERIAL_PORT_CONTROL_RESERVED;
wrl(mp, PORT_SERIAL_CONTROL(port_num), pscr);
pscr |= SERIAL_PORT_ENABLE;
wrl(mp, PORT_SERIAL_CONTROL(port_num), pscr);
/* Assign port SDMA configuration */
wrl(mp, SDMA_CONFIG(port_num), PORT_SDMA_CONFIG_DEFAULT_VALUE);
/* Enable port Rx. */
mv643xx_eth_port_enable_rx(mp, 1);
/* Disable port bandwidth limits by clearing MTU register */
wrl(mp, TX_BW_MTU(port_num), 0);
/* save phy settings across reset */
mv643xx_eth_get_settings(dev, &ethtool_cmd);
phy_reset(mp);
mv643xx_eth_set_settings(dev, &ethtool_cmd);
}
#ifdef MV643XX_ETH_COAL
static unsigned int set_rx_coal(struct mv643xx_eth_private *mp,
unsigned int delay)
{
unsigned int port_num = mp->port_num;
unsigned int coal = ((mp->shared->t_clk / 1000000) * delay) / 64;
/* Set RX Coalescing mechanism */
wrl(mp, SDMA_CONFIG(port_num),
((coal & 0x3fff) << 8) |
(rdl(mp, SDMA_CONFIG(port_num))
& 0xffc000ff));
return coal;
}
#endif
static unsigned int set_tx_coal(struct mv643xx_eth_private *mp,
unsigned int delay)
{
unsigned int coal = ((mp->shared->t_clk / 1000000) * delay) / 64;
/* Set TX Coalescing mechanism */
wrl(mp, TX_FIFO_URGENT_THRESHOLD(mp->port_num), coal << 4);
return coal;
}
static void port_init(struct mv643xx_eth_private *mp)
{
mp->rx_resource_err = 0;
port_reset(mp);
init_mac_tables(mp);
}
static int mv643xx_eth_open(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
unsigned int size;
int err;
/* Clear any pending ethernet port interrupts */
wrl(mp, INT_CAUSE(port_num), 0);
wrl(mp, INT_CAUSE_EXT(port_num), 0);
/* wait for previous write to complete */
rdl(mp, INT_CAUSE_EXT(port_num));
err = request_irq(dev->irq, mv643xx_eth_int_handler,
IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
if (err) {
printk(KERN_ERR "%s: Can not assign IRQ\n", dev->name);
return -EAGAIN;
}
port_init(mp);
memset(&mp->timeout, 0, sizeof(struct timer_list));
mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
mp->timeout.data = (unsigned long)dev;
/* Allocate RX and TX skb rings */
mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
GFP_KERNEL);
if (!mp->rx_skb) {
printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
err = -ENOMEM;
goto out_free_irq;
}
mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
GFP_KERNEL);
if (!mp->tx_skb) {
printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
err = -ENOMEM;
goto out_free_rx_skb;
}
/* Allocate TX ring */
mp->tx_desc_count = 0;
size = mp->tx_ring_size * sizeof(struct tx_desc);
mp->tx_desc_area_size = size;
if (mp->tx_sram_size) {
mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
mp->tx_sram_size);
mp->tx_desc_dma = mp->tx_sram_addr;
} else
mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
&mp->tx_desc_dma,
GFP_KERNEL);
if (!mp->p_tx_desc_area) {
printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
dev->name, size);
err = -ENOMEM;
goto out_free_tx_skb;
}
BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
ether_init_tx_desc_ring(mp);
/* Allocate RX ring */
mp->rx_desc_count = 0;
size = mp->rx_ring_size * sizeof(struct rx_desc);
mp->rx_desc_area_size = size;
if (mp->rx_sram_size) {
mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
mp->rx_sram_size);
mp->rx_desc_dma = mp->rx_sram_addr;
} else
mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
&mp->rx_desc_dma,
GFP_KERNEL);
if (!mp->p_rx_desc_area) {
printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
dev->name, size);
printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
dev->name);
if (mp->rx_sram_size)
iounmap(mp->p_tx_desc_area);
else
dma_free_coherent(NULL, mp->tx_desc_area_size,
mp->p_tx_desc_area, mp->tx_desc_dma);
err = -ENOMEM;
goto out_free_tx_skb;
}
memset((void *)mp->p_rx_desc_area, 0, size);
ether_init_rx_desc_ring(mp);
mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
#ifdef MV643XX_ETH_NAPI
napi_enable(&mp->napi);
#endif
port_start(dev);
/* Interrupt Coalescing */
#ifdef MV643XX_ETH_COAL
mp->rx_int_coal = set_rx_coal(mp, MV643XX_ETH_RX_COAL);
#endif
mp->tx_int_coal = set_tx_coal(mp, MV643XX_ETH_TX_COAL);
/* Unmask phy and link status changes interrupts */
wrl(mp, INT_MASK_EXT(port_num), INT_EXT_LINK | INT_EXT_PHY | INT_EXT_TX);
/* Unmask RX buffer and TX end interrupt */
wrl(mp, INT_MASK(port_num), INT_RX | INT_EXT);
return 0;
out_free_tx_skb:
kfree(mp->tx_skb);
out_free_rx_skb:
kfree(mp->rx_skb);
out_free_irq:
free_irq(dev->irq, dev);
return err;
}
static void port_reset(struct mv643xx_eth_private *mp)
{
unsigned int port_num = mp->port_num;
unsigned int reg_data;
mv643xx_eth_port_disable_tx(mp);
mv643xx_eth_port_disable_rx(mp);
/* Clear all MIB counters */
clear_mib_counters(mp);
/* Reset the Enable bit in the Configuration Register */
reg_data = rdl(mp, PORT_SERIAL_CONTROL(port_num));
reg_data &= ~(SERIAL_PORT_ENABLE |
DO_NOT_FORCE_LINK_FAIL |
FORCE_LINK_PASS);
wrl(mp, PORT_SERIAL_CONTROL(port_num), reg_data);
}
static int mv643xx_eth_stop(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
/* Mask all interrupts on ethernet port */
wrl(mp, INT_MASK(port_num), 0x00000000);
/* wait for previous write to complete */
rdl(mp, INT_MASK(port_num));
#ifdef MV643XX_ETH_NAPI
napi_disable(&mp->napi);
#endif
netif_carrier_off(dev);
netif_stop_queue(dev);
port_reset(mp);
mv643xx_eth_free_tx_rings(dev);
mv643xx_eth_free_rx_rings(dev);
free_irq(dev->irq, dev);
return 0;
}
static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
}
static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu > 9500) || (new_mtu < 64))
return -EINVAL;
dev->mtu = new_mtu;
if (!netif_running(dev))
return 0;
/*
* Stop and then re-open the interface. This will allocate RX
* skbs of the new MTU.
* There is a possible danger that the open will not succeed,
* due to memory being full, which might fail the open function.
*/
mv643xx_eth_stop(dev);
if (mv643xx_eth_open(dev)) {
printk(KERN_ERR "%s: Fatal error on opening device\n",
dev->name);
}
return 0;
}
static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
{
struct mv643xx_eth_private *mp = container_of(ugly, struct mv643xx_eth_private,
tx_timeout_task);
struct net_device *dev = mp->dev;
if (!netif_running(dev))
return;
netif_stop_queue(dev);
port_reset(mp);
port_start(dev);
if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
netif_wake_queue(dev);
}
static void mv643xx_eth_tx_timeout(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
printk(KERN_INFO "%s: TX timeout ", dev->name);
/* Do the reset outside of interrupt context */
schedule_work(&mp->tx_timeout_task);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mv643xx_eth_netpoll(struct net_device *netdev)
{
struct mv643xx_eth_private *mp = netdev_priv(netdev);
int port_num = mp->port_num;
wrl(mp, INT_MASK(port_num), 0x00000000);
/* wait for previous write to complete */
rdl(mp, INT_MASK(port_num));
mv643xx_eth_int_handler(netdev->irq, netdev);
wrl(mp, INT_MASK(port_num), INT_RX | INT_CAUSE_EXT);
}
#endif
static int mv643xx_eth_mdio_read(struct net_device *dev, int phy_id, int location)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int val;
read_smi_reg(mp, location, &val);
return val;
}
static void mv643xx_eth_mdio_write(struct net_device *dev, int phy_id, int location, int val)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
write_smi_reg(mp, location, val);
}
/* platform glue ************************************************************/
static void
mv643xx_eth_conf_mbus_windows(struct mv643xx_eth_shared_private *msp,
struct mbus_dram_target_info *dram)
{
void __iomem *base = msp->base;
u32 win_enable;
u32 win_protect;
int i;
for (i = 0; i < 6; i++) {
writel(0, base + WINDOW_BASE(i));
writel(0, base + WINDOW_SIZE(i));
if (i < 4)
writel(0, base + WINDOW_REMAP_HIGH(i));
}
win_enable = 0x3f;
win_protect = 0;
for (i = 0; i < dram->num_cs; i++) {
struct mbus_dram_window *cs = dram->cs + i;
writel((cs->base & 0xffff0000) |
(cs->mbus_attr << 8) |
dram->mbus_dram_target_id, base + WINDOW_BASE(i));
writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
win_enable &= ~(1 << i);
win_protect |= 3 << (2 * i);
}
writel(win_enable, base + WINDOW_BAR_ENABLE);
msp->win_protect = win_protect;
}
static int mv643xx_eth_shared_probe(struct platform_device *pdev)
{
static int mv643xx_eth_version_printed = 0;
struct mv643xx_eth_shared_platform_data *pd = pdev->dev.platform_data;
struct mv643xx_eth_shared_private *msp;
struct resource *res;
int ret;
if (!mv643xx_eth_version_printed++)
printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
ret = -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL)
goto out;
ret = -ENOMEM;
msp = kmalloc(sizeof(*msp), GFP_KERNEL);
if (msp == NULL)
goto out;
memset(msp, 0, sizeof(*msp));
msp->base = ioremap(res->start, res->end - res->start + 1);
if (msp->base == NULL)
goto out_free;
spin_lock_init(&msp->phy_lock);
msp->t_clk = (pd != NULL && pd->t_clk != 0) ? pd->t_clk : 133000000;
platform_set_drvdata(pdev, msp);
/*
* (Re-)program MBUS remapping windows if we are asked to.
*/
if (pd != NULL && pd->dram != NULL)
mv643xx_eth_conf_mbus_windows(msp, pd->dram);
return 0;
out_free:
kfree(msp);
out:
return ret;
}
static int mv643xx_eth_shared_remove(struct platform_device *pdev)
{
struct mv643xx_eth_shared_private *msp = platform_get_drvdata(pdev);
iounmap(msp->base);
kfree(msp);
return 0;
}
static struct platform_driver mv643xx_eth_shared_driver = {
.probe = mv643xx_eth_shared_probe,
.remove = mv643xx_eth_shared_remove,
.driver = {
.name = MV643XX_ETH_SHARED_NAME,
.owner = THIS_MODULE,
},
};
static void phy_addr_set(struct mv643xx_eth_private *mp, int phy_addr)
{
u32 reg_data;
int addr_shift = 5 * mp->port_num;
reg_data = rdl(mp, PHY_ADDR);
reg_data &= ~(0x1f << addr_shift);
reg_data |= (phy_addr & 0x1f) << addr_shift;
wrl(mp, PHY_ADDR, reg_data);
}
static int phy_addr_get(struct mv643xx_eth_private *mp)
{
unsigned int reg_data;
reg_data = rdl(mp, PHY_ADDR);
return ((reg_data >> (5 * mp->port_num)) & 0x1f);
}
static int phy_detect(struct mv643xx_eth_private *mp)
{
unsigned int phy_reg_data0;
int auto_neg;
read_smi_reg(mp, 0, &phy_reg_data0);
auto_neg = phy_reg_data0 & 0x1000;
phy_reg_data0 ^= 0x1000; /* invert auto_neg */
write_smi_reg(mp, 0, phy_reg_data0);
read_smi_reg(mp, 0, &phy_reg_data0);
if ((phy_reg_data0 & 0x1000) == auto_neg)
return -ENODEV; /* change didn't take */
phy_reg_data0 ^= 0x1000;
write_smi_reg(mp, 0, phy_reg_data0);
return 0;
}
static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
int speed, int duplex,
struct ethtool_cmd *cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
memset(cmd, 0, sizeof(*cmd));
cmd->port = PORT_MII;
cmd->transceiver = XCVR_INTERNAL;
cmd->phy_address = phy_address;
if (speed == 0) {
cmd->autoneg = AUTONEG_ENABLE;
/* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
cmd->speed = SPEED_100;
cmd->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full;
if (mp->mii.supports_gmii)
cmd->advertising |= ADVERTISED_1000baseT_Full;
} else {
cmd->autoneg = AUTONEG_DISABLE;
cmd->speed = speed;
cmd->duplex = duplex;
}
}
static int mv643xx_eth_probe(struct platform_device *pdev)
{
struct mv643xx_eth_platform_data *pd;
int port_num;
struct mv643xx_eth_private *mp;
struct net_device *dev;
u8 *p;
struct resource *res;
int err;
struct ethtool_cmd cmd;
int duplex = DUPLEX_HALF;
int speed = 0; /* default to auto-negotiation */
DECLARE_MAC_BUF(mac);
pd = pdev->dev.platform_data;
if (pd == NULL) {
printk(KERN_ERR "No mv643xx_eth_platform_data\n");
return -ENODEV;
}
if (pd->shared == NULL) {
printk(KERN_ERR "No mv643xx_eth_platform_data->shared\n");
return -ENODEV;
}
dev = alloc_etherdev(sizeof(struct mv643xx_eth_private));
if (!dev)
return -ENOMEM;
platform_set_drvdata(pdev, dev);
mp = netdev_priv(dev);
mp->dev = dev;
#ifdef MV643XX_ETH_NAPI
netif_napi_add(dev, &mp->napi, mv643xx_eth_poll, 64);
#endif
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
BUG_ON(!res);
dev->irq = res->start;
dev->open = mv643xx_eth_open;
dev->stop = mv643xx_eth_stop;
dev->hard_start_xmit = mv643xx_eth_start_xmit;
dev->set_mac_address = mv643xx_eth_set_mac_address;
dev->set_multicast_list = mv643xx_eth_set_rx_mode;
/* No need to Tx Timeout */
dev->tx_timeout = mv643xx_eth_tx_timeout;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = mv643xx_eth_netpoll;
#endif
dev->watchdog_timeo = 2 * HZ;
dev->base_addr = 0;
dev->change_mtu = mv643xx_eth_change_mtu;
dev->do_ioctl = mv643xx_eth_do_ioctl;
SET_ETHTOOL_OPS(dev, &mv643xx_eth_ethtool_ops);
#ifdef MV643XX_ETH_CHECKSUM_OFFLOAD_TX
#ifdef MAX_SKB_FRAGS
/*
* Zero copy can only work if we use Discovery II memory. Else, we will
* have to map the buffers to ISA memory which is only 16 MB
*/
dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
#endif
#endif
/* Configure the timeout task */
INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
spin_lock_init(&mp->lock);
mp->shared = platform_get_drvdata(pd->shared);
port_num = mp->port_num = pd->port_number;
if (mp->shared->win_protect)
wrl(mp, WINDOW_PROTECT(port_num), mp->shared->win_protect);
mp->shared_smi = mp->shared;
if (pd->shared_smi != NULL)
mp->shared_smi = platform_get_drvdata(pd->shared_smi);
/* set default config values */
uc_addr_get(mp, dev->dev_addr);
mp->rx_ring_size = DEFAULT_RX_QUEUE_SIZE;
mp->tx_ring_size = DEFAULT_TX_QUEUE_SIZE;
if (is_valid_ether_addr(pd->mac_addr))
memcpy(dev->dev_addr, pd->mac_addr, 6);
if (pd->phy_addr || pd->force_phy_addr)
phy_addr_set(mp, pd->phy_addr);
if (pd->rx_queue_size)
mp->rx_ring_size = pd->rx_queue_size;
if (pd->tx_queue_size)
mp->tx_ring_size = pd->tx_queue_size;
if (pd->tx_sram_size) {
mp->tx_sram_size = pd->tx_sram_size;
mp->tx_sram_addr = pd->tx_sram_addr;
}
if (pd->rx_sram_size) {
mp->rx_sram_size = pd->rx_sram_size;
mp->rx_sram_addr = pd->rx_sram_addr;
}
duplex = pd->duplex;
speed = pd->speed;
/* Hook up MII support for ethtool */
mp->mii.dev = dev;
mp->mii.mdio_read = mv643xx_eth_mdio_read;
mp->mii.mdio_write = mv643xx_eth_mdio_write;
mp->mii.phy_id = phy_addr_get(mp);
mp->mii.phy_id_mask = 0x3f;
mp->mii.reg_num_mask = 0x1f;
err = phy_detect(mp);
if (err) {
pr_debug("%s: No PHY detected at addr %d\n",
dev->name, phy_addr_get(mp));
goto out;
}
phy_reset(mp);
mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
mv643xx_eth_update_pscr(dev, &cmd);
mv643xx_eth_set_settings(dev, &cmd);
SET_NETDEV_DEV(dev, &pdev->dev);
err = register_netdev(dev);
if (err)
goto out;
p = dev->dev_addr;
printk(KERN_NOTICE
"%s: port %d with MAC address %s\n",
dev->name, port_num, print_mac(mac, p));
if (dev->features & NETIF_F_SG)
printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
if (dev->features & NETIF_F_IP_CSUM)
printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
dev->name);
#ifdef MV643XX_ETH_CHECKSUM_OFFLOAD_TX
printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
#endif
#ifdef MV643XX_ETH_COAL
printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
dev->name);
#endif
#ifdef MV643XX_ETH_NAPI
printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
#endif
if (mp->tx_sram_size > 0)
printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
return 0;
out:
free_netdev(dev);
return err;
}
static int mv643xx_eth_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
flush_scheduled_work();
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static void mv643xx_eth_shutdown(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct mv643xx_eth_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
/* Mask all interrupts on ethernet port */
wrl(mp, INT_MASK(port_num), 0);
rdl(mp, INT_MASK(port_num));
port_reset(mp);
}
static struct platform_driver mv643xx_eth_driver = {
.probe = mv643xx_eth_probe,
.remove = mv643xx_eth_remove,
.shutdown = mv643xx_eth_shutdown,
.driver = {
.name = MV643XX_ETH_NAME,
.owner = THIS_MODULE,
},
};
static int __init mv643xx_eth_init_module(void)
{
int rc;
rc = platform_driver_register(&mv643xx_eth_shared_driver);
if (!rc) {
rc = platform_driver_register(&mv643xx_eth_driver);
if (rc)
platform_driver_unregister(&mv643xx_eth_shared_driver);
}
return rc;
}
static void __exit mv643xx_eth_cleanup_module(void)
{
platform_driver_unregister(&mv643xx_eth_driver);
platform_driver_unregister(&mv643xx_eth_shared_driver);
}
module_init(mv643xx_eth_init_module);
module_exit(mv643xx_eth_cleanup_module);
MODULE_LICENSE("GPL");
MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
" and Dale Farnsworth");
MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
MODULE_ALIAS("platform:" MV643XX_ETH_NAME);
MODULE_ALIAS("platform:" MV643XX_ETH_SHARED_NAME);