mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-06 17:43:43 +00:00
452e06af1f
Almost everyone implements dma_set_mask the same way, although some time that's hidden in ->set_dma_mask methods. This patch consolidates those into a common implementation that either calls ->set_dma_mask if present or otherwise uses the default implementation. Some architectures used to only call ->set_dma_mask after the initial checks, and those instance have been fixed to do the full work. h8300 implemented dma_set_mask bogusly as a no-ops and has been fixed. Unfortunately some architectures overload unrelated semantics like changing the dma_ops into it so we still need to allow for an architecture override for now. [jcmvbkbc@gmail.com: fix xtensa] Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Russell King <linux@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Michal Simek <monstr@monstr.eu> Cc: Jonas Bonn <jonas@southpole.se> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
955 lines
25 KiB
C
955 lines
25 KiB
C
/*
|
||
* linux/arch/alpha/kernel/pci_iommu.c
|
||
*/
|
||
|
||
#include <linux/kernel.h>
|
||
#include <linux/mm.h>
|
||
#include <linux/pci.h>
|
||
#include <linux/gfp.h>
|
||
#include <linux/bootmem.h>
|
||
#include <linux/export.h>
|
||
#include <linux/scatterlist.h>
|
||
#include <linux/log2.h>
|
||
#include <linux/dma-mapping.h>
|
||
#include <linux/iommu-helper.h>
|
||
|
||
#include <asm/io.h>
|
||
#include <asm/hwrpb.h>
|
||
|
||
#include "proto.h"
|
||
#include "pci_impl.h"
|
||
|
||
|
||
#define DEBUG_ALLOC 0
|
||
#if DEBUG_ALLOC > 0
|
||
# define DBGA(args...) printk(KERN_DEBUG args)
|
||
#else
|
||
# define DBGA(args...)
|
||
#endif
|
||
#if DEBUG_ALLOC > 1
|
||
# define DBGA2(args...) printk(KERN_DEBUG args)
|
||
#else
|
||
# define DBGA2(args...)
|
||
#endif
|
||
|
||
#define DEBUG_NODIRECT 0
|
||
|
||
#define ISA_DMA_MASK 0x00ffffff
|
||
|
||
static inline unsigned long
|
||
mk_iommu_pte(unsigned long paddr)
|
||
{
|
||
return (paddr >> (PAGE_SHIFT-1)) | 1;
|
||
}
|
||
|
||
/* Return the minimum of MAX or the first power of two larger
|
||
than main memory. */
|
||
|
||
unsigned long
|
||
size_for_memory(unsigned long max)
|
||
{
|
||
unsigned long mem = max_low_pfn << PAGE_SHIFT;
|
||
if (mem < max)
|
||
max = roundup_pow_of_two(mem);
|
||
return max;
|
||
}
|
||
|
||
struct pci_iommu_arena * __init
|
||
iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base,
|
||
unsigned long window_size, unsigned long align)
|
||
{
|
||
unsigned long mem_size;
|
||
struct pci_iommu_arena *arena;
|
||
|
||
mem_size = window_size / (PAGE_SIZE / sizeof(unsigned long));
|
||
|
||
/* Note that the TLB lookup logic uses bitwise concatenation,
|
||
not addition, so the required arena alignment is based on
|
||
the size of the window. Retain the align parameter so that
|
||
particular systems can over-align the arena. */
|
||
if (align < mem_size)
|
||
align = mem_size;
|
||
|
||
|
||
#ifdef CONFIG_DISCONTIGMEM
|
||
|
||
arena = alloc_bootmem_node(NODE_DATA(nid), sizeof(*arena));
|
||
if (!NODE_DATA(nid) || !arena) {
|
||
printk("%s: couldn't allocate arena from node %d\n"
|
||
" falling back to system-wide allocation\n",
|
||
__func__, nid);
|
||
arena = alloc_bootmem(sizeof(*arena));
|
||
}
|
||
|
||
arena->ptes = __alloc_bootmem_node(NODE_DATA(nid), mem_size, align, 0);
|
||
if (!NODE_DATA(nid) || !arena->ptes) {
|
||
printk("%s: couldn't allocate arena ptes from node %d\n"
|
||
" falling back to system-wide allocation\n",
|
||
__func__, nid);
|
||
arena->ptes = __alloc_bootmem(mem_size, align, 0);
|
||
}
|
||
|
||
#else /* CONFIG_DISCONTIGMEM */
|
||
|
||
arena = alloc_bootmem(sizeof(*arena));
|
||
arena->ptes = __alloc_bootmem(mem_size, align, 0);
|
||
|
||
#endif /* CONFIG_DISCONTIGMEM */
|
||
|
||
spin_lock_init(&arena->lock);
|
||
arena->hose = hose;
|
||
arena->dma_base = base;
|
||
arena->size = window_size;
|
||
arena->next_entry = 0;
|
||
|
||
/* Align allocations to a multiple of a page size. Not needed
|
||
unless there are chip bugs. */
|
||
arena->align_entry = 1;
|
||
|
||
return arena;
|
||
}
|
||
|
||
struct pci_iommu_arena * __init
|
||
iommu_arena_new(struct pci_controller *hose, dma_addr_t base,
|
||
unsigned long window_size, unsigned long align)
|
||
{
|
||
return iommu_arena_new_node(0, hose, base, window_size, align);
|
||
}
|
||
|
||
/* Must be called with the arena lock held */
|
||
static long
|
||
iommu_arena_find_pages(struct device *dev, struct pci_iommu_arena *arena,
|
||
long n, long mask)
|
||
{
|
||
unsigned long *ptes;
|
||
long i, p, nent;
|
||
int pass = 0;
|
||
unsigned long base;
|
||
unsigned long boundary_size;
|
||
|
||
base = arena->dma_base >> PAGE_SHIFT;
|
||
if (dev) {
|
||
boundary_size = dma_get_seg_boundary(dev) + 1;
|
||
boundary_size >>= PAGE_SHIFT;
|
||
} else {
|
||
boundary_size = 1UL << (32 - PAGE_SHIFT);
|
||
}
|
||
|
||
/* Search forward for the first mask-aligned sequence of N free ptes */
|
||
ptes = arena->ptes;
|
||
nent = arena->size >> PAGE_SHIFT;
|
||
p = ALIGN(arena->next_entry, mask + 1);
|
||
i = 0;
|
||
|
||
again:
|
||
while (i < n && p+i < nent) {
|
||
if (!i && iommu_is_span_boundary(p, n, base, boundary_size)) {
|
||
p = ALIGN(p + 1, mask + 1);
|
||
goto again;
|
||
}
|
||
|
||
if (ptes[p+i])
|
||
p = ALIGN(p + i + 1, mask + 1), i = 0;
|
||
else
|
||
i = i + 1;
|
||
}
|
||
|
||
if (i < n) {
|
||
if (pass < 1) {
|
||
/*
|
||
* Reached the end. Flush the TLB and restart
|
||
* the search from the beginning.
|
||
*/
|
||
alpha_mv.mv_pci_tbi(arena->hose, 0, -1);
|
||
|
||
pass++;
|
||
p = 0;
|
||
i = 0;
|
||
goto again;
|
||
} else
|
||
return -1;
|
||
}
|
||
|
||
/* Success. It's the responsibility of the caller to mark them
|
||
in use before releasing the lock */
|
||
return p;
|
||
}
|
||
|
||
static long
|
||
iommu_arena_alloc(struct device *dev, struct pci_iommu_arena *arena, long n,
|
||
unsigned int align)
|
||
{
|
||
unsigned long flags;
|
||
unsigned long *ptes;
|
||
long i, p, mask;
|
||
|
||
spin_lock_irqsave(&arena->lock, flags);
|
||
|
||
/* Search for N empty ptes */
|
||
ptes = arena->ptes;
|
||
mask = max(align, arena->align_entry) - 1;
|
||
p = iommu_arena_find_pages(dev, arena, n, mask);
|
||
if (p < 0) {
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
return -1;
|
||
}
|
||
|
||
/* Success. Mark them all in use, ie not zero and invalid
|
||
for the iommu tlb that could load them from under us.
|
||
The chip specific bits will fill this in with something
|
||
kosher when we return. */
|
||
for (i = 0; i < n; ++i)
|
||
ptes[p+i] = IOMMU_INVALID_PTE;
|
||
|
||
arena->next_entry = p + n;
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
|
||
return p;
|
||
}
|
||
|
||
static void
|
||
iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n)
|
||
{
|
||
unsigned long *p;
|
||
long i;
|
||
|
||
p = arena->ptes + ofs;
|
||
for (i = 0; i < n; ++i)
|
||
p[i] = 0;
|
||
}
|
||
|
||
/*
|
||
* True if the machine supports DAC addressing, and DEV can
|
||
* make use of it given MASK.
|
||
*/
|
||
static int pci_dac_dma_supported(struct pci_dev *dev, u64 mask)
|
||
{
|
||
dma_addr_t dac_offset = alpha_mv.pci_dac_offset;
|
||
int ok = 1;
|
||
|
||
/* If this is not set, the machine doesn't support DAC at all. */
|
||
if (dac_offset == 0)
|
||
ok = 0;
|
||
|
||
/* The device has to be able to address our DAC bit. */
|
||
if ((dac_offset & dev->dma_mask) != dac_offset)
|
||
ok = 0;
|
||
|
||
/* If both conditions above are met, we are fine. */
|
||
DBGA("pci_dac_dma_supported %s from %pf\n",
|
||
ok ? "yes" : "no", __builtin_return_address(0));
|
||
|
||
return ok;
|
||
}
|
||
|
||
/* Map a single buffer of the indicated size for PCI DMA in streaming
|
||
mode. The 32-bit PCI bus mastering address to use is returned.
|
||
Once the device is given the dma address, the device owns this memory
|
||
until either pci_unmap_single or pci_dma_sync_single is performed. */
|
||
|
||
static dma_addr_t
|
||
pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size,
|
||
int dac_allowed)
|
||
{
|
||
struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose;
|
||
dma_addr_t max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK;
|
||
struct pci_iommu_arena *arena;
|
||
long npages, dma_ofs, i;
|
||
unsigned long paddr;
|
||
dma_addr_t ret;
|
||
unsigned int align = 0;
|
||
struct device *dev = pdev ? &pdev->dev : NULL;
|
||
|
||
paddr = __pa(cpu_addr);
|
||
|
||
#if !DEBUG_NODIRECT
|
||
/* First check to see if we can use the direct map window. */
|
||
if (paddr + size + __direct_map_base - 1 <= max_dma
|
||
&& paddr + size <= __direct_map_size) {
|
||
ret = paddr + __direct_map_base;
|
||
|
||
DBGA2("pci_map_single: [%p,%zx] -> direct %llx from %pf\n",
|
||
cpu_addr, size, ret, __builtin_return_address(0));
|
||
|
||
return ret;
|
||
}
|
||
#endif
|
||
|
||
/* Next, use DAC if selected earlier. */
|
||
if (dac_allowed) {
|
||
ret = paddr + alpha_mv.pci_dac_offset;
|
||
|
||
DBGA2("pci_map_single: [%p,%zx] -> DAC %llx from %pf\n",
|
||
cpu_addr, size, ret, __builtin_return_address(0));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* If the machine doesn't define a pci_tbi routine, we have to
|
||
assume it doesn't support sg mapping, and, since we tried to
|
||
use direct_map above, it now must be considered an error. */
|
||
if (! alpha_mv.mv_pci_tbi) {
|
||
printk_once(KERN_WARNING "pci_map_single: no HW sg\n");
|
||
return 0;
|
||
}
|
||
|
||
arena = hose->sg_pci;
|
||
if (!arena || arena->dma_base + arena->size - 1 > max_dma)
|
||
arena = hose->sg_isa;
|
||
|
||
npages = iommu_num_pages(paddr, size, PAGE_SIZE);
|
||
|
||
/* Force allocation to 64KB boundary for ISA bridges. */
|
||
if (pdev && pdev == isa_bridge)
|
||
align = 8;
|
||
dma_ofs = iommu_arena_alloc(dev, arena, npages, align);
|
||
if (dma_ofs < 0) {
|
||
printk(KERN_WARNING "pci_map_single failed: "
|
||
"could not allocate dma page tables\n");
|
||
return 0;
|
||
}
|
||
|
||
paddr &= PAGE_MASK;
|
||
for (i = 0; i < npages; ++i, paddr += PAGE_SIZE)
|
||
arena->ptes[i + dma_ofs] = mk_iommu_pte(paddr);
|
||
|
||
ret = arena->dma_base + dma_ofs * PAGE_SIZE;
|
||
ret += (unsigned long)cpu_addr & ~PAGE_MASK;
|
||
|
||
DBGA2("pci_map_single: [%p,%zx] np %ld -> sg %llx from %pf\n",
|
||
cpu_addr, size, npages, ret, __builtin_return_address(0));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Helper for generic DMA-mapping functions. */
|
||
static struct pci_dev *alpha_gendev_to_pci(struct device *dev)
|
||
{
|
||
if (dev && dev_is_pci(dev))
|
||
return to_pci_dev(dev);
|
||
|
||
/* Assume that non-PCI devices asking for DMA are either ISA or EISA,
|
||
BUG() otherwise. */
|
||
BUG_ON(!isa_bridge);
|
||
|
||
/* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA
|
||
bridge is bus master then). */
|
||
if (!dev || !dev->dma_mask || !*dev->dma_mask)
|
||
return isa_bridge;
|
||
|
||
/* For EISA bus masters, return isa_bridge (it might have smaller
|
||
dma_mask due to wiring limitations). */
|
||
if (*dev->dma_mask >= isa_bridge->dma_mask)
|
||
return isa_bridge;
|
||
|
||
/* This assumes ISA bus master with dma_mask 0xffffff. */
|
||
return NULL;
|
||
}
|
||
|
||
static dma_addr_t alpha_pci_map_page(struct device *dev, struct page *page,
|
||
unsigned long offset, size_t size,
|
||
enum dma_data_direction dir,
|
||
struct dma_attrs *attrs)
|
||
{
|
||
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
|
||
int dac_allowed;
|
||
|
||
BUG_ON(dir == PCI_DMA_NONE);
|
||
|
||
dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0;
|
||
return pci_map_single_1(pdev, (char *)page_address(page) + offset,
|
||
size, dac_allowed);
|
||
}
|
||
|
||
/* Unmap a single streaming mode DMA translation. The DMA_ADDR and
|
||
SIZE must match what was provided for in a previous pci_map_single
|
||
call. All other usages are undefined. After this call, reads by
|
||
the cpu to the buffer are guaranteed to see whatever the device
|
||
wrote there. */
|
||
|
||
static void alpha_pci_unmap_page(struct device *dev, dma_addr_t dma_addr,
|
||
size_t size, enum dma_data_direction dir,
|
||
struct dma_attrs *attrs)
|
||
{
|
||
unsigned long flags;
|
||
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
|
||
struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose;
|
||
struct pci_iommu_arena *arena;
|
||
long dma_ofs, npages;
|
||
|
||
BUG_ON(dir == PCI_DMA_NONE);
|
||
|
||
if (dma_addr >= __direct_map_base
|
||
&& dma_addr < __direct_map_base + __direct_map_size) {
|
||
/* Nothing to do. */
|
||
|
||
DBGA2("pci_unmap_single: direct [%llx,%zx] from %pf\n",
|
||
dma_addr, size, __builtin_return_address(0));
|
||
|
||
return;
|
||
}
|
||
|
||
if (dma_addr > 0xffffffff) {
|
||
DBGA2("pci64_unmap_single: DAC [%llx,%zx] from %pf\n",
|
||
dma_addr, size, __builtin_return_address(0));
|
||
return;
|
||
}
|
||
|
||
arena = hose->sg_pci;
|
||
if (!arena || dma_addr < arena->dma_base)
|
||
arena = hose->sg_isa;
|
||
|
||
dma_ofs = (dma_addr - arena->dma_base) >> PAGE_SHIFT;
|
||
if (dma_ofs * PAGE_SIZE >= arena->size) {
|
||
printk(KERN_ERR "Bogus pci_unmap_single: dma_addr %llx "
|
||
" base %llx size %x\n",
|
||
dma_addr, arena->dma_base, arena->size);
|
||
return;
|
||
BUG();
|
||
}
|
||
|
||
npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
|
||
|
||
spin_lock_irqsave(&arena->lock, flags);
|
||
|
||
iommu_arena_free(arena, dma_ofs, npages);
|
||
|
||
/* If we're freeing ptes above the `next_entry' pointer (they
|
||
may have snuck back into the TLB since the last wrap flush),
|
||
we need to flush the TLB before reallocating the latter. */
|
||
if (dma_ofs >= arena->next_entry)
|
||
alpha_mv.mv_pci_tbi(hose, dma_addr, dma_addr + size - 1);
|
||
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
|
||
DBGA2("pci_unmap_single: sg [%llx,%zx] np %ld from %pf\n",
|
||
dma_addr, size, npages, __builtin_return_address(0));
|
||
}
|
||
|
||
/* Allocate and map kernel buffer using consistent mode DMA for PCI
|
||
device. Returns non-NULL cpu-view pointer to the buffer if
|
||
successful and sets *DMA_ADDRP to the pci side dma address as well,
|
||
else DMA_ADDRP is undefined. */
|
||
|
||
static void *alpha_pci_alloc_coherent(struct device *dev, size_t size,
|
||
dma_addr_t *dma_addrp, gfp_t gfp,
|
||
struct dma_attrs *attrs)
|
||
{
|
||
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
|
||
void *cpu_addr;
|
||
long order = get_order(size);
|
||
|
||
gfp &= ~GFP_DMA;
|
||
|
||
try_again:
|
||
cpu_addr = (void *)__get_free_pages(gfp, order);
|
||
if (! cpu_addr) {
|
||
printk(KERN_INFO "pci_alloc_consistent: "
|
||
"get_free_pages failed from %pf\n",
|
||
__builtin_return_address(0));
|
||
/* ??? Really atomic allocation? Otherwise we could play
|
||
with vmalloc and sg if we can't find contiguous memory. */
|
||
return NULL;
|
||
}
|
||
memset(cpu_addr, 0, size);
|
||
|
||
*dma_addrp = pci_map_single_1(pdev, cpu_addr, size, 0);
|
||
if (*dma_addrp == 0) {
|
||
free_pages((unsigned long)cpu_addr, order);
|
||
if (alpha_mv.mv_pci_tbi || (gfp & GFP_DMA))
|
||
return NULL;
|
||
/* The address doesn't fit required mask and we
|
||
do not have iommu. Try again with GFP_DMA. */
|
||
gfp |= GFP_DMA;
|
||
goto try_again;
|
||
}
|
||
|
||
DBGA2("pci_alloc_consistent: %zx -> [%p,%llx] from %pf\n",
|
||
size, cpu_addr, *dma_addrp, __builtin_return_address(0));
|
||
|
||
return cpu_addr;
|
||
}
|
||
|
||
/* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must
|
||
be values that were returned from pci_alloc_consistent. SIZE must
|
||
be the same as what as passed into pci_alloc_consistent.
|
||
References to the memory and mappings associated with CPU_ADDR or
|
||
DMA_ADDR past this call are illegal. */
|
||
|
||
static void alpha_pci_free_coherent(struct device *dev, size_t size,
|
||
void *cpu_addr, dma_addr_t dma_addr,
|
||
struct dma_attrs *attrs)
|
||
{
|
||
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
|
||
pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL);
|
||
free_pages((unsigned long)cpu_addr, get_order(size));
|
||
|
||
DBGA2("pci_free_consistent: [%llx,%zx] from %pf\n",
|
||
dma_addr, size, __builtin_return_address(0));
|
||
}
|
||
|
||
/* Classify the elements of the scatterlist. Write dma_address
|
||
of each element with:
|
||
0 : Followers all physically adjacent.
|
||
1 : Followers all virtually adjacent.
|
||
-1 : Not leader, physically adjacent to previous.
|
||
-2 : Not leader, virtually adjacent to previous.
|
||
Write dma_length of each leader with the combined lengths of
|
||
the mergable followers. */
|
||
|
||
#define SG_ENT_VIRT_ADDRESS(SG) (sg_virt((SG)))
|
||
#define SG_ENT_PHYS_ADDRESS(SG) __pa(SG_ENT_VIRT_ADDRESS(SG))
|
||
|
||
static void
|
||
sg_classify(struct device *dev, struct scatterlist *sg, struct scatterlist *end,
|
||
int virt_ok)
|
||
{
|
||
unsigned long next_paddr;
|
||
struct scatterlist *leader;
|
||
long leader_flag, leader_length;
|
||
unsigned int max_seg_size;
|
||
|
||
leader = sg;
|
||
leader_flag = 0;
|
||
leader_length = leader->length;
|
||
next_paddr = SG_ENT_PHYS_ADDRESS(leader) + leader_length;
|
||
|
||
/* we will not marge sg without device. */
|
||
max_seg_size = dev ? dma_get_max_seg_size(dev) : 0;
|
||
for (++sg; sg < end; ++sg) {
|
||
unsigned long addr, len;
|
||
addr = SG_ENT_PHYS_ADDRESS(sg);
|
||
len = sg->length;
|
||
|
||
if (leader_length + len > max_seg_size)
|
||
goto new_segment;
|
||
|
||
if (next_paddr == addr) {
|
||
sg->dma_address = -1;
|
||
leader_length += len;
|
||
} else if (((next_paddr | addr) & ~PAGE_MASK) == 0 && virt_ok) {
|
||
sg->dma_address = -2;
|
||
leader_flag = 1;
|
||
leader_length += len;
|
||
} else {
|
||
new_segment:
|
||
leader->dma_address = leader_flag;
|
||
leader->dma_length = leader_length;
|
||
leader = sg;
|
||
leader_flag = 0;
|
||
leader_length = len;
|
||
}
|
||
|
||
next_paddr = addr + len;
|
||
}
|
||
|
||
leader->dma_address = leader_flag;
|
||
leader->dma_length = leader_length;
|
||
}
|
||
|
||
/* Given a scatterlist leader, choose an allocation method and fill
|
||
in the blanks. */
|
||
|
||
static int
|
||
sg_fill(struct device *dev, struct scatterlist *leader, struct scatterlist *end,
|
||
struct scatterlist *out, struct pci_iommu_arena *arena,
|
||
dma_addr_t max_dma, int dac_allowed)
|
||
{
|
||
unsigned long paddr = SG_ENT_PHYS_ADDRESS(leader);
|
||
long size = leader->dma_length;
|
||
struct scatterlist *sg;
|
||
unsigned long *ptes;
|
||
long npages, dma_ofs, i;
|
||
|
||
#if !DEBUG_NODIRECT
|
||
/* If everything is physically contiguous, and the addresses
|
||
fall into the direct-map window, use it. */
|
||
if (leader->dma_address == 0
|
||
&& paddr + size + __direct_map_base - 1 <= max_dma
|
||
&& paddr + size <= __direct_map_size) {
|
||
out->dma_address = paddr + __direct_map_base;
|
||
out->dma_length = size;
|
||
|
||
DBGA(" sg_fill: [%p,%lx] -> direct %llx\n",
|
||
__va(paddr), size, out->dma_address);
|
||
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
/* If physically contiguous and DAC is available, use it. */
|
||
if (leader->dma_address == 0 && dac_allowed) {
|
||
out->dma_address = paddr + alpha_mv.pci_dac_offset;
|
||
out->dma_length = size;
|
||
|
||
DBGA(" sg_fill: [%p,%lx] -> DAC %llx\n",
|
||
__va(paddr), size, out->dma_address);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Otherwise, we'll use the iommu to make the pages virtually
|
||
contiguous. */
|
||
|
||
paddr &= ~PAGE_MASK;
|
||
npages = iommu_num_pages(paddr, size, PAGE_SIZE);
|
||
dma_ofs = iommu_arena_alloc(dev, arena, npages, 0);
|
||
if (dma_ofs < 0) {
|
||
/* If we attempted a direct map above but failed, die. */
|
||
if (leader->dma_address == 0)
|
||
return -1;
|
||
|
||
/* Otherwise, break up the remaining virtually contiguous
|
||
hunks into individual direct maps and retry. */
|
||
sg_classify(dev, leader, end, 0);
|
||
return sg_fill(dev, leader, end, out, arena, max_dma, dac_allowed);
|
||
}
|
||
|
||
out->dma_address = arena->dma_base + dma_ofs*PAGE_SIZE + paddr;
|
||
out->dma_length = size;
|
||
|
||
DBGA(" sg_fill: [%p,%lx] -> sg %llx np %ld\n",
|
||
__va(paddr), size, out->dma_address, npages);
|
||
|
||
/* All virtually contiguous. We need to find the length of each
|
||
physically contiguous subsegment to fill in the ptes. */
|
||
ptes = &arena->ptes[dma_ofs];
|
||
sg = leader;
|
||
do {
|
||
#if DEBUG_ALLOC > 0
|
||
struct scatterlist *last_sg = sg;
|
||
#endif
|
||
|
||
size = sg->length;
|
||
paddr = SG_ENT_PHYS_ADDRESS(sg);
|
||
|
||
while (sg+1 < end && (int) sg[1].dma_address == -1) {
|
||
size += sg[1].length;
|
||
sg++;
|
||
}
|
||
|
||
npages = iommu_num_pages(paddr, size, PAGE_SIZE);
|
||
|
||
paddr &= PAGE_MASK;
|
||
for (i = 0; i < npages; ++i, paddr += PAGE_SIZE)
|
||
*ptes++ = mk_iommu_pte(paddr);
|
||
|
||
#if DEBUG_ALLOC > 0
|
||
DBGA(" (%ld) [%p,%x] np %ld\n",
|
||
last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg),
|
||
last_sg->length, npages);
|
||
while (++last_sg <= sg) {
|
||
DBGA(" (%ld) [%p,%x] cont\n",
|
||
last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg),
|
||
last_sg->length);
|
||
}
|
||
#endif
|
||
} while (++sg < end && (int) sg->dma_address < 0);
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int alpha_pci_map_sg(struct device *dev, struct scatterlist *sg,
|
||
int nents, enum dma_data_direction dir,
|
||
struct dma_attrs *attrs)
|
||
{
|
||
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
|
||
struct scatterlist *start, *end, *out;
|
||
struct pci_controller *hose;
|
||
struct pci_iommu_arena *arena;
|
||
dma_addr_t max_dma;
|
||
int dac_allowed;
|
||
|
||
BUG_ON(dir == PCI_DMA_NONE);
|
||
|
||
dac_allowed = dev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0;
|
||
|
||
/* Fast path single entry scatterlists. */
|
||
if (nents == 1) {
|
||
sg->dma_length = sg->length;
|
||
sg->dma_address
|
||
= pci_map_single_1(pdev, SG_ENT_VIRT_ADDRESS(sg),
|
||
sg->length, dac_allowed);
|
||
return sg->dma_address != 0;
|
||
}
|
||
|
||
start = sg;
|
||
end = sg + nents;
|
||
|
||
/* First, prepare information about the entries. */
|
||
sg_classify(dev, sg, end, alpha_mv.mv_pci_tbi != 0);
|
||
|
||
/* Second, figure out where we're going to map things. */
|
||
if (alpha_mv.mv_pci_tbi) {
|
||
hose = pdev ? pdev->sysdata : pci_isa_hose;
|
||
max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK;
|
||
arena = hose->sg_pci;
|
||
if (!arena || arena->dma_base + arena->size - 1 > max_dma)
|
||
arena = hose->sg_isa;
|
||
} else {
|
||
max_dma = -1;
|
||
arena = NULL;
|
||
hose = NULL;
|
||
}
|
||
|
||
/* Third, iterate over the scatterlist leaders and allocate
|
||
dma space as needed. */
|
||
for (out = sg; sg < end; ++sg) {
|
||
if ((int) sg->dma_address < 0)
|
||
continue;
|
||
if (sg_fill(dev, sg, end, out, arena, max_dma, dac_allowed) < 0)
|
||
goto error;
|
||
out++;
|
||
}
|
||
|
||
/* Mark the end of the list for pci_unmap_sg. */
|
||
if (out < end)
|
||
out->dma_length = 0;
|
||
|
||
if (out - start == 0)
|
||
printk(KERN_WARNING "pci_map_sg failed: no entries?\n");
|
||
DBGA("pci_map_sg: %ld entries\n", out - start);
|
||
|
||
return out - start;
|
||
|
||
error:
|
||
printk(KERN_WARNING "pci_map_sg failed: "
|
||
"could not allocate dma page tables\n");
|
||
|
||
/* Some allocation failed while mapping the scatterlist
|
||
entries. Unmap them now. */
|
||
if (out > start)
|
||
pci_unmap_sg(pdev, start, out - start, dir);
|
||
return 0;
|
||
}
|
||
|
||
/* Unmap a set of streaming mode DMA translations. Again, cpu read
|
||
rules concerning calls here are the same as for pci_unmap_single()
|
||
above. */
|
||
|
||
static void alpha_pci_unmap_sg(struct device *dev, struct scatterlist *sg,
|
||
int nents, enum dma_data_direction dir,
|
||
struct dma_attrs *attrs)
|
||
{
|
||
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
|
||
unsigned long flags;
|
||
struct pci_controller *hose;
|
||
struct pci_iommu_arena *arena;
|
||
struct scatterlist *end;
|
||
dma_addr_t max_dma;
|
||
dma_addr_t fbeg, fend;
|
||
|
||
BUG_ON(dir == PCI_DMA_NONE);
|
||
|
||
if (! alpha_mv.mv_pci_tbi)
|
||
return;
|
||
|
||
hose = pdev ? pdev->sysdata : pci_isa_hose;
|
||
max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK;
|
||
arena = hose->sg_pci;
|
||
if (!arena || arena->dma_base + arena->size - 1 > max_dma)
|
||
arena = hose->sg_isa;
|
||
|
||
fbeg = -1, fend = 0;
|
||
|
||
spin_lock_irqsave(&arena->lock, flags);
|
||
|
||
for (end = sg + nents; sg < end; ++sg) {
|
||
dma_addr_t addr;
|
||
size_t size;
|
||
long npages, ofs;
|
||
dma_addr_t tend;
|
||
|
||
addr = sg->dma_address;
|
||
size = sg->dma_length;
|
||
if (!size)
|
||
break;
|
||
|
||
if (addr > 0xffffffff) {
|
||
/* It's a DAC address -- nothing to do. */
|
||
DBGA(" (%ld) DAC [%llx,%zx]\n",
|
||
sg - end + nents, addr, size);
|
||
continue;
|
||
}
|
||
|
||
if (addr >= __direct_map_base
|
||
&& addr < __direct_map_base + __direct_map_size) {
|
||
/* Nothing to do. */
|
||
DBGA(" (%ld) direct [%llx,%zx]\n",
|
||
sg - end + nents, addr, size);
|
||
continue;
|
||
}
|
||
|
||
DBGA(" (%ld) sg [%llx,%zx]\n",
|
||
sg - end + nents, addr, size);
|
||
|
||
npages = iommu_num_pages(addr, size, PAGE_SIZE);
|
||
ofs = (addr - arena->dma_base) >> PAGE_SHIFT;
|
||
iommu_arena_free(arena, ofs, npages);
|
||
|
||
tend = addr + size - 1;
|
||
if (fbeg > addr) fbeg = addr;
|
||
if (fend < tend) fend = tend;
|
||
}
|
||
|
||
/* If we're freeing ptes above the `next_entry' pointer (they
|
||
may have snuck back into the TLB since the last wrap flush),
|
||
we need to flush the TLB before reallocating the latter. */
|
||
if ((fend - arena->dma_base) >> PAGE_SHIFT >= arena->next_entry)
|
||
alpha_mv.mv_pci_tbi(hose, fbeg, fend);
|
||
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
|
||
DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg));
|
||
}
|
||
|
||
/* Return whether the given PCI device DMA address mask can be
|
||
supported properly. */
|
||
|
||
static int alpha_pci_supported(struct device *dev, u64 mask)
|
||
{
|
||
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
|
||
struct pci_controller *hose;
|
||
struct pci_iommu_arena *arena;
|
||
|
||
/* If there exists a direct map, and the mask fits either
|
||
the entire direct mapped space or the total system memory as
|
||
shifted by the map base */
|
||
if (__direct_map_size != 0
|
||
&& (__direct_map_base + __direct_map_size - 1 <= mask ||
|
||
__direct_map_base + (max_low_pfn << PAGE_SHIFT) - 1 <= mask))
|
||
return 1;
|
||
|
||
/* Check that we have a scatter-gather arena that fits. */
|
||
hose = pdev ? pdev->sysdata : pci_isa_hose;
|
||
arena = hose->sg_isa;
|
||
if (arena && arena->dma_base + arena->size - 1 <= mask)
|
||
return 1;
|
||
arena = hose->sg_pci;
|
||
if (arena && arena->dma_base + arena->size - 1 <= mask)
|
||
return 1;
|
||
|
||
/* As last resort try ZONE_DMA. */
|
||
if (!__direct_map_base && MAX_DMA_ADDRESS - IDENT_ADDR - 1 <= mask)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
* AGP GART extensions to the IOMMU
|
||
*/
|
||
int
|
||
iommu_reserve(struct pci_iommu_arena *arena, long pg_count, long align_mask)
|
||
{
|
||
unsigned long flags;
|
||
unsigned long *ptes;
|
||
long i, p;
|
||
|
||
if (!arena) return -EINVAL;
|
||
|
||
spin_lock_irqsave(&arena->lock, flags);
|
||
|
||
/* Search for N empty ptes. */
|
||
ptes = arena->ptes;
|
||
p = iommu_arena_find_pages(NULL, arena, pg_count, align_mask);
|
||
if (p < 0) {
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
return -1;
|
||
}
|
||
|
||
/* Success. Mark them all reserved (ie not zero and invalid)
|
||
for the iommu tlb that could load them from under us.
|
||
They will be filled in with valid bits by _bind() */
|
||
for (i = 0; i < pg_count; ++i)
|
||
ptes[p+i] = IOMMU_RESERVED_PTE;
|
||
|
||
arena->next_entry = p + pg_count;
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
|
||
return p;
|
||
}
|
||
|
||
int
|
||
iommu_release(struct pci_iommu_arena *arena, long pg_start, long pg_count)
|
||
{
|
||
unsigned long *ptes;
|
||
long i;
|
||
|
||
if (!arena) return -EINVAL;
|
||
|
||
ptes = arena->ptes;
|
||
|
||
/* Make sure they're all reserved first... */
|
||
for(i = pg_start; i < pg_start + pg_count; i++)
|
||
if (ptes[i] != IOMMU_RESERVED_PTE)
|
||
return -EBUSY;
|
||
|
||
iommu_arena_free(arena, pg_start, pg_count);
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
iommu_bind(struct pci_iommu_arena *arena, long pg_start, long pg_count,
|
||
struct page **pages)
|
||
{
|
||
unsigned long flags;
|
||
unsigned long *ptes;
|
||
long i, j;
|
||
|
||
if (!arena) return -EINVAL;
|
||
|
||
spin_lock_irqsave(&arena->lock, flags);
|
||
|
||
ptes = arena->ptes;
|
||
|
||
for(j = pg_start; j < pg_start + pg_count; j++) {
|
||
if (ptes[j] != IOMMU_RESERVED_PTE) {
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
return -EBUSY;
|
||
}
|
||
}
|
||
|
||
for(i = 0, j = pg_start; i < pg_count; i++, j++)
|
||
ptes[j] = mk_iommu_pte(page_to_phys(pages[i]));
|
||
|
||
spin_unlock_irqrestore(&arena->lock, flags);
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count)
|
||
{
|
||
unsigned long *p;
|
||
long i;
|
||
|
||
if (!arena) return -EINVAL;
|
||
|
||
p = arena->ptes + pg_start;
|
||
for(i = 0; i < pg_count; i++)
|
||
p[i] = IOMMU_RESERVED_PTE;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int alpha_pci_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
||
{
|
||
return dma_addr == 0;
|
||
}
|
||
|
||
struct dma_map_ops alpha_pci_ops = {
|
||
.alloc = alpha_pci_alloc_coherent,
|
||
.free = alpha_pci_free_coherent,
|
||
.map_page = alpha_pci_map_page,
|
||
.unmap_page = alpha_pci_unmap_page,
|
||
.map_sg = alpha_pci_map_sg,
|
||
.unmap_sg = alpha_pci_unmap_sg,
|
||
.mapping_error = alpha_pci_mapping_error,
|
||
.dma_supported = alpha_pci_supported,
|
||
};
|
||
|
||
struct dma_map_ops *dma_ops = &alpha_pci_ops;
|
||
EXPORT_SYMBOL(dma_ops);
|