mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-27 05:32:27 +00:00
41b0fc4280
A user reported a panic while running a balance. What was happening was he was relocating a block, which added the reference to the relocation tree. Then relocation would walk through the relocation tree and drop that reference and free that block, and then it would walk down a snapshot which referenced the same block and add another ref to the block. The problem is this was all happening in the same transaction, so the parent block was free'ed up when we drop our reference which was immediately available for allocation, and then it was used _again_ to add a reference for the same block from a different snapshot. This resulted in something like this in the delayed ref tree add ref to 90234880, parent=2067398656, ref_root 1766, level 1 del ref to 90234880, parent=2067398656, ref_root 18446744073709551608, level 1 add ref to 90234880, parent=2067398656, ref_root 1767, level 1 as you can see the ref_root's don't match, because when we inc the ref we use the header owner, which is the original tree the block belonged to, instead of the data reloc tree. Then when we remove the extent we use the reloc tree objectid. But none of this matters, since it is a shared reference which means only the parent matters. When the delayed ref stuff runs it adds all the increments first, and then does all the drops, to make sure that we don't delete the ref if we net a positive ref count. But tree blocks aren't allowed to have multiple refs from the same block, so this panics when it tries to add the second ref. We need the add and the drop to cancel each other out in memory so we only do the final add. So to fix this we need to adjust how the delayed refs are added to the tree. Only the ref_root matters when it is a normal backref, and only the parent matters when it is a shared backref. So make our decision based on what ref type we have. This allows us to keep the ref_root in memory in case anybody wants to use it for something else, and it allows the delayed refs to be merged properly so we don't end up with this panic. With this patch the users image no longer panics on mount, and it has a clean fsck after a normal mount/umount cycle. Thanks, Cc: stable@vger.kernel.org Reported-by: Roman Mamedov <rm@romanrm.ru> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
927 lines
25 KiB
C
927 lines
25 KiB
C
/*
|
|
* Copyright (C) 2009 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sort.h>
|
|
#include "ctree.h"
|
|
#include "delayed-ref.h"
|
|
#include "transaction.h"
|
|
|
|
struct kmem_cache *btrfs_delayed_ref_head_cachep;
|
|
struct kmem_cache *btrfs_delayed_tree_ref_cachep;
|
|
struct kmem_cache *btrfs_delayed_data_ref_cachep;
|
|
struct kmem_cache *btrfs_delayed_extent_op_cachep;
|
|
/*
|
|
* delayed back reference update tracking. For subvolume trees
|
|
* we queue up extent allocations and backref maintenance for
|
|
* delayed processing. This avoids deep call chains where we
|
|
* add extents in the middle of btrfs_search_slot, and it allows
|
|
* us to buffer up frequently modified backrefs in an rb tree instead
|
|
* of hammering updates on the extent allocation tree.
|
|
*/
|
|
|
|
/*
|
|
* compare two delayed tree backrefs with same bytenr and type
|
|
*/
|
|
static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
|
|
struct btrfs_delayed_tree_ref *ref1, int type)
|
|
{
|
|
if (type == BTRFS_TREE_BLOCK_REF_KEY) {
|
|
if (ref1->root < ref2->root)
|
|
return -1;
|
|
if (ref1->root > ref2->root)
|
|
return 1;
|
|
} else {
|
|
if (ref1->parent < ref2->parent)
|
|
return -1;
|
|
if (ref1->parent > ref2->parent)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* compare two delayed data backrefs with same bytenr and type
|
|
*/
|
|
static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
|
|
struct btrfs_delayed_data_ref *ref1)
|
|
{
|
|
if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
if (ref1->root < ref2->root)
|
|
return -1;
|
|
if (ref1->root > ref2->root)
|
|
return 1;
|
|
if (ref1->objectid < ref2->objectid)
|
|
return -1;
|
|
if (ref1->objectid > ref2->objectid)
|
|
return 1;
|
|
if (ref1->offset < ref2->offset)
|
|
return -1;
|
|
if (ref1->offset > ref2->offset)
|
|
return 1;
|
|
} else {
|
|
if (ref1->parent < ref2->parent)
|
|
return -1;
|
|
if (ref1->parent > ref2->parent)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* entries in the rb tree are ordered by the byte number of the extent,
|
|
* type of the delayed backrefs and content of delayed backrefs.
|
|
*/
|
|
static int comp_entry(struct btrfs_delayed_ref_node *ref2,
|
|
struct btrfs_delayed_ref_node *ref1,
|
|
bool compare_seq)
|
|
{
|
|
if (ref1->bytenr < ref2->bytenr)
|
|
return -1;
|
|
if (ref1->bytenr > ref2->bytenr)
|
|
return 1;
|
|
if (ref1->is_head && ref2->is_head)
|
|
return 0;
|
|
if (ref2->is_head)
|
|
return -1;
|
|
if (ref1->is_head)
|
|
return 1;
|
|
if (ref1->type < ref2->type)
|
|
return -1;
|
|
if (ref1->type > ref2->type)
|
|
return 1;
|
|
/* merging of sequenced refs is not allowed */
|
|
if (compare_seq) {
|
|
if (ref1->seq < ref2->seq)
|
|
return -1;
|
|
if (ref1->seq > ref2->seq)
|
|
return 1;
|
|
}
|
|
if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
|
|
return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
|
|
btrfs_delayed_node_to_tree_ref(ref1),
|
|
ref1->type);
|
|
} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
|
|
ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
|
|
btrfs_delayed_node_to_data_ref(ref1));
|
|
}
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* insert a new ref into the rbtree. This returns any existing refs
|
|
* for the same (bytenr,parent) tuple, or NULL if the new node was properly
|
|
* inserted.
|
|
*/
|
|
static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent_node = NULL;
|
|
struct btrfs_delayed_ref_node *entry;
|
|
struct btrfs_delayed_ref_node *ins;
|
|
int cmp;
|
|
|
|
ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
while (*p) {
|
|
parent_node = *p;
|
|
entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
|
|
cmp = comp_entry(entry, ins, 1);
|
|
if (cmp < 0)
|
|
p = &(*p)->rb_left;
|
|
else if (cmp > 0)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return entry;
|
|
}
|
|
|
|
rb_link_node(node, parent_node, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find an head entry based on bytenr. This returns the delayed ref
|
|
* head if it was able to find one, or NULL if nothing was in that spot.
|
|
* If return_bigger is given, the next bigger entry is returned if no exact
|
|
* match is found.
|
|
*/
|
|
static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
|
|
u64 bytenr,
|
|
struct btrfs_delayed_ref_node **last,
|
|
int return_bigger)
|
|
{
|
|
struct rb_node *n;
|
|
struct btrfs_delayed_ref_node *entry;
|
|
int cmp = 0;
|
|
|
|
again:
|
|
n = root->rb_node;
|
|
entry = NULL;
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
|
|
WARN_ON(!entry->in_tree);
|
|
if (last)
|
|
*last = entry;
|
|
|
|
if (bytenr < entry->bytenr)
|
|
cmp = -1;
|
|
else if (bytenr > entry->bytenr)
|
|
cmp = 1;
|
|
else if (!btrfs_delayed_ref_is_head(entry))
|
|
cmp = 1;
|
|
else
|
|
cmp = 0;
|
|
|
|
if (cmp < 0)
|
|
n = n->rb_left;
|
|
else if (cmp > 0)
|
|
n = n->rb_right;
|
|
else
|
|
return entry;
|
|
}
|
|
if (entry && return_bigger) {
|
|
if (cmp > 0) {
|
|
n = rb_next(&entry->rb_node);
|
|
if (!n)
|
|
n = rb_first(root);
|
|
entry = rb_entry(n, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
bytenr = entry->bytenr;
|
|
return_bigger = 0;
|
|
goto again;
|
|
}
|
|
return entry;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
assert_spin_locked(&delayed_refs->lock);
|
|
if (mutex_trylock(&head->mutex))
|
|
return 0;
|
|
|
|
atomic_inc(&head->node.refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
mutex_lock(&head->mutex);
|
|
spin_lock(&delayed_refs->lock);
|
|
if (!head->node.in_tree) {
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
return -EAGAIN;
|
|
}
|
|
btrfs_put_delayed_ref(&head->node);
|
|
return 0;
|
|
}
|
|
|
|
static void inline drop_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_root *delayed_refs,
|
|
struct btrfs_delayed_ref_node *ref)
|
|
{
|
|
rb_erase(&ref->rb_node, &delayed_refs->root);
|
|
ref->in_tree = 0;
|
|
btrfs_put_delayed_ref(ref);
|
|
delayed_refs->num_entries--;
|
|
if (trans->delayed_ref_updates)
|
|
trans->delayed_ref_updates--;
|
|
}
|
|
|
|
static int merge_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_root *delayed_refs,
|
|
struct btrfs_delayed_ref_node *ref, u64 seq)
|
|
{
|
|
struct rb_node *node;
|
|
int merged = 0;
|
|
int mod = 0;
|
|
int done = 0;
|
|
|
|
node = rb_prev(&ref->rb_node);
|
|
while (node) {
|
|
struct btrfs_delayed_ref_node *next;
|
|
|
|
next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
node = rb_prev(node);
|
|
if (next->bytenr != ref->bytenr)
|
|
break;
|
|
if (seq && next->seq >= seq)
|
|
break;
|
|
if (comp_entry(ref, next, 0))
|
|
continue;
|
|
|
|
if (ref->action == next->action) {
|
|
mod = next->ref_mod;
|
|
} else {
|
|
if (ref->ref_mod < next->ref_mod) {
|
|
struct btrfs_delayed_ref_node *tmp;
|
|
|
|
tmp = ref;
|
|
ref = next;
|
|
next = tmp;
|
|
done = 1;
|
|
}
|
|
mod = -next->ref_mod;
|
|
}
|
|
|
|
merged++;
|
|
drop_delayed_ref(trans, delayed_refs, next);
|
|
ref->ref_mod += mod;
|
|
if (ref->ref_mod == 0) {
|
|
drop_delayed_ref(trans, delayed_refs, ref);
|
|
break;
|
|
} else {
|
|
/*
|
|
* You can't have multiples of the same ref on a tree
|
|
* block.
|
|
*/
|
|
WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
|
|
}
|
|
|
|
if (done)
|
|
break;
|
|
node = rb_prev(&ref->rb_node);
|
|
}
|
|
|
|
return merged;
|
|
}
|
|
|
|
void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info,
|
|
struct btrfs_delayed_ref_root *delayed_refs,
|
|
struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct rb_node *node;
|
|
u64 seq = 0;
|
|
|
|
spin_lock(&fs_info->tree_mod_seq_lock);
|
|
if (!list_empty(&fs_info->tree_mod_seq_list)) {
|
|
struct seq_list *elem;
|
|
|
|
elem = list_first_entry(&fs_info->tree_mod_seq_list,
|
|
struct seq_list, list);
|
|
seq = elem->seq;
|
|
}
|
|
spin_unlock(&fs_info->tree_mod_seq_lock);
|
|
|
|
node = rb_prev(&head->node.rb_node);
|
|
while (node) {
|
|
struct btrfs_delayed_ref_node *ref;
|
|
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (ref->bytenr != head->node.bytenr)
|
|
break;
|
|
|
|
/* We can't merge refs that are outside of our seq count */
|
|
if (seq && ref->seq >= seq)
|
|
break;
|
|
if (merge_ref(trans, delayed_refs, ref, seq))
|
|
node = rb_prev(&head->node.rb_node);
|
|
else
|
|
node = rb_prev(node);
|
|
}
|
|
}
|
|
|
|
int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_delayed_ref_root *delayed_refs,
|
|
u64 seq)
|
|
{
|
|
struct seq_list *elem;
|
|
int ret = 0;
|
|
|
|
spin_lock(&fs_info->tree_mod_seq_lock);
|
|
if (!list_empty(&fs_info->tree_mod_seq_list)) {
|
|
elem = list_first_entry(&fs_info->tree_mod_seq_list,
|
|
struct seq_list, list);
|
|
if (seq >= elem->seq) {
|
|
pr_debug("holding back delayed_ref %llu, lowest is "
|
|
"%llu (%p)\n", seq, elem->seq, delayed_refs);
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&fs_info->tree_mod_seq_lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
|
|
struct list_head *cluster, u64 start)
|
|
{
|
|
int count = 0;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_ref_head *head;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
if (start == 0) {
|
|
node = rb_first(&delayed_refs->root);
|
|
} else {
|
|
ref = NULL;
|
|
find_ref_head(&delayed_refs->root, start + 1, &ref, 1);
|
|
if (ref) {
|
|
node = &ref->rb_node;
|
|
} else
|
|
node = rb_first(&delayed_refs->root);
|
|
}
|
|
again:
|
|
while (node && count < 32) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
if (btrfs_delayed_ref_is_head(ref)) {
|
|
head = btrfs_delayed_node_to_head(ref);
|
|
if (list_empty(&head->cluster)) {
|
|
list_add_tail(&head->cluster, cluster);
|
|
delayed_refs->run_delayed_start =
|
|
head->node.bytenr;
|
|
count++;
|
|
|
|
WARN_ON(delayed_refs->num_heads_ready == 0);
|
|
delayed_refs->num_heads_ready--;
|
|
} else if (count) {
|
|
/* the goal of the clustering is to find extents
|
|
* that are likely to end up in the same extent
|
|
* leaf on disk. So, we don't want them spread
|
|
* all over the tree. Stop now if we've hit
|
|
* a head that was already in use
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
node = rb_next(node);
|
|
}
|
|
if (count) {
|
|
return 0;
|
|
} else if (start) {
|
|
/*
|
|
* we've gone to the end of the rbtree without finding any
|
|
* clusters. start from the beginning and try again
|
|
*/
|
|
start = 0;
|
|
node = rb_first(&delayed_refs->root);
|
|
goto again;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void btrfs_release_ref_cluster(struct list_head *cluster)
|
|
{
|
|
struct list_head *pos, *q;
|
|
|
|
list_for_each_safe(pos, q, cluster)
|
|
list_del_init(pos);
|
|
}
|
|
|
|
/*
|
|
* helper function to update an extent delayed ref in the
|
|
* rbtree. existing and update must both have the same
|
|
* bytenr and parent
|
|
*
|
|
* This may free existing if the update cancels out whatever
|
|
* operation it was doing.
|
|
*/
|
|
static noinline void
|
|
update_existing_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_root *delayed_refs,
|
|
struct btrfs_delayed_ref_node *existing,
|
|
struct btrfs_delayed_ref_node *update)
|
|
{
|
|
if (update->action != existing->action) {
|
|
/*
|
|
* this is effectively undoing either an add or a
|
|
* drop. We decrement the ref_mod, and if it goes
|
|
* down to zero we just delete the entry without
|
|
* every changing the extent allocation tree.
|
|
*/
|
|
existing->ref_mod--;
|
|
if (existing->ref_mod == 0)
|
|
drop_delayed_ref(trans, delayed_refs, existing);
|
|
else
|
|
WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
|
|
} else {
|
|
WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
|
|
/*
|
|
* the action on the existing ref matches
|
|
* the action on the ref we're trying to add.
|
|
* Bump the ref_mod by one so the backref that
|
|
* is eventually added/removed has the correct
|
|
* reference count
|
|
*/
|
|
existing->ref_mod += update->ref_mod;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* helper function to update the accounting in the head ref
|
|
* existing and update must have the same bytenr
|
|
*/
|
|
static noinline void
|
|
update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
|
|
struct btrfs_delayed_ref_node *update)
|
|
{
|
|
struct btrfs_delayed_ref_head *existing_ref;
|
|
struct btrfs_delayed_ref_head *ref;
|
|
|
|
existing_ref = btrfs_delayed_node_to_head(existing);
|
|
ref = btrfs_delayed_node_to_head(update);
|
|
BUG_ON(existing_ref->is_data != ref->is_data);
|
|
|
|
if (ref->must_insert_reserved) {
|
|
/* if the extent was freed and then
|
|
* reallocated before the delayed ref
|
|
* entries were processed, we can end up
|
|
* with an existing head ref without
|
|
* the must_insert_reserved flag set.
|
|
* Set it again here
|
|
*/
|
|
existing_ref->must_insert_reserved = ref->must_insert_reserved;
|
|
|
|
/*
|
|
* update the num_bytes so we make sure the accounting
|
|
* is done correctly
|
|
*/
|
|
existing->num_bytes = update->num_bytes;
|
|
|
|
}
|
|
|
|
if (ref->extent_op) {
|
|
if (!existing_ref->extent_op) {
|
|
existing_ref->extent_op = ref->extent_op;
|
|
} else {
|
|
if (ref->extent_op->update_key) {
|
|
memcpy(&existing_ref->extent_op->key,
|
|
&ref->extent_op->key,
|
|
sizeof(ref->extent_op->key));
|
|
existing_ref->extent_op->update_key = 1;
|
|
}
|
|
if (ref->extent_op->update_flags) {
|
|
existing_ref->extent_op->flags_to_set |=
|
|
ref->extent_op->flags_to_set;
|
|
existing_ref->extent_op->update_flags = 1;
|
|
}
|
|
btrfs_free_delayed_extent_op(ref->extent_op);
|
|
}
|
|
}
|
|
/*
|
|
* update the reference mod on the head to reflect this new operation
|
|
*/
|
|
existing->ref_mod += update->ref_mod;
|
|
}
|
|
|
|
/*
|
|
* helper function to actually insert a head node into the rbtree.
|
|
* this does all the dirty work in terms of maintaining the correct
|
|
* overall modification count.
|
|
*/
|
|
static noinline void add_delayed_ref_head(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *ref,
|
|
u64 bytenr, u64 num_bytes,
|
|
int action, int is_data)
|
|
{
|
|
struct btrfs_delayed_ref_node *existing;
|
|
struct btrfs_delayed_ref_head *head_ref = NULL;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
int count_mod = 1;
|
|
int must_insert_reserved = 0;
|
|
|
|
/*
|
|
* the head node stores the sum of all the mods, so dropping a ref
|
|
* should drop the sum in the head node by one.
|
|
*/
|
|
if (action == BTRFS_UPDATE_DELAYED_HEAD)
|
|
count_mod = 0;
|
|
else if (action == BTRFS_DROP_DELAYED_REF)
|
|
count_mod = -1;
|
|
|
|
/*
|
|
* BTRFS_ADD_DELAYED_EXTENT means that we need to update
|
|
* the reserved accounting when the extent is finally added, or
|
|
* if a later modification deletes the delayed ref without ever
|
|
* inserting the extent into the extent allocation tree.
|
|
* ref->must_insert_reserved is the flag used to record
|
|
* that accounting mods are required.
|
|
*
|
|
* Once we record must_insert_reserved, switch the action to
|
|
* BTRFS_ADD_DELAYED_REF because other special casing is not required.
|
|
*/
|
|
if (action == BTRFS_ADD_DELAYED_EXTENT)
|
|
must_insert_reserved = 1;
|
|
else
|
|
must_insert_reserved = 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
|
|
/* first set the basic ref node struct up */
|
|
atomic_set(&ref->refs, 1);
|
|
ref->bytenr = bytenr;
|
|
ref->num_bytes = num_bytes;
|
|
ref->ref_mod = count_mod;
|
|
ref->type = 0;
|
|
ref->action = 0;
|
|
ref->is_head = 1;
|
|
ref->in_tree = 1;
|
|
ref->seq = 0;
|
|
|
|
head_ref = btrfs_delayed_node_to_head(ref);
|
|
head_ref->must_insert_reserved = must_insert_reserved;
|
|
head_ref->is_data = is_data;
|
|
|
|
INIT_LIST_HEAD(&head_ref->cluster);
|
|
mutex_init(&head_ref->mutex);
|
|
|
|
trace_btrfs_delayed_ref_head(ref, head_ref, action);
|
|
|
|
existing = tree_insert(&delayed_refs->root, &ref->rb_node);
|
|
|
|
if (existing) {
|
|
update_existing_head_ref(existing, ref);
|
|
/*
|
|
* we've updated the existing ref, free the newly
|
|
* allocated ref
|
|
*/
|
|
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
|
|
} else {
|
|
delayed_refs->num_heads++;
|
|
delayed_refs->num_heads_ready++;
|
|
delayed_refs->num_entries++;
|
|
trans->delayed_ref_updates++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* helper to insert a delayed tree ref into the rbtree.
|
|
*/
|
|
static noinline void add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *ref,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 ref_root, int level, int action,
|
|
int for_cow)
|
|
{
|
|
struct btrfs_delayed_ref_node *existing;
|
|
struct btrfs_delayed_tree_ref *full_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
u64 seq = 0;
|
|
|
|
if (action == BTRFS_ADD_DELAYED_EXTENT)
|
|
action = BTRFS_ADD_DELAYED_REF;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
|
|
/* first set the basic ref node struct up */
|
|
atomic_set(&ref->refs, 1);
|
|
ref->bytenr = bytenr;
|
|
ref->num_bytes = num_bytes;
|
|
ref->ref_mod = 1;
|
|
ref->action = action;
|
|
ref->is_head = 0;
|
|
ref->in_tree = 1;
|
|
|
|
if (need_ref_seq(for_cow, ref_root))
|
|
seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
|
|
ref->seq = seq;
|
|
|
|
full_ref = btrfs_delayed_node_to_tree_ref(ref);
|
|
full_ref->parent = parent;
|
|
full_ref->root = ref_root;
|
|
if (parent)
|
|
ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
else
|
|
ref->type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
full_ref->level = level;
|
|
|
|
trace_btrfs_delayed_tree_ref(ref, full_ref, action);
|
|
|
|
existing = tree_insert(&delayed_refs->root, &ref->rb_node);
|
|
|
|
if (existing) {
|
|
update_existing_ref(trans, delayed_refs, existing, ref);
|
|
/*
|
|
* we've updated the existing ref, free the newly
|
|
* allocated ref
|
|
*/
|
|
kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
|
|
} else {
|
|
delayed_refs->num_entries++;
|
|
trans->delayed_ref_updates++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* helper to insert a delayed data ref into the rbtree.
|
|
*/
|
|
static noinline void add_delayed_data_ref(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *ref,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 ref_root, u64 owner, u64 offset,
|
|
int action, int for_cow)
|
|
{
|
|
struct btrfs_delayed_ref_node *existing;
|
|
struct btrfs_delayed_data_ref *full_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
u64 seq = 0;
|
|
|
|
if (action == BTRFS_ADD_DELAYED_EXTENT)
|
|
action = BTRFS_ADD_DELAYED_REF;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
|
|
/* first set the basic ref node struct up */
|
|
atomic_set(&ref->refs, 1);
|
|
ref->bytenr = bytenr;
|
|
ref->num_bytes = num_bytes;
|
|
ref->ref_mod = 1;
|
|
ref->action = action;
|
|
ref->is_head = 0;
|
|
ref->in_tree = 1;
|
|
|
|
if (need_ref_seq(for_cow, ref_root))
|
|
seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
|
|
ref->seq = seq;
|
|
|
|
full_ref = btrfs_delayed_node_to_data_ref(ref);
|
|
full_ref->parent = parent;
|
|
full_ref->root = ref_root;
|
|
if (parent)
|
|
ref->type = BTRFS_SHARED_DATA_REF_KEY;
|
|
else
|
|
ref->type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
|
|
full_ref->objectid = owner;
|
|
full_ref->offset = offset;
|
|
|
|
trace_btrfs_delayed_data_ref(ref, full_ref, action);
|
|
|
|
existing = tree_insert(&delayed_refs->root, &ref->rb_node);
|
|
|
|
if (existing) {
|
|
update_existing_ref(trans, delayed_refs, existing, ref);
|
|
/*
|
|
* we've updated the existing ref, free the newly
|
|
* allocated ref
|
|
*/
|
|
kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
|
|
} else {
|
|
delayed_refs->num_entries++;
|
|
trans->delayed_ref_updates++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add a delayed tree ref. This does all of the accounting required
|
|
* to make sure the delayed ref is eventually processed before this
|
|
* transaction commits.
|
|
*/
|
|
int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_trans_handle *trans,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 ref_root, int level, int action,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int for_cow)
|
|
{
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
struct btrfs_delayed_ref_head *head_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
|
|
BUG_ON(extent_op && extent_op->is_data);
|
|
ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
|
|
if (!ref)
|
|
return -ENOMEM;
|
|
|
|
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
|
|
if (!head_ref) {
|
|
kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
head_ref->extent_op = extent_op;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
|
|
/*
|
|
* insert both the head node and the new ref without dropping
|
|
* the spin lock
|
|
*/
|
|
add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
|
|
num_bytes, action, 0);
|
|
|
|
add_delayed_tree_ref(fs_info, trans, &ref->node, bytenr,
|
|
num_bytes, parent, ref_root, level, action,
|
|
for_cow);
|
|
spin_unlock(&delayed_refs->lock);
|
|
if (need_ref_seq(for_cow, ref_root))
|
|
btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
|
|
*/
|
|
int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_trans_handle *trans,
|
|
u64 bytenr, u64 num_bytes,
|
|
u64 parent, u64 ref_root,
|
|
u64 owner, u64 offset, int action,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int for_cow)
|
|
{
|
|
struct btrfs_delayed_data_ref *ref;
|
|
struct btrfs_delayed_ref_head *head_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
|
|
BUG_ON(extent_op && !extent_op->is_data);
|
|
ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
|
|
if (!ref)
|
|
return -ENOMEM;
|
|
|
|
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
|
|
if (!head_ref) {
|
|
kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
head_ref->extent_op = extent_op;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
|
|
/*
|
|
* insert both the head node and the new ref without dropping
|
|
* the spin lock
|
|
*/
|
|
add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
|
|
num_bytes, action, 1);
|
|
|
|
add_delayed_data_ref(fs_info, trans, &ref->node, bytenr,
|
|
num_bytes, parent, ref_root, owner, offset,
|
|
action, for_cow);
|
|
spin_unlock(&delayed_refs->lock);
|
|
if (need_ref_seq(for_cow, ref_root))
|
|
btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_trans_handle *trans,
|
|
u64 bytenr, u64 num_bytes,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_delayed_ref_head *head_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
|
|
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
|
|
if (!head_ref)
|
|
return -ENOMEM;
|
|
|
|
head_ref->extent_op = extent_op;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
|
|
add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
|
|
num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
|
|
extent_op->is_data);
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this does a simple search for the head node for a given extent.
|
|
* It must be called with the delayed ref spinlock held, and it returns
|
|
* the head node if any where found, or NULL if not.
|
|
*/
|
|
struct btrfs_delayed_ref_head *
|
|
btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
ref = find_ref_head(&delayed_refs->root, bytenr, NULL, 0);
|
|
if (ref)
|
|
return btrfs_delayed_node_to_head(ref);
|
|
return NULL;
|
|
}
|
|
|
|
void btrfs_delayed_ref_exit(void)
|
|
{
|
|
if (btrfs_delayed_ref_head_cachep)
|
|
kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
|
|
if (btrfs_delayed_tree_ref_cachep)
|
|
kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
|
|
if (btrfs_delayed_data_ref_cachep)
|
|
kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
|
|
if (btrfs_delayed_extent_op_cachep)
|
|
kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
|
|
}
|
|
|
|
int btrfs_delayed_ref_init(void)
|
|
{
|
|
btrfs_delayed_ref_head_cachep = kmem_cache_create(
|
|
"btrfs_delayed_ref_head",
|
|
sizeof(struct btrfs_delayed_ref_head), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_delayed_ref_head_cachep)
|
|
goto fail;
|
|
|
|
btrfs_delayed_tree_ref_cachep = kmem_cache_create(
|
|
"btrfs_delayed_tree_ref",
|
|
sizeof(struct btrfs_delayed_tree_ref), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_delayed_tree_ref_cachep)
|
|
goto fail;
|
|
|
|
btrfs_delayed_data_ref_cachep = kmem_cache_create(
|
|
"btrfs_delayed_data_ref",
|
|
sizeof(struct btrfs_delayed_data_ref), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_delayed_data_ref_cachep)
|
|
goto fail;
|
|
|
|
btrfs_delayed_extent_op_cachep = kmem_cache_create(
|
|
"btrfs_delayed_extent_op",
|
|
sizeof(struct btrfs_delayed_extent_op), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_delayed_extent_op_cachep)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
btrfs_delayed_ref_exit();
|
|
return -ENOMEM;
|
|
}
|