mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-21 00:42:16 +00:00
eb5400b613
Some drivers allocate L1 SRAM in atomic contexts, so make sure these functions also use GFP_ATOMIC to avoid BUG()'s. Signed-off-by: Mike Frysinger <vapier@gentoo.org>
853 lines
20 KiB
C
853 lines
20 KiB
C
/*
|
|
* SRAM allocator for Blackfin on-chip memory
|
|
*
|
|
* Copyright 2004-2009 Analog Devices Inc.
|
|
*
|
|
* Licensed under the GPL-2 or later.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/init.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/blackfin.h>
|
|
#include <asm/mem_map.h>
|
|
#include "blackfin_sram.h"
|
|
|
|
/* the data structure for L1 scratchpad and DATA SRAM */
|
|
struct sram_piece {
|
|
void *paddr;
|
|
int size;
|
|
pid_t pid;
|
|
struct sram_piece *next;
|
|
};
|
|
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
|
|
static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
|
|
static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
|
|
|
|
#if L1_DATA_A_LENGTH != 0
|
|
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
|
|
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
|
|
#endif
|
|
|
|
#if L1_DATA_B_LENGTH != 0
|
|
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
|
|
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
|
|
#endif
|
|
|
|
#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
|
|
#endif
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
|
|
static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
|
|
static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
|
|
#endif
|
|
|
|
#if L2_LENGTH != 0
|
|
static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
|
|
static struct sram_piece free_l2_sram_head, used_l2_sram_head;
|
|
#endif
|
|
|
|
static struct kmem_cache *sram_piece_cache;
|
|
|
|
/* L1 Scratchpad SRAM initialization function */
|
|
static void __init l1sram_init(void)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned long reserve;
|
|
|
|
#ifdef CONFIG_SMP
|
|
reserve = 0;
|
|
#else
|
|
reserve = sizeof(struct l1_scratch_task_info);
|
|
#endif
|
|
|
|
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
|
per_cpu(free_l1_ssram_head, cpu).next =
|
|
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
|
if (!per_cpu(free_l1_ssram_head, cpu).next) {
|
|
printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
|
|
return;
|
|
}
|
|
|
|
per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
|
|
per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
|
|
per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
|
|
per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
|
|
|
|
per_cpu(used_l1_ssram_head, cpu).next = NULL;
|
|
|
|
/* mutex initialize */
|
|
spin_lock_init(&per_cpu(l1sram_lock, cpu));
|
|
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
|
|
L1_SCRATCH_LENGTH >> 10);
|
|
}
|
|
}
|
|
|
|
static void __init l1_data_sram_init(void)
|
|
{
|
|
#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
|
|
unsigned int cpu;
|
|
#endif
|
|
#if L1_DATA_A_LENGTH != 0
|
|
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
|
per_cpu(free_l1_data_A_sram_head, cpu).next =
|
|
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
|
if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
|
|
printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
|
|
return;
|
|
}
|
|
|
|
per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
|
|
(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
|
|
per_cpu(free_l1_data_A_sram_head, cpu).next->size =
|
|
L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
|
|
per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
|
|
per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
|
|
|
|
per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
|
|
|
|
printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
|
|
L1_DATA_A_LENGTH >> 10,
|
|
per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
|
|
}
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
|
per_cpu(free_l1_data_B_sram_head, cpu).next =
|
|
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
|
if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
|
|
printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
|
|
return;
|
|
}
|
|
|
|
per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
|
|
(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
|
|
per_cpu(free_l1_data_B_sram_head, cpu).next->size =
|
|
L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
|
|
per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
|
|
per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
|
|
|
|
per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
|
|
|
|
printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
|
|
L1_DATA_B_LENGTH >> 10,
|
|
per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
|
|
/* mutex initialize */
|
|
}
|
|
#endif
|
|
|
|
#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
|
|
for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
|
|
spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
|
|
#endif
|
|
}
|
|
|
|
static void __init l1_inst_sram_init(void)
|
|
{
|
|
#if L1_CODE_LENGTH != 0
|
|
unsigned int cpu;
|
|
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
|
per_cpu(free_l1_inst_sram_head, cpu).next =
|
|
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
|
if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
|
|
printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
|
|
return;
|
|
}
|
|
|
|
per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
|
|
(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
|
|
per_cpu(free_l1_inst_sram_head, cpu).next->size =
|
|
L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
|
|
per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
|
|
per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
|
|
|
|
per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
|
|
|
|
printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
|
|
L1_CODE_LENGTH >> 10,
|
|
per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
|
|
|
|
/* mutex initialize */
|
|
spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __init l2_sram_init(void)
|
|
{
|
|
#if L2_LENGTH != 0
|
|
free_l2_sram_head.next =
|
|
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
|
if (!free_l2_sram_head.next) {
|
|
printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
|
|
return;
|
|
}
|
|
|
|
free_l2_sram_head.next->paddr =
|
|
(void *)L2_START + (_ebss_l2 - _stext_l2);
|
|
free_l2_sram_head.next->size =
|
|
L2_LENGTH - (_ebss_l2 - _stext_l2);
|
|
free_l2_sram_head.next->pid = 0;
|
|
free_l2_sram_head.next->next = NULL;
|
|
|
|
used_l2_sram_head.next = NULL;
|
|
|
|
printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
|
|
L2_LENGTH >> 10,
|
|
free_l2_sram_head.next->size >> 10);
|
|
|
|
/* mutex initialize */
|
|
spin_lock_init(&l2_sram_lock);
|
|
#endif
|
|
}
|
|
|
|
static int __init bfin_sram_init(void)
|
|
{
|
|
sram_piece_cache = kmem_cache_create("sram_piece_cache",
|
|
sizeof(struct sram_piece),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
l1sram_init();
|
|
l1_data_sram_init();
|
|
l1_inst_sram_init();
|
|
l2_sram_init();
|
|
|
|
return 0;
|
|
}
|
|
pure_initcall(bfin_sram_init);
|
|
|
|
/* SRAM allocate function */
|
|
static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
|
|
struct sram_piece *pused_head)
|
|
{
|
|
struct sram_piece *pslot, *plast, *pavail;
|
|
|
|
if (size <= 0 || !pfree_head || !pused_head)
|
|
return NULL;
|
|
|
|
/* Align the size */
|
|
size = (size + 3) & ~3;
|
|
|
|
pslot = pfree_head->next;
|
|
plast = pfree_head;
|
|
|
|
/* search an available piece slot */
|
|
while (pslot != NULL && size > pslot->size) {
|
|
plast = pslot;
|
|
pslot = pslot->next;
|
|
}
|
|
|
|
if (!pslot)
|
|
return NULL;
|
|
|
|
if (pslot->size == size) {
|
|
plast->next = pslot->next;
|
|
pavail = pslot;
|
|
} else {
|
|
/* use atomic so our L1 allocator can be used atomically */
|
|
pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
|
|
|
|
if (!pavail)
|
|
return NULL;
|
|
|
|
pavail->paddr = pslot->paddr;
|
|
pavail->size = size;
|
|
pslot->paddr += size;
|
|
pslot->size -= size;
|
|
}
|
|
|
|
pavail->pid = current->pid;
|
|
|
|
pslot = pused_head->next;
|
|
plast = pused_head;
|
|
|
|
/* insert new piece into used piece list !!! */
|
|
while (pslot != NULL && pavail->paddr < pslot->paddr) {
|
|
plast = pslot;
|
|
pslot = pslot->next;
|
|
}
|
|
|
|
pavail->next = pslot;
|
|
plast->next = pavail;
|
|
|
|
return pavail->paddr;
|
|
}
|
|
|
|
/* Allocate the largest available block. */
|
|
static void *_sram_alloc_max(struct sram_piece *pfree_head,
|
|
struct sram_piece *pused_head,
|
|
unsigned long *psize)
|
|
{
|
|
struct sram_piece *pslot, *pmax;
|
|
|
|
if (!pfree_head || !pused_head)
|
|
return NULL;
|
|
|
|
pmax = pslot = pfree_head->next;
|
|
|
|
/* search an available piece slot */
|
|
while (pslot != NULL) {
|
|
if (pslot->size > pmax->size)
|
|
pmax = pslot;
|
|
pslot = pslot->next;
|
|
}
|
|
|
|
if (!pmax)
|
|
return NULL;
|
|
|
|
*psize = pmax->size;
|
|
|
|
return _sram_alloc(*psize, pfree_head, pused_head);
|
|
}
|
|
|
|
/* SRAM free function */
|
|
static int _sram_free(const void *addr,
|
|
struct sram_piece *pfree_head,
|
|
struct sram_piece *pused_head)
|
|
{
|
|
struct sram_piece *pslot, *plast, *pavail;
|
|
|
|
if (!pfree_head || !pused_head)
|
|
return -1;
|
|
|
|
/* search the relevant memory slot */
|
|
pslot = pused_head->next;
|
|
plast = pused_head;
|
|
|
|
/* search an available piece slot */
|
|
while (pslot != NULL && pslot->paddr != addr) {
|
|
plast = pslot;
|
|
pslot = pslot->next;
|
|
}
|
|
|
|
if (!pslot)
|
|
return -1;
|
|
|
|
plast->next = pslot->next;
|
|
pavail = pslot;
|
|
pavail->pid = 0;
|
|
|
|
/* insert free pieces back to the free list */
|
|
pslot = pfree_head->next;
|
|
plast = pfree_head;
|
|
|
|
while (pslot != NULL && addr > pslot->paddr) {
|
|
plast = pslot;
|
|
pslot = pslot->next;
|
|
}
|
|
|
|
if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
|
|
plast->size += pavail->size;
|
|
kmem_cache_free(sram_piece_cache, pavail);
|
|
} else {
|
|
pavail->next = plast->next;
|
|
plast->next = pavail;
|
|
plast = pavail;
|
|
}
|
|
|
|
if (pslot && plast->paddr + plast->size == pslot->paddr) {
|
|
plast->size += pslot->size;
|
|
plast->next = pslot->next;
|
|
kmem_cache_free(sram_piece_cache, pslot);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sram_free(const void *addr)
|
|
{
|
|
|
|
#if L1_CODE_LENGTH != 0
|
|
if (addr >= (void *)get_l1_code_start()
|
|
&& addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
|
|
return l1_inst_sram_free(addr);
|
|
else
|
|
#endif
|
|
#if L1_DATA_A_LENGTH != 0
|
|
if (addr >= (void *)get_l1_data_a_start()
|
|
&& addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
|
|
return l1_data_A_sram_free(addr);
|
|
else
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
if (addr >= (void *)get_l1_data_b_start()
|
|
&& addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
|
|
return l1_data_B_sram_free(addr);
|
|
else
|
|
#endif
|
|
#if L2_LENGTH != 0
|
|
if (addr >= (void *)L2_START
|
|
&& addr < (void *)(L2_START + L2_LENGTH))
|
|
return l2_sram_free(addr);
|
|
else
|
|
#endif
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL(sram_free);
|
|
|
|
void *l1_data_A_sram_alloc(size_t size)
|
|
{
|
|
#if L1_DATA_A_LENGTH != 0
|
|
unsigned long flags;
|
|
void *addr;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
|
|
&per_cpu(used_l1_data_A_sram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
|
|
(long unsigned int)addr, size);
|
|
|
|
return addr;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_data_A_sram_alloc);
|
|
|
|
int l1_data_A_sram_free(const void *addr)
|
|
{
|
|
#if L1_DATA_A_LENGTH != 0
|
|
unsigned long flags;
|
|
int ret;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
|
|
&per_cpu(used_l1_data_A_sram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
return ret;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_data_A_sram_free);
|
|
|
|
void *l1_data_B_sram_alloc(size_t size)
|
|
{
|
|
#if L1_DATA_B_LENGTH != 0
|
|
unsigned long flags;
|
|
void *addr;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
|
|
&per_cpu(used_l1_data_B_sram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
|
|
(long unsigned int)addr, size);
|
|
|
|
return addr;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_data_B_sram_alloc);
|
|
|
|
int l1_data_B_sram_free(const void *addr)
|
|
{
|
|
#if L1_DATA_B_LENGTH != 0
|
|
unsigned long flags;
|
|
int ret;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
|
|
&per_cpu(used_l1_data_B_sram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
|
|
|
return ret;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_data_B_sram_free);
|
|
|
|
void *l1_data_sram_alloc(size_t size)
|
|
{
|
|
void *addr = l1_data_A_sram_alloc(size);
|
|
|
|
if (!addr)
|
|
addr = l1_data_B_sram_alloc(size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_sram_alloc);
|
|
|
|
void *l1_data_sram_zalloc(size_t size)
|
|
{
|
|
void *addr = l1_data_sram_alloc(size);
|
|
|
|
if (addr)
|
|
memset(addr, 0x00, size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_sram_zalloc);
|
|
|
|
int l1_data_sram_free(const void *addr)
|
|
{
|
|
int ret;
|
|
ret = l1_data_A_sram_free(addr);
|
|
if (ret == -1)
|
|
ret = l1_data_B_sram_free(addr);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(l1_data_sram_free);
|
|
|
|
void *l1_inst_sram_alloc(size_t size)
|
|
{
|
|
#if L1_CODE_LENGTH != 0
|
|
unsigned long flags;
|
|
void *addr;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
|
|
|
addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
|
|
&per_cpu(used_l1_inst_sram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
|
|
|
pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
|
|
(long unsigned int)addr, size);
|
|
|
|
return addr;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_inst_sram_alloc);
|
|
|
|
int l1_inst_sram_free(const void *addr)
|
|
{
|
|
#if L1_CODE_LENGTH != 0
|
|
unsigned long flags;
|
|
int ret;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
|
|
|
ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
|
|
&per_cpu(used_l1_inst_sram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
|
|
|
return ret;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l1_inst_sram_free);
|
|
|
|
/* L1 Scratchpad memory allocate function */
|
|
void *l1sram_alloc(size_t size)
|
|
{
|
|
unsigned long flags;
|
|
void *addr;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
|
|
|
|
addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
|
|
&per_cpu(used_l1_ssram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* L1 Scratchpad memory allocate function */
|
|
void *l1sram_alloc_max(size_t *psize)
|
|
{
|
|
unsigned long flags;
|
|
void *addr;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
|
|
|
|
addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
|
|
&per_cpu(used_l1_ssram_head, cpu), psize);
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* L1 Scratchpad memory free function */
|
|
int l1sram_free(const void *addr)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
|
|
|
|
ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
|
|
&per_cpu(used_l1_ssram_head, cpu));
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *l2_sram_alloc(size_t size)
|
|
{
|
|
#if L2_LENGTH != 0
|
|
unsigned long flags;
|
|
void *addr;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l2_sram_lock, flags);
|
|
|
|
addr = _sram_alloc(size, &free_l2_sram_head,
|
|
&used_l2_sram_head);
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l2_sram_lock, flags);
|
|
|
|
pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
|
|
(long unsigned int)addr, size);
|
|
|
|
return addr;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l2_sram_alloc);
|
|
|
|
void *l2_sram_zalloc(size_t size)
|
|
{
|
|
void *addr = l2_sram_alloc(size);
|
|
|
|
if (addr)
|
|
memset(addr, 0x00, size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(l2_sram_zalloc);
|
|
|
|
int l2_sram_free(const void *addr)
|
|
{
|
|
#if L2_LENGTH != 0
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/* add mutex operation */
|
|
spin_lock_irqsave(&l2_sram_lock, flags);
|
|
|
|
ret = _sram_free(addr, &free_l2_sram_head,
|
|
&used_l2_sram_head);
|
|
|
|
/* add mutex operation */
|
|
spin_unlock_irqrestore(&l2_sram_lock, flags);
|
|
|
|
return ret;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(l2_sram_free);
|
|
|
|
int sram_free_with_lsl(const void *addr)
|
|
{
|
|
struct sram_list_struct *lsl, **tmp;
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
|
|
if ((*tmp)->addr == addr)
|
|
goto found;
|
|
return -1;
|
|
found:
|
|
lsl = *tmp;
|
|
sram_free(addr);
|
|
*tmp = lsl->next;
|
|
kfree(lsl);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sram_free_with_lsl);
|
|
|
|
/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
|
|
* tracked. These are designed for userspace so that when a process exits,
|
|
* we can safely reap their resources.
|
|
*/
|
|
void *sram_alloc_with_lsl(size_t size, unsigned long flags)
|
|
{
|
|
void *addr = NULL;
|
|
struct sram_list_struct *lsl = NULL;
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
|
|
if (!lsl)
|
|
return NULL;
|
|
|
|
if (flags & L1_INST_SRAM)
|
|
addr = l1_inst_sram_alloc(size);
|
|
|
|
if (addr == NULL && (flags & L1_DATA_A_SRAM))
|
|
addr = l1_data_A_sram_alloc(size);
|
|
|
|
if (addr == NULL && (flags & L1_DATA_B_SRAM))
|
|
addr = l1_data_B_sram_alloc(size);
|
|
|
|
if (addr == NULL && (flags & L2_SRAM))
|
|
addr = l2_sram_alloc(size);
|
|
|
|
if (addr == NULL) {
|
|
kfree(lsl);
|
|
return NULL;
|
|
}
|
|
lsl->addr = addr;
|
|
lsl->length = size;
|
|
lsl->next = mm->context.sram_list;
|
|
mm->context.sram_list = lsl;
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(sram_alloc_with_lsl);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* Once we get a real allocator, we'll throw all of this away.
|
|
* Until then, we need some sort of visibility into the L1 alloc.
|
|
*/
|
|
/* Need to keep line of output the same. Currently, that is 44 bytes
|
|
* (including newline).
|
|
*/
|
|
static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
|
|
struct sram_piece *pfree_head,
|
|
struct sram_piece *pused_head)
|
|
{
|
|
struct sram_piece *pslot;
|
|
|
|
if (!pfree_head || !pused_head)
|
|
return -1;
|
|
|
|
*len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
|
|
|
|
/* search the relevant memory slot */
|
|
pslot = pused_head->next;
|
|
|
|
while (pslot != NULL) {
|
|
*len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
|
|
pslot->paddr, pslot->paddr + pslot->size,
|
|
pslot->size, pslot->pid, "ALLOCATED");
|
|
|
|
pslot = pslot->next;
|
|
}
|
|
|
|
pslot = pfree_head->next;
|
|
|
|
while (pslot != NULL) {
|
|
*len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
|
|
pslot->paddr, pslot->paddr + pslot->size,
|
|
pslot->size, pslot->pid, "FREE");
|
|
|
|
pslot = pslot->next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
static int sram_proc_read(char *buf, char **start, off_t offset, int count,
|
|
int *eof, void *data)
|
|
{
|
|
int len = 0;
|
|
unsigned int cpu;
|
|
|
|
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
|
if (_sram_proc_read(buf, &len, count, "Scratchpad",
|
|
&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
|
|
goto not_done;
|
|
#if L1_DATA_A_LENGTH != 0
|
|
if (_sram_proc_read(buf, &len, count, "L1 Data A",
|
|
&per_cpu(free_l1_data_A_sram_head, cpu),
|
|
&per_cpu(used_l1_data_A_sram_head, cpu)))
|
|
goto not_done;
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
if (_sram_proc_read(buf, &len, count, "L1 Data B",
|
|
&per_cpu(free_l1_data_B_sram_head, cpu),
|
|
&per_cpu(used_l1_data_B_sram_head, cpu)))
|
|
goto not_done;
|
|
#endif
|
|
#if L1_CODE_LENGTH != 0
|
|
if (_sram_proc_read(buf, &len, count, "L1 Instruction",
|
|
&per_cpu(free_l1_inst_sram_head, cpu),
|
|
&per_cpu(used_l1_inst_sram_head, cpu)))
|
|
goto not_done;
|
|
#endif
|
|
}
|
|
#if L2_LENGTH != 0
|
|
if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
|
|
&used_l2_sram_head))
|
|
goto not_done;
|
|
#endif
|
|
*eof = 1;
|
|
not_done:
|
|
return len;
|
|
}
|
|
|
|
static int __init sram_proc_init(void)
|
|
{
|
|
struct proc_dir_entry *ptr;
|
|
ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
|
|
if (!ptr) {
|
|
printk(KERN_WARNING "unable to create /proc/sram\n");
|
|
return -1;
|
|
}
|
|
ptr->read_proc = sram_proc_read;
|
|
return 0;
|
|
}
|
|
late_initcall(sram_proc_init);
|
|
#endif
|