mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-25 20:15:08 +00:00
3d1228ead6
This patch adds ptrace support for setting and getting the VFP registers using PTRACE_SETVFPREGS and PTRACE_GETVFPREGS. The user_vfp structure defined in asm/user.h contains 32 double registers (to cover VFPv3 and Neon hardware) and the FPSCR register. Cc: Paul Brook <paul@codesourcery.com> Cc: Daniel Jacobowitz <dan@codesourcery.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
381 lines
9.4 KiB
C
381 lines
9.4 KiB
C
/*
|
|
* linux/arch/arm/vfp/vfp.h
|
|
*
|
|
* Copyright (C) 2004 ARM Limited.
|
|
* Written by Deep Blue Solutions Limited.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
|
|
{
|
|
if (shift) {
|
|
if (shift < 32)
|
|
val = val >> shift | ((val << (32 - shift)) != 0);
|
|
else
|
|
val = val != 0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
|
|
{
|
|
if (shift) {
|
|
if (shift < 64)
|
|
val = val >> shift | ((val << (64 - shift)) != 0);
|
|
else
|
|
val = val != 0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static inline u32 vfp_hi64to32jamming(u64 val)
|
|
{
|
|
u32 v;
|
|
|
|
asm(
|
|
"cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
|
|
"movcc %0, %R1\n\t"
|
|
"orrcs %0, %R1, #1"
|
|
: "=r" (v) : "r" (val) : "cc");
|
|
|
|
return v;
|
|
}
|
|
|
|
static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
|
|
{
|
|
asm( "adds %Q0, %Q2, %Q4\n\t"
|
|
"adcs %R0, %R2, %R4\n\t"
|
|
"adcs %Q1, %Q3, %Q5\n\t"
|
|
"adc %R1, %R3, %R5"
|
|
: "=r" (nl), "=r" (nh)
|
|
: "0" (nl), "1" (nh), "r" (ml), "r" (mh)
|
|
: "cc");
|
|
*resh = nh;
|
|
*resl = nl;
|
|
}
|
|
|
|
static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
|
|
{
|
|
asm( "subs %Q0, %Q2, %Q4\n\t"
|
|
"sbcs %R0, %R2, %R4\n\t"
|
|
"sbcs %Q1, %Q3, %Q5\n\t"
|
|
"sbc %R1, %R3, %R5\n\t"
|
|
: "=r" (nl), "=r" (nh)
|
|
: "0" (nl), "1" (nh), "r" (ml), "r" (mh)
|
|
: "cc");
|
|
*resh = nh;
|
|
*resl = nl;
|
|
}
|
|
|
|
static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
|
|
{
|
|
u32 nh, nl, mh, ml;
|
|
u64 rh, rma, rmb, rl;
|
|
|
|
nl = n;
|
|
ml = m;
|
|
rl = (u64)nl * ml;
|
|
|
|
nh = n >> 32;
|
|
rma = (u64)nh * ml;
|
|
|
|
mh = m >> 32;
|
|
rmb = (u64)nl * mh;
|
|
rma += rmb;
|
|
|
|
rh = (u64)nh * mh;
|
|
rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
|
|
|
|
rma <<= 32;
|
|
rl += rma;
|
|
rh += (rl < rma);
|
|
|
|
*resl = rl;
|
|
*resh = rh;
|
|
}
|
|
|
|
static inline void shift64left(u64 *resh, u64 *resl, u64 n)
|
|
{
|
|
*resh = n >> 63;
|
|
*resl = n << 1;
|
|
}
|
|
|
|
static inline u64 vfp_hi64multiply64(u64 n, u64 m)
|
|
{
|
|
u64 rh, rl;
|
|
mul64to128(&rh, &rl, n, m);
|
|
return rh | (rl != 0);
|
|
}
|
|
|
|
static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
|
|
{
|
|
u64 mh, ml, remh, reml, termh, terml, z;
|
|
|
|
if (nh >= m)
|
|
return ~0ULL;
|
|
mh = m >> 32;
|
|
if (mh << 32 <= nh) {
|
|
z = 0xffffffff00000000ULL;
|
|
} else {
|
|
z = nh;
|
|
do_div(z, mh);
|
|
z <<= 32;
|
|
}
|
|
mul64to128(&termh, &terml, m, z);
|
|
sub128(&remh, &reml, nh, nl, termh, terml);
|
|
ml = m << 32;
|
|
while ((s64)remh < 0) {
|
|
z -= 0x100000000ULL;
|
|
add128(&remh, &reml, remh, reml, mh, ml);
|
|
}
|
|
remh = (remh << 32) | (reml >> 32);
|
|
if (mh << 32 <= remh) {
|
|
z |= 0xffffffff;
|
|
} else {
|
|
do_div(remh, mh);
|
|
z |= remh;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* Operations on unpacked elements
|
|
*/
|
|
#define vfp_sign_negate(sign) (sign ^ 0x8000)
|
|
|
|
/*
|
|
* Single-precision
|
|
*/
|
|
struct vfp_single {
|
|
s16 exponent;
|
|
u16 sign;
|
|
u32 significand;
|
|
};
|
|
|
|
extern s32 vfp_get_float(unsigned int reg);
|
|
extern void vfp_put_float(s32 val, unsigned int reg);
|
|
|
|
/*
|
|
* VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
|
|
* VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
|
|
* VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
|
|
* which are not propagated to the float upon packing.
|
|
*/
|
|
#define VFP_SINGLE_MANTISSA_BITS (23)
|
|
#define VFP_SINGLE_EXPONENT_BITS (8)
|
|
#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
|
|
#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
|
|
|
|
/*
|
|
* The bit in an unpacked float which indicates that it is a quiet NaN
|
|
*/
|
|
#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
|
|
|
|
/*
|
|
* Operations on packed single-precision numbers
|
|
*/
|
|
#define vfp_single_packed_sign(v) ((v) & 0x80000000)
|
|
#define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
|
|
#define vfp_single_packed_abs(v) ((v) & ~0x80000000)
|
|
#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
|
|
#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
|
|
|
|
/*
|
|
* Unpack a single-precision float. Note that this returns the magnitude
|
|
* of the single-precision float mantissa with the 1. if necessary,
|
|
* aligned to bit 30.
|
|
*/
|
|
static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
|
|
{
|
|
u32 significand;
|
|
|
|
s->sign = vfp_single_packed_sign(val) >> 16,
|
|
s->exponent = vfp_single_packed_exponent(val);
|
|
|
|
significand = (u32) val;
|
|
significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
|
|
if (s->exponent && s->exponent != 255)
|
|
significand |= 0x40000000;
|
|
s->significand = significand;
|
|
}
|
|
|
|
/*
|
|
* Re-pack a single-precision float. This assumes that the float is
|
|
* already normalised such that the MSB is bit 30, _not_ bit 31.
|
|
*/
|
|
static inline s32 vfp_single_pack(struct vfp_single *s)
|
|
{
|
|
u32 val;
|
|
val = (s->sign << 16) +
|
|
(s->exponent << VFP_SINGLE_MANTISSA_BITS) +
|
|
(s->significand >> VFP_SINGLE_LOW_BITS);
|
|
return (s32)val;
|
|
}
|
|
|
|
#define VFP_NUMBER (1<<0)
|
|
#define VFP_ZERO (1<<1)
|
|
#define VFP_DENORMAL (1<<2)
|
|
#define VFP_INFINITY (1<<3)
|
|
#define VFP_NAN (1<<4)
|
|
#define VFP_NAN_SIGNAL (1<<5)
|
|
|
|
#define VFP_QNAN (VFP_NAN)
|
|
#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
|
|
|
|
static inline int vfp_single_type(struct vfp_single *s)
|
|
{
|
|
int type = VFP_NUMBER;
|
|
if (s->exponent == 255) {
|
|
if (s->significand == 0)
|
|
type = VFP_INFINITY;
|
|
else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
|
|
type = VFP_QNAN;
|
|
else
|
|
type = VFP_SNAN;
|
|
} else if (s->exponent == 0) {
|
|
if (s->significand == 0)
|
|
type |= VFP_ZERO;
|
|
else
|
|
type |= VFP_DENORMAL;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
#ifndef DEBUG
|
|
#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
|
|
u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
|
|
#else
|
|
u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
|
|
#endif
|
|
|
|
/*
|
|
* Double-precision
|
|
*/
|
|
struct vfp_double {
|
|
s16 exponent;
|
|
u16 sign;
|
|
u64 significand;
|
|
};
|
|
|
|
/*
|
|
* VFP_REG_ZERO is a special register number for vfp_get_double
|
|
* which returns (double)0.0. This is useful for the compare with
|
|
* zero instructions.
|
|
*/
|
|
#ifdef CONFIG_VFPv3
|
|
#define VFP_REG_ZERO 32
|
|
#else
|
|
#define VFP_REG_ZERO 16
|
|
#endif
|
|
extern u64 vfp_get_double(unsigned int reg);
|
|
extern void vfp_put_double(u64 val, unsigned int reg);
|
|
|
|
#define VFP_DOUBLE_MANTISSA_BITS (52)
|
|
#define VFP_DOUBLE_EXPONENT_BITS (11)
|
|
#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
|
|
#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
|
|
|
|
/*
|
|
* The bit in an unpacked double which indicates that it is a quiet NaN
|
|
*/
|
|
#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
|
|
|
|
/*
|
|
* Operations on packed single-precision numbers
|
|
*/
|
|
#define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
|
|
#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
|
|
#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
|
|
#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
|
|
#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
|
|
|
|
/*
|
|
* Unpack a double-precision float. Note that this returns the magnitude
|
|
* of the double-precision float mantissa with the 1. if necessary,
|
|
* aligned to bit 62.
|
|
*/
|
|
static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
|
|
{
|
|
u64 significand;
|
|
|
|
s->sign = vfp_double_packed_sign(val) >> 48;
|
|
s->exponent = vfp_double_packed_exponent(val);
|
|
|
|
significand = (u64) val;
|
|
significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
|
|
if (s->exponent && s->exponent != 2047)
|
|
significand |= (1ULL << 62);
|
|
s->significand = significand;
|
|
}
|
|
|
|
/*
|
|
* Re-pack a double-precision float. This assumes that the float is
|
|
* already normalised such that the MSB is bit 30, _not_ bit 31.
|
|
*/
|
|
static inline s64 vfp_double_pack(struct vfp_double *s)
|
|
{
|
|
u64 val;
|
|
val = ((u64)s->sign << 48) +
|
|
((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
|
|
(s->significand >> VFP_DOUBLE_LOW_BITS);
|
|
return (s64)val;
|
|
}
|
|
|
|
static inline int vfp_double_type(struct vfp_double *s)
|
|
{
|
|
int type = VFP_NUMBER;
|
|
if (s->exponent == 2047) {
|
|
if (s->significand == 0)
|
|
type = VFP_INFINITY;
|
|
else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
|
|
type = VFP_QNAN;
|
|
else
|
|
type = VFP_SNAN;
|
|
} else if (s->exponent == 0) {
|
|
if (s->significand == 0)
|
|
type |= VFP_ZERO;
|
|
else
|
|
type |= VFP_DENORMAL;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
|
|
|
|
u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
|
|
|
|
/*
|
|
* A special flag to tell the normalisation code not to normalise.
|
|
*/
|
|
#define VFP_NAN_FLAG 0x100
|
|
|
|
/*
|
|
* A bit pattern used to indicate the initial (unset) value of the
|
|
* exception mask, in case nothing handles an instruction. This
|
|
* doesn't include the NAN flag, which get masked out before
|
|
* we check for an error.
|
|
*/
|
|
#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
|
|
|
|
/*
|
|
* A flag to tell vfp instruction type.
|
|
* OP_SCALAR - this operation always operates in scalar mode
|
|
* OP_SD - the instruction exceptionally writes to a single precision result.
|
|
* OP_DD - the instruction exceptionally writes to a double precision result.
|
|
* OP_SM - the instruction exceptionally reads from a single precision operand.
|
|
*/
|
|
#define OP_SCALAR (1 << 0)
|
|
#define OP_SD (1 << 1)
|
|
#define OP_DD (1 << 1)
|
|
#define OP_SM (1 << 2)
|
|
|
|
struct op {
|
|
u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
|
|
u32 flags;
|
|
};
|
|
|
|
extern void vfp_save_state(void *location, u32 fpexc);
|