Dan Williams 5c2c2587b1 mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup
get_dev_page() enables paths like get_user_pages() to pin a dynamically
mapped pfn-range (devm_memremap_pages()) while the resulting struct page
objects are in use.  Unlike get_page() it may fail if the device is, or
is in the process of being, disabled.  While the initial lookup of the
range may be an expensive list walk, the result is cached to speed up
subsequent lookups which are likely to be in the same mapped range.

devm_memremap_pages() now requires a reference counter to be specified
at init time.  For pmem this means moving request_queue allocation into
pmem_alloc() so the existing queue usage counter can track "device
pages".

ZONE_DEVICE pages always have an elevated count and will never be on an
lru reclaim list.  That space in 'struct page' can be redirected for
other uses, but for safety introduce a poison value that will always
trip __list_add() to assert.  This allows half of the struct list_head
storage to be reclaimed with some assurance to back up the assumption
that the page count never goes to zero and a list_add() is never
attempted.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00

530 lines
13 KiB
C

/*
* Persistent Memory Driver
*
* Copyright (c) 2014-2015, Intel Corporation.
* Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
* Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <asm/cacheflush.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/badblocks.h>
#include <linux/memremap.h>
#include <linux/vmalloc.h>
#include <linux/pfn_t.h>
#include <linux/slab.h>
#include <linux/pmem.h>
#include <linux/nd.h>
#include "pfn.h"
#include "nd.h"
struct pmem_device {
struct request_queue *pmem_queue;
struct gendisk *pmem_disk;
struct nd_namespace_common *ndns;
/* One contiguous memory region per device */
phys_addr_t phys_addr;
/* when non-zero this device is hosting a 'pfn' instance */
phys_addr_t data_offset;
unsigned long pfn_flags;
void __pmem *virt_addr;
size_t size;
struct badblocks bb;
};
static int pmem_major;
static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
{
if (bb->count) {
sector_t first_bad;
int num_bad;
return !!badblocks_check(bb, sector, len / 512, &first_bad,
&num_bad);
}
return false;
}
static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
unsigned int len, unsigned int off, int rw,
sector_t sector)
{
void *mem = kmap_atomic(page);
phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
if (rw == READ) {
if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
return -EIO;
memcpy_from_pmem(mem + off, pmem_addr, len);
flush_dcache_page(page);
} else {
flush_dcache_page(page);
memcpy_to_pmem(pmem_addr, mem + off, len);
}
kunmap_atomic(mem);
return 0;
}
static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
{
int rc = 0;
bool do_acct;
unsigned long start;
struct bio_vec bvec;
struct bvec_iter iter;
struct block_device *bdev = bio->bi_bdev;
struct pmem_device *pmem = bdev->bd_disk->private_data;
do_acct = nd_iostat_start(bio, &start);
bio_for_each_segment(bvec, bio, iter) {
rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
bvec.bv_offset, bio_data_dir(bio),
iter.bi_sector);
if (rc) {
bio->bi_error = rc;
break;
}
}
if (do_acct)
nd_iostat_end(bio, start);
if (bio_data_dir(bio))
wmb_pmem();
bio_endio(bio);
return BLK_QC_T_NONE;
}
static int pmem_rw_page(struct block_device *bdev, sector_t sector,
struct page *page, int rw)
{
struct pmem_device *pmem = bdev->bd_disk->private_data;
int rc;
rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
if (rw & WRITE)
wmb_pmem();
/*
* The ->rw_page interface is subtle and tricky. The core
* retries on any error, so we can only invoke page_endio() in
* the successful completion case. Otherwise, we'll see crashes
* caused by double completion.
*/
if (rc == 0)
page_endio(page, rw & WRITE, 0);
return rc;
}
static long pmem_direct_access(struct block_device *bdev, sector_t sector,
void __pmem **kaddr, pfn_t *pfn)
{
struct pmem_device *pmem = bdev->bd_disk->private_data;
resource_size_t offset = sector * 512 + pmem->data_offset;
*kaddr = pmem->virt_addr + offset;
*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
return pmem->size - offset;
}
static const struct block_device_operations pmem_fops = {
.owner = THIS_MODULE,
.rw_page = pmem_rw_page,
.direct_access = pmem_direct_access,
.revalidate_disk = nvdimm_revalidate_disk,
};
static struct pmem_device *pmem_alloc(struct device *dev,
struct resource *res, int id)
{
struct pmem_device *pmem;
struct request_queue *q;
pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
if (!pmem)
return ERR_PTR(-ENOMEM);
pmem->phys_addr = res->start;
pmem->size = resource_size(res);
if (!arch_has_wmb_pmem())
dev_warn(dev, "unable to guarantee persistence of writes\n");
if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
dev_name(dev))) {
dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
&pmem->phys_addr, pmem->size);
return ERR_PTR(-EBUSY);
}
q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
if (!q)
return ERR_PTR(-ENOMEM);
pmem->pfn_flags = PFN_DEV;
if (pmem_should_map_pages(dev)) {
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
&q->q_usage_counter, NULL);
pmem->pfn_flags |= PFN_MAP;
} else
pmem->virt_addr = (void __pmem *) devm_memremap(dev,
pmem->phys_addr, pmem->size,
ARCH_MEMREMAP_PMEM);
if (IS_ERR(pmem->virt_addr)) {
blk_cleanup_queue(q);
return (void __force *) pmem->virt_addr;
}
pmem->pmem_queue = q;
return pmem;
}
static void pmem_detach_disk(struct pmem_device *pmem)
{
if (!pmem->pmem_disk)
return;
del_gendisk(pmem->pmem_disk);
put_disk(pmem->pmem_disk);
blk_cleanup_queue(pmem->pmem_queue);
}
static int pmem_attach_disk(struct device *dev,
struct nd_namespace_common *ndns, struct pmem_device *pmem)
{
int nid = dev_to_node(dev);
struct gendisk *disk;
blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
disk = alloc_disk_node(0, nid);
if (!disk) {
blk_cleanup_queue(pmem->pmem_queue);
return -ENOMEM;
}
disk->major = pmem_major;
disk->first_minor = 0;
disk->fops = &pmem_fops;
disk->private_data = pmem;
disk->queue = pmem->pmem_queue;
disk->flags = GENHD_FL_EXT_DEVT;
nvdimm_namespace_disk_name(ndns, disk->disk_name);
disk->driverfs_dev = dev;
set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
pmem->pmem_disk = disk;
devm_exit_badblocks(dev, &pmem->bb);
if (devm_init_badblocks(dev, &pmem->bb))
return -ENOMEM;
nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
disk->bb = &pmem->bb;
add_disk(disk);
revalidate_disk(disk);
return 0;
}
static int pmem_rw_bytes(struct nd_namespace_common *ndns,
resource_size_t offset, void *buf, size_t size, int rw)
{
struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
if (unlikely(offset + size > pmem->size)) {
dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
return -EFAULT;
}
if (rw == READ) {
unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
return -EIO;
memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
} else {
memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
wmb_pmem();
}
return 0;
}
static int nd_pfn_init(struct nd_pfn *nd_pfn)
{
struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
struct nd_namespace_common *ndns = nd_pfn->ndns;
struct nd_region *nd_region;
unsigned long npfns;
phys_addr_t offset;
u64 checksum;
int rc;
if (!pfn_sb)
return -ENOMEM;
nd_pfn->pfn_sb = pfn_sb;
rc = nd_pfn_validate(nd_pfn);
if (rc == -ENODEV)
/* no info block, do init */;
else
return rc;
nd_region = to_nd_region(nd_pfn->dev.parent);
if (nd_region->ro) {
dev_info(&nd_pfn->dev,
"%s is read-only, unable to init metadata\n",
dev_name(&nd_region->dev));
goto err;
}
memset(pfn_sb, 0, sizeof(*pfn_sb));
npfns = (pmem->size - SZ_8K) / SZ_4K;
/*
* Note, we use 64 here for the standard size of struct page,
* debugging options may cause it to be larger in which case the
* implementation will limit the pfns advertised through
* ->direct_access() to those that are included in the memmap.
*/
if (nd_pfn->mode == PFN_MODE_PMEM)
offset = ALIGN(SZ_8K + 64 * npfns, nd_pfn->align);
else if (nd_pfn->mode == PFN_MODE_RAM)
offset = ALIGN(SZ_8K, nd_pfn->align);
else
goto err;
npfns = (pmem->size - offset) / SZ_4K;
pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
pfn_sb->dataoff = cpu_to_le64(offset);
pfn_sb->npfns = cpu_to_le64(npfns);
memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
pfn_sb->version_major = cpu_to_le16(1);
checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
pfn_sb->checksum = cpu_to_le64(checksum);
rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
if (rc)
goto err;
return 0;
err:
nd_pfn->pfn_sb = NULL;
kfree(pfn_sb);
return -ENXIO;
}
static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
{
struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
struct pmem_device *pmem;
/* free pmem disk */
pmem = dev_get_drvdata(&nd_pfn->dev);
pmem_detach_disk(pmem);
/* release nd_pfn resources */
kfree(nd_pfn->pfn_sb);
nd_pfn->pfn_sb = NULL;
return 0;
}
static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
{
struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
struct device *dev = &nd_pfn->dev;
struct nd_region *nd_region;
struct vmem_altmap *altmap;
struct nd_pfn_sb *pfn_sb;
struct pmem_device *pmem;
struct request_queue *q;
phys_addr_t offset;
int rc;
struct vmem_altmap __altmap = {
.base_pfn = __phys_to_pfn(nsio->res.start),
.reserve = __phys_to_pfn(SZ_8K),
};
if (!nd_pfn->uuid || !nd_pfn->ndns)
return -ENODEV;
nd_region = to_nd_region(dev->parent);
rc = nd_pfn_init(nd_pfn);
if (rc)
return rc;
pfn_sb = nd_pfn->pfn_sb;
offset = le64_to_cpu(pfn_sb->dataoff);
nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
if (nd_pfn->mode == PFN_MODE_RAM) {
if (offset < SZ_8K)
return -EINVAL;
nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
altmap = NULL;
} else if (nd_pfn->mode == PFN_MODE_PMEM) {
nd_pfn->npfns = (resource_size(&nsio->res) - offset)
/ PAGE_SIZE;
if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
dev_info(&nd_pfn->dev,
"number of pfns truncated from %lld to %ld\n",
le64_to_cpu(nd_pfn->pfn_sb->npfns),
nd_pfn->npfns);
altmap = & __altmap;
altmap->free = __phys_to_pfn(offset - SZ_8K);
altmap->alloc = 0;
} else {
rc = -ENXIO;
goto err;
}
/* establish pfn range for lookup, and switch to direct map */
pmem = dev_get_drvdata(dev);
q = pmem->pmem_queue;
devm_memunmap(dev, (void __force *) pmem->virt_addr);
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res,
&q->q_usage_counter, altmap);
pmem->pfn_flags |= PFN_MAP;
if (IS_ERR(pmem->virt_addr)) {
rc = PTR_ERR(pmem->virt_addr);
goto err;
}
/* attach pmem disk in "pfn-mode" */
pmem->data_offset = offset;
rc = pmem_attach_disk(dev, ndns, pmem);
if (rc)
goto err;
return rc;
err:
nvdimm_namespace_detach_pfn(ndns);
return rc;
}
static int nd_pmem_probe(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
struct nd_namespace_common *ndns;
struct nd_namespace_io *nsio;
struct pmem_device *pmem;
ndns = nvdimm_namespace_common_probe(dev);
if (IS_ERR(ndns))
return PTR_ERR(ndns);
nsio = to_nd_namespace_io(&ndns->dev);
pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
if (IS_ERR(pmem))
return PTR_ERR(pmem);
pmem->ndns = ndns;
dev_set_drvdata(dev, pmem);
ndns->rw_bytes = pmem_rw_bytes;
if (devm_init_badblocks(dev, &pmem->bb))
return -ENOMEM;
nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
if (is_nd_btt(dev)) {
/* btt allocates its own request_queue */
blk_cleanup_queue(pmem->pmem_queue);
pmem->pmem_queue = NULL;
return nvdimm_namespace_attach_btt(ndns);
}
if (is_nd_pfn(dev))
return nvdimm_namespace_attach_pfn(ndns);
if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
/*
* We'll come back as either btt-pmem, or pfn-pmem, so
* drop the queue allocation for now.
*/
blk_cleanup_queue(pmem->pmem_queue);
return -ENXIO;
}
return pmem_attach_disk(dev, ndns, pmem);
}
static int nd_pmem_remove(struct device *dev)
{
struct pmem_device *pmem = dev_get_drvdata(dev);
if (is_nd_btt(dev))
nvdimm_namespace_detach_btt(pmem->ndns);
else if (is_nd_pfn(dev))
nvdimm_namespace_detach_pfn(pmem->ndns);
else
pmem_detach_disk(pmem);
return 0;
}
MODULE_ALIAS("pmem");
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
static struct nd_device_driver nd_pmem_driver = {
.probe = nd_pmem_probe,
.remove = nd_pmem_remove,
.drv = {
.name = "nd_pmem",
},
.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
};
static int __init pmem_init(void)
{
int error;
pmem_major = register_blkdev(0, "pmem");
if (pmem_major < 0)
return pmem_major;
error = nd_driver_register(&nd_pmem_driver);
if (error) {
unregister_blkdev(pmem_major, "pmem");
return error;
}
return 0;
}
module_init(pmem_init);
static void pmem_exit(void)
{
driver_unregister(&nd_pmem_driver.drv);
unregister_blkdev(pmem_major, "pmem");
}
module_exit(pmem_exit);
MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
MODULE_LICENSE("GPL v2");