mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-09 02:51:20 +00:00
bdeb03cada
Pull btrfs update from Chris Mason: "From a feature point of view, most of the code here comes from Miao Xie and others at Fujitsu to implement scrubbing and replacing devices on raid56. This has been in development for a while, and it's a big improvement. Filipe and Josef have a great assortment of fixes, many of which solve problems corruptions either after a crash or in error conditions. I still have a round two from Filipe for next week that solves corruptions with discard and block group removal" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (62 commits) Btrfs: make get_caching_control unconditionally return the ctl Btrfs: fix unprotected deletion from pending_chunks list Btrfs: fix fs mapping extent map leak Btrfs: fix memory leak after block remove + trimming Btrfs: make btrfs_abort_transaction consider existence of new block groups Btrfs: fix race between writing free space cache and trimming Btrfs: fix race between fs trimming and block group remove/allocation Btrfs, replace: enable dev-replace for raid56 Btrfs: fix freeing used extents after removing empty block group Btrfs: fix crash caused by block group removal Btrfs: fix invalid block group rbtree access after bg is removed Btrfs, raid56: fix use-after-free problem in the final device replace procedure on raid56 Btrfs, replace: write raid56 parity into the replace target device Btrfs, replace: write dirty pages into the replace target device Btrfs, raid56: support parity scrub on raid56 Btrfs, raid56: use a variant to record the operation type Btrfs, scrub: repair the common data on RAID5/6 if it is corrupted Btrfs, raid56: don't change bbio and raid_map Btrfs: remove unnecessary code of stripe_index assignment in __btrfs_map_block Btrfs: remove noused bbio_ret in __btrfs_map_block in condition ...
1092 lines
28 KiB
C
1092 lines
28 KiB
C
/*
|
|
* Copyright (C) 2008 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/bit_spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "volumes.h"
|
|
#include "ordered-data.h"
|
|
#include "compression.h"
|
|
#include "extent_io.h"
|
|
#include "extent_map.h"
|
|
|
|
struct compressed_bio {
|
|
/* number of bios pending for this compressed extent */
|
|
atomic_t pending_bios;
|
|
|
|
/* the pages with the compressed data on them */
|
|
struct page **compressed_pages;
|
|
|
|
/* inode that owns this data */
|
|
struct inode *inode;
|
|
|
|
/* starting offset in the inode for our pages */
|
|
u64 start;
|
|
|
|
/* number of bytes in the inode we're working on */
|
|
unsigned long len;
|
|
|
|
/* number of bytes on disk */
|
|
unsigned long compressed_len;
|
|
|
|
/* the compression algorithm for this bio */
|
|
int compress_type;
|
|
|
|
/* number of compressed pages in the array */
|
|
unsigned long nr_pages;
|
|
|
|
/* IO errors */
|
|
int errors;
|
|
int mirror_num;
|
|
|
|
/* for reads, this is the bio we are copying the data into */
|
|
struct bio *orig_bio;
|
|
|
|
/*
|
|
* the start of a variable length array of checksums only
|
|
* used by reads
|
|
*/
|
|
u32 sums;
|
|
};
|
|
|
|
static int btrfs_decompress_biovec(int type, struct page **pages_in,
|
|
u64 disk_start, struct bio_vec *bvec,
|
|
int vcnt, size_t srclen);
|
|
|
|
static inline int compressed_bio_size(struct btrfs_root *root,
|
|
unsigned long disk_size)
|
|
{
|
|
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
|
|
|
|
return sizeof(struct compressed_bio) +
|
|
(DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
|
|
}
|
|
|
|
static struct bio *compressed_bio_alloc(struct block_device *bdev,
|
|
u64 first_byte, gfp_t gfp_flags)
|
|
{
|
|
int nr_vecs;
|
|
|
|
nr_vecs = bio_get_nr_vecs(bdev);
|
|
return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
|
|
}
|
|
|
|
static int check_compressed_csum(struct inode *inode,
|
|
struct compressed_bio *cb,
|
|
u64 disk_start)
|
|
{
|
|
int ret;
|
|
struct page *page;
|
|
unsigned long i;
|
|
char *kaddr;
|
|
u32 csum;
|
|
u32 *cb_sum = &cb->sums;
|
|
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
|
|
return 0;
|
|
|
|
for (i = 0; i < cb->nr_pages; i++) {
|
|
page = cb->compressed_pages[i];
|
|
csum = ~(u32)0;
|
|
|
|
kaddr = kmap_atomic(page);
|
|
csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
|
|
btrfs_csum_final(csum, (char *)&csum);
|
|
kunmap_atomic(kaddr);
|
|
|
|
if (csum != *cb_sum) {
|
|
btrfs_info(BTRFS_I(inode)->root->fs_info,
|
|
"csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
|
|
btrfs_ino(inode), disk_start, csum, *cb_sum,
|
|
cb->mirror_num);
|
|
ret = -EIO;
|
|
goto fail;
|
|
}
|
|
cb_sum++;
|
|
|
|
}
|
|
ret = 0;
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
/* when we finish reading compressed pages from the disk, we
|
|
* decompress them and then run the bio end_io routines on the
|
|
* decompressed pages (in the inode address space).
|
|
*
|
|
* This allows the checksumming and other IO error handling routines
|
|
* to work normally
|
|
*
|
|
* The compressed pages are freed here, and it must be run
|
|
* in process context
|
|
*/
|
|
static void end_compressed_bio_read(struct bio *bio, int err)
|
|
{
|
|
struct compressed_bio *cb = bio->bi_private;
|
|
struct inode *inode;
|
|
struct page *page;
|
|
unsigned long index;
|
|
int ret;
|
|
|
|
if (err)
|
|
cb->errors = 1;
|
|
|
|
/* if there are more bios still pending for this compressed
|
|
* extent, just exit
|
|
*/
|
|
if (!atomic_dec_and_test(&cb->pending_bios))
|
|
goto out;
|
|
|
|
inode = cb->inode;
|
|
ret = check_compressed_csum(inode, cb,
|
|
(u64)bio->bi_iter.bi_sector << 9);
|
|
if (ret)
|
|
goto csum_failed;
|
|
|
|
/* ok, we're the last bio for this extent, lets start
|
|
* the decompression.
|
|
*/
|
|
ret = btrfs_decompress_biovec(cb->compress_type,
|
|
cb->compressed_pages,
|
|
cb->start,
|
|
cb->orig_bio->bi_io_vec,
|
|
cb->orig_bio->bi_vcnt,
|
|
cb->compressed_len);
|
|
csum_failed:
|
|
if (ret)
|
|
cb->errors = 1;
|
|
|
|
/* release the compressed pages */
|
|
index = 0;
|
|
for (index = 0; index < cb->nr_pages; index++) {
|
|
page = cb->compressed_pages[index];
|
|
page->mapping = NULL;
|
|
page_cache_release(page);
|
|
}
|
|
|
|
/* do io completion on the original bio */
|
|
if (cb->errors) {
|
|
bio_io_error(cb->orig_bio);
|
|
} else {
|
|
int i;
|
|
struct bio_vec *bvec;
|
|
|
|
/*
|
|
* we have verified the checksum already, set page
|
|
* checked so the end_io handlers know about it
|
|
*/
|
|
bio_for_each_segment_all(bvec, cb->orig_bio, i)
|
|
SetPageChecked(bvec->bv_page);
|
|
|
|
bio_endio(cb->orig_bio, 0);
|
|
}
|
|
|
|
/* finally free the cb struct */
|
|
kfree(cb->compressed_pages);
|
|
kfree(cb);
|
|
out:
|
|
bio_put(bio);
|
|
}
|
|
|
|
/*
|
|
* Clear the writeback bits on all of the file
|
|
* pages for a compressed write
|
|
*/
|
|
static noinline void end_compressed_writeback(struct inode *inode,
|
|
const struct compressed_bio *cb)
|
|
{
|
|
unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
|
|
unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
|
|
struct page *pages[16];
|
|
unsigned long nr_pages = end_index - index + 1;
|
|
int i;
|
|
int ret;
|
|
|
|
if (cb->errors)
|
|
mapping_set_error(inode->i_mapping, -EIO);
|
|
|
|
while (nr_pages > 0) {
|
|
ret = find_get_pages_contig(inode->i_mapping, index,
|
|
min_t(unsigned long,
|
|
nr_pages, ARRAY_SIZE(pages)), pages);
|
|
if (ret == 0) {
|
|
nr_pages -= 1;
|
|
index += 1;
|
|
continue;
|
|
}
|
|
for (i = 0; i < ret; i++) {
|
|
if (cb->errors)
|
|
SetPageError(pages[i]);
|
|
end_page_writeback(pages[i]);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
nr_pages -= ret;
|
|
index += ret;
|
|
}
|
|
/* the inode may be gone now */
|
|
}
|
|
|
|
/*
|
|
* do the cleanup once all the compressed pages hit the disk.
|
|
* This will clear writeback on the file pages and free the compressed
|
|
* pages.
|
|
*
|
|
* This also calls the writeback end hooks for the file pages so that
|
|
* metadata and checksums can be updated in the file.
|
|
*/
|
|
static void end_compressed_bio_write(struct bio *bio, int err)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
struct compressed_bio *cb = bio->bi_private;
|
|
struct inode *inode;
|
|
struct page *page;
|
|
unsigned long index;
|
|
|
|
if (err)
|
|
cb->errors = 1;
|
|
|
|
/* if there are more bios still pending for this compressed
|
|
* extent, just exit
|
|
*/
|
|
if (!atomic_dec_and_test(&cb->pending_bios))
|
|
goto out;
|
|
|
|
/* ok, we're the last bio for this extent, step one is to
|
|
* call back into the FS and do all the end_io operations
|
|
*/
|
|
inode = cb->inode;
|
|
tree = &BTRFS_I(inode)->io_tree;
|
|
cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
|
|
tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
|
|
cb->start,
|
|
cb->start + cb->len - 1,
|
|
NULL,
|
|
err ? 0 : 1);
|
|
cb->compressed_pages[0]->mapping = NULL;
|
|
|
|
end_compressed_writeback(inode, cb);
|
|
/* note, our inode could be gone now */
|
|
|
|
/*
|
|
* release the compressed pages, these came from alloc_page and
|
|
* are not attached to the inode at all
|
|
*/
|
|
index = 0;
|
|
for (index = 0; index < cb->nr_pages; index++) {
|
|
page = cb->compressed_pages[index];
|
|
page->mapping = NULL;
|
|
page_cache_release(page);
|
|
}
|
|
|
|
/* finally free the cb struct */
|
|
kfree(cb->compressed_pages);
|
|
kfree(cb);
|
|
out:
|
|
bio_put(bio);
|
|
}
|
|
|
|
/*
|
|
* worker function to build and submit bios for previously compressed pages.
|
|
* The corresponding pages in the inode should be marked for writeback
|
|
* and the compressed pages should have a reference on them for dropping
|
|
* when the IO is complete.
|
|
*
|
|
* This also checksums the file bytes and gets things ready for
|
|
* the end io hooks.
|
|
*/
|
|
int btrfs_submit_compressed_write(struct inode *inode, u64 start,
|
|
unsigned long len, u64 disk_start,
|
|
unsigned long compressed_len,
|
|
struct page **compressed_pages,
|
|
unsigned long nr_pages)
|
|
{
|
|
struct bio *bio = NULL;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct compressed_bio *cb;
|
|
unsigned long bytes_left;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
int pg_index = 0;
|
|
struct page *page;
|
|
u64 first_byte = disk_start;
|
|
struct block_device *bdev;
|
|
int ret;
|
|
int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
|
|
|
|
WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
|
|
cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
|
|
if (!cb)
|
|
return -ENOMEM;
|
|
atomic_set(&cb->pending_bios, 0);
|
|
cb->errors = 0;
|
|
cb->inode = inode;
|
|
cb->start = start;
|
|
cb->len = len;
|
|
cb->mirror_num = 0;
|
|
cb->compressed_pages = compressed_pages;
|
|
cb->compressed_len = compressed_len;
|
|
cb->orig_bio = NULL;
|
|
cb->nr_pages = nr_pages;
|
|
|
|
bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
|
|
|
|
bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
|
|
if (!bio) {
|
|
kfree(cb);
|
|
return -ENOMEM;
|
|
}
|
|
bio->bi_private = cb;
|
|
bio->bi_end_io = end_compressed_bio_write;
|
|
atomic_inc(&cb->pending_bios);
|
|
|
|
/* create and submit bios for the compressed pages */
|
|
bytes_left = compressed_len;
|
|
for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
|
|
page = compressed_pages[pg_index];
|
|
page->mapping = inode->i_mapping;
|
|
if (bio->bi_iter.bi_size)
|
|
ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
|
|
PAGE_CACHE_SIZE,
|
|
bio, 0);
|
|
else
|
|
ret = 0;
|
|
|
|
page->mapping = NULL;
|
|
if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
|
|
PAGE_CACHE_SIZE) {
|
|
bio_get(bio);
|
|
|
|
/*
|
|
* inc the count before we submit the bio so
|
|
* we know the end IO handler won't happen before
|
|
* we inc the count. Otherwise, the cb might get
|
|
* freed before we're done setting it up
|
|
*/
|
|
atomic_inc(&cb->pending_bios);
|
|
ret = btrfs_bio_wq_end_io(root->fs_info, bio,
|
|
BTRFS_WQ_ENDIO_DATA);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
if (!skip_sum) {
|
|
ret = btrfs_csum_one_bio(root, inode, bio,
|
|
start, 1);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
|
|
ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
bio_put(bio);
|
|
|
|
bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
|
|
BUG_ON(!bio);
|
|
bio->bi_private = cb;
|
|
bio->bi_end_io = end_compressed_bio_write;
|
|
bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
|
|
}
|
|
if (bytes_left < PAGE_CACHE_SIZE) {
|
|
btrfs_info(BTRFS_I(inode)->root->fs_info,
|
|
"bytes left %lu compress len %lu nr %lu",
|
|
bytes_left, cb->compressed_len, cb->nr_pages);
|
|
}
|
|
bytes_left -= PAGE_CACHE_SIZE;
|
|
first_byte += PAGE_CACHE_SIZE;
|
|
cond_resched();
|
|
}
|
|
bio_get(bio);
|
|
|
|
ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
if (!skip_sum) {
|
|
ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
|
|
ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
bio_put(bio);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int add_ra_bio_pages(struct inode *inode,
|
|
u64 compressed_end,
|
|
struct compressed_bio *cb)
|
|
{
|
|
unsigned long end_index;
|
|
unsigned long pg_index;
|
|
u64 last_offset;
|
|
u64 isize = i_size_read(inode);
|
|
int ret;
|
|
struct page *page;
|
|
unsigned long nr_pages = 0;
|
|
struct extent_map *em;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_io_tree *tree;
|
|
u64 end;
|
|
int misses = 0;
|
|
|
|
page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
|
|
last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
|
|
em_tree = &BTRFS_I(inode)->extent_tree;
|
|
tree = &BTRFS_I(inode)->io_tree;
|
|
|
|
if (isize == 0)
|
|
return 0;
|
|
|
|
end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
while (last_offset < compressed_end) {
|
|
pg_index = last_offset >> PAGE_CACHE_SHIFT;
|
|
|
|
if (pg_index > end_index)
|
|
break;
|
|
|
|
rcu_read_lock();
|
|
page = radix_tree_lookup(&mapping->page_tree, pg_index);
|
|
rcu_read_unlock();
|
|
if (page && !radix_tree_exceptional_entry(page)) {
|
|
misses++;
|
|
if (misses > 4)
|
|
break;
|
|
goto next;
|
|
}
|
|
|
|
page = __page_cache_alloc(mapping_gfp_mask(mapping) &
|
|
~__GFP_FS);
|
|
if (!page)
|
|
break;
|
|
|
|
if (add_to_page_cache_lru(page, mapping, pg_index,
|
|
GFP_NOFS)) {
|
|
page_cache_release(page);
|
|
goto next;
|
|
}
|
|
|
|
end = last_offset + PAGE_CACHE_SIZE - 1;
|
|
/*
|
|
* at this point, we have a locked page in the page cache
|
|
* for these bytes in the file. But, we have to make
|
|
* sure they map to this compressed extent on disk.
|
|
*/
|
|
set_page_extent_mapped(page);
|
|
lock_extent(tree, last_offset, end);
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, last_offset,
|
|
PAGE_CACHE_SIZE);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em || last_offset < em->start ||
|
|
(last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
|
|
(em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
|
|
free_extent_map(em);
|
|
unlock_extent(tree, last_offset, end);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
break;
|
|
}
|
|
free_extent_map(em);
|
|
|
|
if (page->index == end_index) {
|
|
char *userpage;
|
|
size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
|
|
|
|
if (zero_offset) {
|
|
int zeros;
|
|
zeros = PAGE_CACHE_SIZE - zero_offset;
|
|
userpage = kmap_atomic(page);
|
|
memset(userpage + zero_offset, 0, zeros);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(userpage);
|
|
}
|
|
}
|
|
|
|
ret = bio_add_page(cb->orig_bio, page,
|
|
PAGE_CACHE_SIZE, 0);
|
|
|
|
if (ret == PAGE_CACHE_SIZE) {
|
|
nr_pages++;
|
|
page_cache_release(page);
|
|
} else {
|
|
unlock_extent(tree, last_offset, end);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
break;
|
|
}
|
|
next:
|
|
last_offset += PAGE_CACHE_SIZE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* for a compressed read, the bio we get passed has all the inode pages
|
|
* in it. We don't actually do IO on those pages but allocate new ones
|
|
* to hold the compressed pages on disk.
|
|
*
|
|
* bio->bi_iter.bi_sector points to the compressed extent on disk
|
|
* bio->bi_io_vec points to all of the inode pages
|
|
* bio->bi_vcnt is a count of pages
|
|
*
|
|
* After the compressed pages are read, we copy the bytes into the
|
|
* bio we were passed and then call the bio end_io calls
|
|
*/
|
|
int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
struct extent_map_tree *em_tree;
|
|
struct compressed_bio *cb;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
|
|
unsigned long compressed_len;
|
|
unsigned long nr_pages;
|
|
unsigned long pg_index;
|
|
struct page *page;
|
|
struct block_device *bdev;
|
|
struct bio *comp_bio;
|
|
u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
|
|
u64 em_len;
|
|
u64 em_start;
|
|
struct extent_map *em;
|
|
int ret = -ENOMEM;
|
|
int faili = 0;
|
|
u32 *sums;
|
|
|
|
tree = &BTRFS_I(inode)->io_tree;
|
|
em_tree = &BTRFS_I(inode)->extent_tree;
|
|
|
|
/* we need the actual starting offset of this extent in the file */
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree,
|
|
page_offset(bio->bi_io_vec->bv_page),
|
|
PAGE_CACHE_SIZE);
|
|
read_unlock(&em_tree->lock);
|
|
if (!em)
|
|
return -EIO;
|
|
|
|
compressed_len = em->block_len;
|
|
cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
|
|
if (!cb)
|
|
goto out;
|
|
|
|
atomic_set(&cb->pending_bios, 0);
|
|
cb->errors = 0;
|
|
cb->inode = inode;
|
|
cb->mirror_num = mirror_num;
|
|
sums = &cb->sums;
|
|
|
|
cb->start = em->orig_start;
|
|
em_len = em->len;
|
|
em_start = em->start;
|
|
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
|
|
cb->len = uncompressed_len;
|
|
cb->compressed_len = compressed_len;
|
|
cb->compress_type = extent_compress_type(bio_flags);
|
|
cb->orig_bio = bio;
|
|
|
|
nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
|
|
cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
|
|
GFP_NOFS);
|
|
if (!cb->compressed_pages)
|
|
goto fail1;
|
|
|
|
bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
|
|
|
|
for (pg_index = 0; pg_index < nr_pages; pg_index++) {
|
|
cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
|
|
__GFP_HIGHMEM);
|
|
if (!cb->compressed_pages[pg_index]) {
|
|
faili = pg_index - 1;
|
|
ret = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
}
|
|
faili = nr_pages - 1;
|
|
cb->nr_pages = nr_pages;
|
|
|
|
/* In the parent-locked case, we only locked the range we are
|
|
* interested in. In all other cases, we can opportunistically
|
|
* cache decompressed data that goes beyond the requested range. */
|
|
if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
|
|
add_ra_bio_pages(inode, em_start + em_len, cb);
|
|
|
|
/* include any pages we added in add_ra-bio_pages */
|
|
uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
|
|
cb->len = uncompressed_len;
|
|
|
|
comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
|
|
if (!comp_bio)
|
|
goto fail2;
|
|
comp_bio->bi_private = cb;
|
|
comp_bio->bi_end_io = end_compressed_bio_read;
|
|
atomic_inc(&cb->pending_bios);
|
|
|
|
for (pg_index = 0; pg_index < nr_pages; pg_index++) {
|
|
page = cb->compressed_pages[pg_index];
|
|
page->mapping = inode->i_mapping;
|
|
page->index = em_start >> PAGE_CACHE_SHIFT;
|
|
|
|
if (comp_bio->bi_iter.bi_size)
|
|
ret = tree->ops->merge_bio_hook(READ, page, 0,
|
|
PAGE_CACHE_SIZE,
|
|
comp_bio, 0);
|
|
else
|
|
ret = 0;
|
|
|
|
page->mapping = NULL;
|
|
if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
|
|
PAGE_CACHE_SIZE) {
|
|
bio_get(comp_bio);
|
|
|
|
ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
|
|
BTRFS_WQ_ENDIO_DATA);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
/*
|
|
* inc the count before we submit the bio so
|
|
* we know the end IO handler won't happen before
|
|
* we inc the count. Otherwise, the cb might get
|
|
* freed before we're done setting it up
|
|
*/
|
|
atomic_inc(&cb->pending_bios);
|
|
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
|
|
ret = btrfs_lookup_bio_sums(root, inode,
|
|
comp_bio, sums);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
|
|
root->sectorsize);
|
|
|
|
ret = btrfs_map_bio(root, READ, comp_bio,
|
|
mirror_num, 0);
|
|
if (ret)
|
|
bio_endio(comp_bio, ret);
|
|
|
|
bio_put(comp_bio);
|
|
|
|
comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
|
|
GFP_NOFS);
|
|
BUG_ON(!comp_bio);
|
|
comp_bio->bi_private = cb;
|
|
comp_bio->bi_end_io = end_compressed_bio_read;
|
|
|
|
bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
|
|
}
|
|
cur_disk_byte += PAGE_CACHE_SIZE;
|
|
}
|
|
bio_get(comp_bio);
|
|
|
|
ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
|
|
BTRFS_WQ_ENDIO_DATA);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
|
|
ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
|
|
ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
|
|
if (ret)
|
|
bio_endio(comp_bio, ret);
|
|
|
|
bio_put(comp_bio);
|
|
return 0;
|
|
|
|
fail2:
|
|
while (faili >= 0) {
|
|
__free_page(cb->compressed_pages[faili]);
|
|
faili--;
|
|
}
|
|
|
|
kfree(cb->compressed_pages);
|
|
fail1:
|
|
kfree(cb);
|
|
out:
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
|
|
static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
|
|
static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
|
|
static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
|
|
static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
|
|
|
|
static struct btrfs_compress_op *btrfs_compress_op[] = {
|
|
&btrfs_zlib_compress,
|
|
&btrfs_lzo_compress,
|
|
};
|
|
|
|
void __init btrfs_init_compress(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
|
|
INIT_LIST_HEAD(&comp_idle_workspace[i]);
|
|
spin_lock_init(&comp_workspace_lock[i]);
|
|
atomic_set(&comp_alloc_workspace[i], 0);
|
|
init_waitqueue_head(&comp_workspace_wait[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this finds an available workspace or allocates a new one
|
|
* ERR_PTR is returned if things go bad.
|
|
*/
|
|
static struct list_head *find_workspace(int type)
|
|
{
|
|
struct list_head *workspace;
|
|
int cpus = num_online_cpus();
|
|
int idx = type - 1;
|
|
|
|
struct list_head *idle_workspace = &comp_idle_workspace[idx];
|
|
spinlock_t *workspace_lock = &comp_workspace_lock[idx];
|
|
atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
|
|
wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
|
|
int *num_workspace = &comp_num_workspace[idx];
|
|
again:
|
|
spin_lock(workspace_lock);
|
|
if (!list_empty(idle_workspace)) {
|
|
workspace = idle_workspace->next;
|
|
list_del(workspace);
|
|
(*num_workspace)--;
|
|
spin_unlock(workspace_lock);
|
|
return workspace;
|
|
|
|
}
|
|
if (atomic_read(alloc_workspace) > cpus) {
|
|
DEFINE_WAIT(wait);
|
|
|
|
spin_unlock(workspace_lock);
|
|
prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
|
|
schedule();
|
|
finish_wait(workspace_wait, &wait);
|
|
goto again;
|
|
}
|
|
atomic_inc(alloc_workspace);
|
|
spin_unlock(workspace_lock);
|
|
|
|
workspace = btrfs_compress_op[idx]->alloc_workspace();
|
|
if (IS_ERR(workspace)) {
|
|
atomic_dec(alloc_workspace);
|
|
wake_up(workspace_wait);
|
|
}
|
|
return workspace;
|
|
}
|
|
|
|
/*
|
|
* put a workspace struct back on the list or free it if we have enough
|
|
* idle ones sitting around
|
|
*/
|
|
static void free_workspace(int type, struct list_head *workspace)
|
|
{
|
|
int idx = type - 1;
|
|
struct list_head *idle_workspace = &comp_idle_workspace[idx];
|
|
spinlock_t *workspace_lock = &comp_workspace_lock[idx];
|
|
atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
|
|
wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
|
|
int *num_workspace = &comp_num_workspace[idx];
|
|
|
|
spin_lock(workspace_lock);
|
|
if (*num_workspace < num_online_cpus()) {
|
|
list_add(workspace, idle_workspace);
|
|
(*num_workspace)++;
|
|
spin_unlock(workspace_lock);
|
|
goto wake;
|
|
}
|
|
spin_unlock(workspace_lock);
|
|
|
|
btrfs_compress_op[idx]->free_workspace(workspace);
|
|
atomic_dec(alloc_workspace);
|
|
wake:
|
|
smp_mb();
|
|
if (waitqueue_active(workspace_wait))
|
|
wake_up(workspace_wait);
|
|
}
|
|
|
|
/*
|
|
* cleanup function for module exit
|
|
*/
|
|
static void free_workspaces(void)
|
|
{
|
|
struct list_head *workspace;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
|
|
while (!list_empty(&comp_idle_workspace[i])) {
|
|
workspace = comp_idle_workspace[i].next;
|
|
list_del(workspace);
|
|
btrfs_compress_op[i]->free_workspace(workspace);
|
|
atomic_dec(&comp_alloc_workspace[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* given an address space and start/len, compress the bytes.
|
|
*
|
|
* pages are allocated to hold the compressed result and stored
|
|
* in 'pages'
|
|
*
|
|
* out_pages is used to return the number of pages allocated. There
|
|
* may be pages allocated even if we return an error
|
|
*
|
|
* total_in is used to return the number of bytes actually read. It
|
|
* may be smaller then len if we had to exit early because we
|
|
* ran out of room in the pages array or because we cross the
|
|
* max_out threshold.
|
|
*
|
|
* total_out is used to return the total number of compressed bytes
|
|
*
|
|
* max_out tells us the max number of bytes that we're allowed to
|
|
* stuff into pages
|
|
*/
|
|
int btrfs_compress_pages(int type, struct address_space *mapping,
|
|
u64 start, unsigned long len,
|
|
struct page **pages,
|
|
unsigned long nr_dest_pages,
|
|
unsigned long *out_pages,
|
|
unsigned long *total_in,
|
|
unsigned long *total_out,
|
|
unsigned long max_out)
|
|
{
|
|
struct list_head *workspace;
|
|
int ret;
|
|
|
|
workspace = find_workspace(type);
|
|
if (IS_ERR(workspace))
|
|
return PTR_ERR(workspace);
|
|
|
|
ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
|
|
start, len, pages,
|
|
nr_dest_pages, out_pages,
|
|
total_in, total_out,
|
|
max_out);
|
|
free_workspace(type, workspace);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* pages_in is an array of pages with compressed data.
|
|
*
|
|
* disk_start is the starting logical offset of this array in the file
|
|
*
|
|
* bvec is a bio_vec of pages from the file that we want to decompress into
|
|
*
|
|
* vcnt is the count of pages in the biovec
|
|
*
|
|
* srclen is the number of bytes in pages_in
|
|
*
|
|
* The basic idea is that we have a bio that was created by readpages.
|
|
* The pages in the bio are for the uncompressed data, and they may not
|
|
* be contiguous. They all correspond to the range of bytes covered by
|
|
* the compressed extent.
|
|
*/
|
|
static int btrfs_decompress_biovec(int type, struct page **pages_in,
|
|
u64 disk_start, struct bio_vec *bvec,
|
|
int vcnt, size_t srclen)
|
|
{
|
|
struct list_head *workspace;
|
|
int ret;
|
|
|
|
workspace = find_workspace(type);
|
|
if (IS_ERR(workspace))
|
|
return PTR_ERR(workspace);
|
|
|
|
ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
|
|
disk_start,
|
|
bvec, vcnt, srclen);
|
|
free_workspace(type, workspace);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* a less complex decompression routine. Our compressed data fits in a
|
|
* single page, and we want to read a single page out of it.
|
|
* start_byte tells us the offset into the compressed data we're interested in
|
|
*/
|
|
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
|
|
unsigned long start_byte, size_t srclen, size_t destlen)
|
|
{
|
|
struct list_head *workspace;
|
|
int ret;
|
|
|
|
workspace = find_workspace(type);
|
|
if (IS_ERR(workspace))
|
|
return PTR_ERR(workspace);
|
|
|
|
ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
|
|
dest_page, start_byte,
|
|
srclen, destlen);
|
|
|
|
free_workspace(type, workspace);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_exit_compress(void)
|
|
{
|
|
free_workspaces();
|
|
}
|
|
|
|
/*
|
|
* Copy uncompressed data from working buffer to pages.
|
|
*
|
|
* buf_start is the byte offset we're of the start of our workspace buffer.
|
|
*
|
|
* total_out is the last byte of the buffer
|
|
*/
|
|
int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
|
|
unsigned long total_out, u64 disk_start,
|
|
struct bio_vec *bvec, int vcnt,
|
|
unsigned long *pg_index,
|
|
unsigned long *pg_offset)
|
|
{
|
|
unsigned long buf_offset;
|
|
unsigned long current_buf_start;
|
|
unsigned long start_byte;
|
|
unsigned long working_bytes = total_out - buf_start;
|
|
unsigned long bytes;
|
|
char *kaddr;
|
|
struct page *page_out = bvec[*pg_index].bv_page;
|
|
|
|
/*
|
|
* start byte is the first byte of the page we're currently
|
|
* copying into relative to the start of the compressed data.
|
|
*/
|
|
start_byte = page_offset(page_out) - disk_start;
|
|
|
|
/* we haven't yet hit data corresponding to this page */
|
|
if (total_out <= start_byte)
|
|
return 1;
|
|
|
|
/*
|
|
* the start of the data we care about is offset into
|
|
* the middle of our working buffer
|
|
*/
|
|
if (total_out > start_byte && buf_start < start_byte) {
|
|
buf_offset = start_byte - buf_start;
|
|
working_bytes -= buf_offset;
|
|
} else {
|
|
buf_offset = 0;
|
|
}
|
|
current_buf_start = buf_start;
|
|
|
|
/* copy bytes from the working buffer into the pages */
|
|
while (working_bytes > 0) {
|
|
bytes = min(PAGE_CACHE_SIZE - *pg_offset,
|
|
PAGE_CACHE_SIZE - buf_offset);
|
|
bytes = min(bytes, working_bytes);
|
|
kaddr = kmap_atomic(page_out);
|
|
memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
|
|
kunmap_atomic(kaddr);
|
|
flush_dcache_page(page_out);
|
|
|
|
*pg_offset += bytes;
|
|
buf_offset += bytes;
|
|
working_bytes -= bytes;
|
|
current_buf_start += bytes;
|
|
|
|
/* check if we need to pick another page */
|
|
if (*pg_offset == PAGE_CACHE_SIZE) {
|
|
(*pg_index)++;
|
|
if (*pg_index >= vcnt)
|
|
return 0;
|
|
|
|
page_out = bvec[*pg_index].bv_page;
|
|
*pg_offset = 0;
|
|
start_byte = page_offset(page_out) - disk_start;
|
|
|
|
/*
|
|
* make sure our new page is covered by this
|
|
* working buffer
|
|
*/
|
|
if (total_out <= start_byte)
|
|
return 1;
|
|
|
|
/*
|
|
* the next page in the biovec might not be adjacent
|
|
* to the last page, but it might still be found
|
|
* inside this working buffer. bump our offset pointer
|
|
*/
|
|
if (total_out > start_byte &&
|
|
current_buf_start < start_byte) {
|
|
buf_offset = start_byte - buf_start;
|
|
working_bytes = total_out - start_byte;
|
|
current_buf_start = buf_start + buf_offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* When uncompressing data, we need to make sure and zero any parts of
|
|
* the biovec that were not filled in by the decompression code. pg_index
|
|
* and pg_offset indicate the last page and the last offset of that page
|
|
* that have been filled in. This will zero everything remaining in the
|
|
* biovec.
|
|
*/
|
|
void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
|
|
unsigned long pg_index,
|
|
unsigned long pg_offset)
|
|
{
|
|
while (pg_index < vcnt) {
|
|
struct page *page = bvec[pg_index].bv_page;
|
|
unsigned long off = bvec[pg_index].bv_offset;
|
|
unsigned long len = bvec[pg_index].bv_len;
|
|
|
|
if (pg_offset < off)
|
|
pg_offset = off;
|
|
if (pg_offset < off + len) {
|
|
unsigned long bytes = off + len - pg_offset;
|
|
char *kaddr;
|
|
|
|
kaddr = kmap_atomic(page);
|
|
memset(kaddr + pg_offset, 0, bytes);
|
|
kunmap_atomic(kaddr);
|
|
}
|
|
pg_index++;
|
|
pg_offset = 0;
|
|
}
|
|
}
|