linux/arch/x86/kernel/amd_iommu.c
Joerg Roedel 65b050adbf x86, AMD IOMMU: add mapping functions for scatter gather lists
This patch adds the dma_ops functions for mapping and unmapping scatter gather
lists.

Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: iommu@lists.linux-foundation.org
Cc: bhavna.sarathy@amd.com
Cc: Sebastian.Biemueller@amd.com
Cc: robert.richter@amd.com
Cc: joro@8bytes.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 10:12:19 +02:00

801 lines
18 KiB
C

/*
* Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <joerg.roedel@amd.com>
* Leo Duran <leo.duran@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
#include <asm/gart.h>
#include <asm/amd_iommu_types.h>
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
#define to_pages(addr, size) \
(round_up(((addr) & ~PAGE_MASK) + (size), PAGE_SIZE) >> PAGE_SHIFT)
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
struct command {
u32 data[4];
};
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e);
static int iommu_has_npcache(struct amd_iommu *iommu)
{
return iommu->cap & IOMMU_CAP_NPCACHE;
}
static int __iommu_queue_command(struct amd_iommu *iommu, struct command *cmd)
{
u32 tail, head;
u8 *target;
tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
target = (iommu->cmd_buf + tail);
memcpy_toio(target, cmd, sizeof(*cmd));
tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
if (tail == head)
return -ENOMEM;
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
return 0;
}
static int iommu_queue_command(struct amd_iommu *iommu, struct command *cmd)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&iommu->lock, flags);
ret = __iommu_queue_command(iommu, cmd);
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
static int iommu_completion_wait(struct amd_iommu *iommu)
{
int ret;
struct command cmd;
volatile u64 ready = 0;
unsigned long ready_phys = virt_to_phys(&ready);
memset(&cmd, 0, sizeof(cmd));
cmd.data[0] = LOW_U32(ready_phys) | CMD_COMPL_WAIT_STORE_MASK;
cmd.data[1] = HIGH_U32(ready_phys);
cmd.data[2] = 1; /* value written to 'ready' */
CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
iommu->need_sync = 0;
ret = iommu_queue_command(iommu, &cmd);
if (ret)
return ret;
while (!ready)
cpu_relax();
return 0;
}
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
struct command cmd;
BUG_ON(iommu == NULL);
memset(&cmd, 0, sizeof(cmd));
CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
cmd.data[0] = devid;
iommu->need_sync = 1;
return iommu_queue_command(iommu, &cmd);
}
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
u64 address, u16 domid, int pde, int s)
{
struct command cmd;
memset(&cmd, 0, sizeof(cmd));
address &= PAGE_MASK;
CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
cmd.data[1] |= domid;
cmd.data[2] = LOW_U32(address);
cmd.data[3] = HIGH_U32(address);
if (s)
cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
if (pde)
cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
iommu->need_sync = 1;
return iommu_queue_command(iommu, &cmd);
}
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
u64 address, size_t size)
{
int i;
unsigned pages = to_pages(address, size);
address &= PAGE_MASK;
for (i = 0; i < pages; ++i) {
iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 0);
address += PAGE_SIZE;
}
return 0;
}
static int iommu_map(struct protection_domain *dom,
unsigned long bus_addr,
unsigned long phys_addr,
int prot)
{
u64 __pte, *pte, *page;
bus_addr = PAGE_ALIGN(bus_addr);
phys_addr = PAGE_ALIGN(bus_addr);
/* only support 512GB address spaces for now */
if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
return -EINVAL;
pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
*pte = IOMMU_L2_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
*pte = IOMMU_L1_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
if (IOMMU_PTE_PRESENT(*pte))
return -EBUSY;
__pte = phys_addr | IOMMU_PTE_P;
if (prot & IOMMU_PROT_IR)
__pte |= IOMMU_PTE_IR;
if (prot & IOMMU_PROT_IW)
__pte |= IOMMU_PTE_IW;
*pte = __pte;
return 0;
}
static int iommu_for_unity_map(struct amd_iommu *iommu,
struct unity_map_entry *entry)
{
u16 bdf, i;
for (i = entry->devid_start; i <= entry->devid_end; ++i) {
bdf = amd_iommu_alias_table[i];
if (amd_iommu_rlookup_table[bdf] == iommu)
return 1;
}
return 0;
}
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
struct unity_map_entry *entry;
int ret;
list_for_each_entry(entry, &amd_iommu_unity_map, list) {
if (!iommu_for_unity_map(iommu, entry))
continue;
ret = dma_ops_unity_map(iommu->default_dom, entry);
if (ret)
return ret;
}
return 0;
}
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e)
{
u64 addr;
int ret;
for (addr = e->address_start; addr < e->address_end;
addr += PAGE_SIZE) {
ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
if (ret)
return ret;
/*
* if unity mapping is in aperture range mark the page
* as allocated in the aperture
*/
if (addr < dma_dom->aperture_size)
__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
}
return 0;
}
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
u16 devid)
{
struct unity_map_entry *e;
int ret;
list_for_each_entry(e, &amd_iommu_unity_map, list) {
if (!(devid >= e->devid_start && devid <= e->devid_end))
continue;
ret = dma_ops_unity_map(dma_dom, e);
if (ret)
return ret;
}
return 0;
}
static unsigned long dma_mask_to_pages(unsigned long mask)
{
return (mask >> PAGE_SHIFT) +
(PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
}
static unsigned long dma_ops_alloc_addresses(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages)
{
unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
unsigned long address;
unsigned long size = dom->aperture_size >> PAGE_SHIFT;
unsigned long boundary_size;
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
PAGE_SIZE) >> PAGE_SHIFT;
limit = limit < size ? limit : size;
if (dom->next_bit >= limit)
dom->next_bit = 0;
address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
0 , boundary_size, 0);
if (address == -1)
address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
0, boundary_size, 0);
if (likely(address != -1)) {
set_bit_string(dom->bitmap, address, pages);
dom->next_bit = address + pages;
address <<= PAGE_SHIFT;
} else
address = bad_dma_address;
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
return address;
}
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
unsigned long address,
unsigned int pages)
{
address >>= PAGE_SHIFT;
iommu_area_free(dom->bitmap, address, pages);
}
static u16 domain_id_alloc(void)
{
unsigned long flags;
int id;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
BUG_ON(id == 0);
if (id > 0 && id < MAX_DOMAIN_ID)
__set_bit(id, amd_iommu_pd_alloc_bitmap);
else
id = 0;
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return id;
}
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages)
{
unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
if (start_page + pages > last_page)
pages = last_page - start_page;
set_bit_string(dom->bitmap, start_page, pages);
}
static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
{
int i, j;
u64 *p1, *p2, *p3;
p1 = dma_dom->domain.pt_root;
if (!p1)
return;
for (i = 0; i < 512; ++i) {
if (!IOMMU_PTE_PRESENT(p1[i]))
continue;
p2 = IOMMU_PTE_PAGE(p1[i]);
for (j = 0; j < 512; ++i) {
if (!IOMMU_PTE_PRESENT(p2[j]))
continue;
p3 = IOMMU_PTE_PAGE(p2[j]);
free_page((unsigned long)p3);
}
free_page((unsigned long)p2);
}
free_page((unsigned long)p1);
}
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
if (!dom)
return;
dma_ops_free_pagetable(dom);
kfree(dom->pte_pages);
kfree(dom->bitmap);
kfree(dom);
}
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
unsigned order)
{
struct dma_ops_domain *dma_dom;
unsigned i, num_pte_pages;
u64 *l2_pde;
u64 address;
/*
* Currently the DMA aperture must be between 32 MB and 1GB in size
*/
if ((order < 25) || (order > 30))
return NULL;
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
if (!dma_dom)
return NULL;
spin_lock_init(&dma_dom->domain.lock);
dma_dom->domain.id = domain_id_alloc();
if (dma_dom->domain.id == 0)
goto free_dma_dom;
dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
dma_dom->domain.priv = dma_dom;
if (!dma_dom->domain.pt_root)
goto free_dma_dom;
dma_dom->aperture_size = (1ULL << order);
dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
GFP_KERNEL);
if (!dma_dom->bitmap)
goto free_dma_dom;
/*
* mark the first page as allocated so we never return 0 as
* a valid dma-address. So we can use 0 as error value
*/
dma_dom->bitmap[0] = 1;
dma_dom->next_bit = 0;
if (iommu->exclusion_start &&
iommu->exclusion_start < dma_dom->aperture_size) {
unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
int pages = to_pages(iommu->exclusion_start,
iommu->exclusion_length);
dma_ops_reserve_addresses(dma_dom, startpage, pages);
}
num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
GFP_KERNEL);
if (!dma_dom->pte_pages)
goto free_dma_dom;
l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
if (l2_pde == NULL)
goto free_dma_dom;
dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
for (i = 0; i < num_pte_pages; ++i) {
dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!dma_dom->pte_pages[i])
goto free_dma_dom;
address = virt_to_phys(dma_dom->pte_pages[i]);
l2_pde[i] = IOMMU_L1_PDE(address);
}
return dma_dom;
free_dma_dom:
dma_ops_domain_free(dma_dom);
return NULL;
}
static struct protection_domain *domain_for_device(u16 devid)
{
struct protection_domain *dom;
unsigned long flags;
read_lock_irqsave(&amd_iommu_devtable_lock, flags);
dom = amd_iommu_pd_table[devid];
read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return dom;
}
static void set_device_domain(struct amd_iommu *iommu,
struct protection_domain *domain,
u16 devid)
{
unsigned long flags;
u64 pte_root = virt_to_phys(domain->pt_root);
pte_root |= (domain->mode & 0x07) << 9;
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
amd_iommu_dev_table[devid].data[0] = pte_root;
amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
amd_iommu_dev_table[devid].data[2] = domain->id;
amd_iommu_pd_table[devid] = domain;
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
iommu_queue_inv_dev_entry(iommu, devid);
iommu->need_sync = 1;
}
static int get_device_resources(struct device *dev,
struct amd_iommu **iommu,
struct protection_domain **domain,
u16 *bdf)
{
struct dma_ops_domain *dma_dom;
struct pci_dev *pcidev;
u16 _bdf;
BUG_ON(!dev || dev->bus != &pci_bus_type || !dev->dma_mask);
pcidev = to_pci_dev(dev);
_bdf = (pcidev->bus->number << 8) | pcidev->devfn;
if (_bdf >= amd_iommu_last_bdf) {
*iommu = NULL;
*domain = NULL;
*bdf = 0xffff;
return 0;
}
*bdf = amd_iommu_alias_table[_bdf];
*iommu = amd_iommu_rlookup_table[*bdf];
if (*iommu == NULL)
return 0;
dma_dom = (*iommu)->default_dom;
*domain = domain_for_device(*bdf);
if (*domain == NULL) {
*domain = &dma_dom->domain;
set_device_domain(*iommu, *domain, *bdf);
printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
"device ", (*domain)->id);
print_devid(_bdf, 1);
}
return 1;
}
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
struct dma_ops_domain *dom,
unsigned long address,
phys_addr_t paddr,
int direction)
{
u64 *pte, __pte;
WARN_ON(address > dom->aperture_size);
paddr &= PAGE_MASK;
pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
pte += IOMMU_PTE_L0_INDEX(address);
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
if (direction == DMA_TO_DEVICE)
__pte |= IOMMU_PTE_IR;
else if (direction == DMA_FROM_DEVICE)
__pte |= IOMMU_PTE_IW;
else if (direction == DMA_BIDIRECTIONAL)
__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
WARN_ON(*pte);
*pte = __pte;
return (dma_addr_t)address;
}
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
struct dma_ops_domain *dom,
unsigned long address)
{
u64 *pte;
if (address >= dom->aperture_size)
return;
WARN_ON(address & 0xfffULL || address > dom->aperture_size);
pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
pte += IOMMU_PTE_L0_INDEX(address);
WARN_ON(!*pte);
*pte = 0ULL;
}
static dma_addr_t __map_single(struct device *dev,
struct amd_iommu *iommu,
struct dma_ops_domain *dma_dom,
phys_addr_t paddr,
size_t size,
int dir)
{
dma_addr_t offset = paddr & ~PAGE_MASK;
dma_addr_t address, start;
unsigned int pages;
int i;
pages = to_pages(paddr, size);
paddr &= PAGE_MASK;
address = dma_ops_alloc_addresses(dev, dma_dom, pages);
if (unlikely(address == bad_dma_address))
goto out;
start = address;
for (i = 0; i < pages; ++i) {
dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
paddr += PAGE_SIZE;
start += PAGE_SIZE;
}
address += offset;
out:
return address;
}
static void __unmap_single(struct amd_iommu *iommu,
struct dma_ops_domain *dma_dom,
dma_addr_t dma_addr,
size_t size,
int dir)
{
dma_addr_t i, start;
unsigned int pages;
if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
return;
pages = to_pages(dma_addr, size);
dma_addr &= PAGE_MASK;
start = dma_addr;
for (i = 0; i < pages; ++i) {
dma_ops_domain_unmap(iommu, dma_dom, start);
start += PAGE_SIZE;
}
dma_ops_free_addresses(dma_dom, dma_addr, pages);
}
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
size_t size, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
dma_addr_t addr;
get_device_resources(dev, &iommu, &domain, &devid);
if (iommu == NULL || domain == NULL)
return (dma_addr_t)paddr;
spin_lock_irqsave(&domain->lock, flags);
addr = __map_single(dev, iommu, domain->priv, paddr, size, dir);
if (addr == bad_dma_address)
goto out;
if (iommu_has_npcache(iommu))
iommu_flush_pages(iommu, domain->id, addr, size);
if (iommu->need_sync)
iommu_completion_wait(iommu);
out:
spin_unlock_irqrestore(&domain->lock, flags);
return addr;
}
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
size_t size, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
if (!get_device_resources(dev, &iommu, &domain, &devid))
return;
spin_lock_irqsave(&domain->lock, flags);
__unmap_single(iommu, domain->priv, dma_addr, size, dir);
iommu_flush_pages(iommu, domain->id, dma_addr, size);
if (iommu->need_sync)
iommu_completion_wait(iommu);
spin_unlock_irqrestore(&domain->lock, flags);
}
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
struct scatterlist *s;
int i;
for_each_sg(sglist, s, nelems, i) {
s->dma_address = (dma_addr_t)sg_phys(s);
s->dma_length = s->length;
}
return nelems;
}
static int map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
u16 devid;
int i;
struct scatterlist *s;
phys_addr_t paddr;
int mapped_elems = 0;
get_device_resources(dev, &iommu, &domain, &devid);
if (!iommu || !domain)
return map_sg_no_iommu(dev, sglist, nelems, dir);
spin_lock_irqsave(&domain->lock, flags);
for_each_sg(sglist, s, nelems, i) {
paddr = sg_phys(s);
s->dma_address = __map_single(dev, iommu, domain->priv,
paddr, s->length, dir);
if (s->dma_address) {
s->dma_length = s->length;
mapped_elems++;
} else
goto unmap;
if (iommu_has_npcache(iommu))
iommu_flush_pages(iommu, domain->id, s->dma_address,
s->dma_length);
}
if (iommu->need_sync)
iommu_completion_wait(iommu);
out:
spin_unlock_irqrestore(&domain->lock, flags);
return mapped_elems;
unmap:
for_each_sg(sglist, s, mapped_elems, i) {
if (s->dma_address)
__unmap_single(iommu, domain->priv, s->dma_address,
s->dma_length, dir);
s->dma_address = s->dma_length = 0;
}
mapped_elems = 0;
goto out;
}
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
unsigned long flags;
struct amd_iommu *iommu;
struct protection_domain *domain;
struct scatterlist *s;
u16 devid;
int i;
if (!get_device_resources(dev, &iommu, &domain, &devid))
return;
spin_lock_irqsave(&domain->lock, flags);
for_each_sg(sglist, s, nelems, i) {
__unmap_single(iommu, domain->priv, s->dma_address,
s->dma_length, dir);
iommu_flush_pages(iommu, domain->id, s->dma_address,
s->dma_length);
s->dma_address = s->dma_length = 0;
}
if (iommu->need_sync)
iommu_completion_wait(iommu);
spin_unlock_irqrestore(&domain->lock, flags);
}