mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 13:38:40 +00:00
1e45860f54
The AMBA bus regulator support is being used to model on/off switches for power domains which isn't terribly idiomatic for modern kernels with the generic power domain code and creates integration problems on platforms which don't use regulators for their power domains as it's hard to tell the difference between a regulator that is needed but failed to be provided and one that isn't supposed to be there (though DT does make that easier). Platforms that wish to use the regulator API to manage their power domains can indirect via the power domain interface. This feature is only used with the vape supply of the db8500 PRCMU driver which supplies the UARTs and MMC controllers, none of which have support for managing vcore at runtime in mainline (only pl022 SPI controller does). Update that supply to have an always_on constraint until the power domain support for the system is updated so that it is enabled for these users, this is likely to have no impact on practical systems as probably at least one of these devices will be active and cause AMBA to hold the supply on anyway. Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
3014 lines
77 KiB
C
3014 lines
77 KiB
C
/*
|
|
* Copyright (C) STMicroelectronics 2009
|
|
* Copyright (C) ST-Ericsson SA 2010
|
|
*
|
|
* License Terms: GNU General Public License v2
|
|
* Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
|
|
* Author: Sundar Iyer <sundar.iyer@stericsson.com>
|
|
* Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
|
|
*
|
|
* U8500 PRCM Unit interface driver
|
|
*
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/mfd/core.h>
|
|
#include <linux/mfd/dbx500-prcmu.h>
|
|
#include <linux/regulator/db8500-prcmu.h>
|
|
#include <linux/regulator/machine.h>
|
|
#include <asm/hardware/gic.h>
|
|
#include <mach/hardware.h>
|
|
#include <mach/irqs.h>
|
|
#include <mach/db8500-regs.h>
|
|
#include <mach/id.h>
|
|
#include "dbx500-prcmu-regs.h"
|
|
|
|
/* Offset for the firmware version within the TCPM */
|
|
#define PRCMU_FW_VERSION_OFFSET 0xA4
|
|
|
|
/* Index of different voltages to be used when accessing AVSData */
|
|
#define PRCM_AVS_BASE 0x2FC
|
|
#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
|
|
#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
|
|
#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
|
|
#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
|
|
#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
|
|
#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
|
|
#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
|
|
#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
|
|
#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
|
|
#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
|
|
#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
|
|
#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
|
|
#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
|
|
|
|
#define PRCM_AVS_VOLTAGE 0
|
|
#define PRCM_AVS_VOLTAGE_MASK 0x3f
|
|
#define PRCM_AVS_ISSLOWSTARTUP 6
|
|
#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
|
|
#define PRCM_AVS_ISMODEENABLE 7
|
|
#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
|
|
|
|
#define PRCM_BOOT_STATUS 0xFFF
|
|
#define PRCM_ROMCODE_A2P 0xFFE
|
|
#define PRCM_ROMCODE_P2A 0xFFD
|
|
#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
|
|
|
|
#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
|
|
|
|
#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
|
|
#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
|
|
#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
|
|
#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
|
|
#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
|
|
#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
|
|
#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
|
|
#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
|
|
|
|
/* Req Mailboxes */
|
|
#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
|
|
#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
|
|
#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
|
|
#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
|
|
#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
|
|
#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
|
|
|
|
/* Ack Mailboxes */
|
|
#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
|
|
#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
|
|
#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
|
|
#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
|
|
#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
|
|
#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
|
|
|
|
/* Mailbox 0 headers */
|
|
#define MB0H_POWER_STATE_TRANS 0
|
|
#define MB0H_CONFIG_WAKEUPS_EXE 1
|
|
#define MB0H_READ_WAKEUP_ACK 3
|
|
#define MB0H_CONFIG_WAKEUPS_SLEEP 4
|
|
|
|
#define MB0H_WAKEUP_EXE 2
|
|
#define MB0H_WAKEUP_SLEEP 5
|
|
|
|
/* Mailbox 0 REQs */
|
|
#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
|
|
#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
|
|
#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
|
|
#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
|
|
#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
|
|
#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
|
|
|
|
/* Mailbox 0 ACKs */
|
|
#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
|
|
#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
|
|
#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
|
|
#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
|
|
#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
|
|
#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
|
|
#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
|
|
|
|
/* Mailbox 1 headers */
|
|
#define MB1H_ARM_APE_OPP 0x0
|
|
#define MB1H_RESET_MODEM 0x2
|
|
#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
|
|
#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
|
|
#define MB1H_RELEASE_USB_WAKEUP 0x5
|
|
#define MB1H_PLL_ON_OFF 0x6
|
|
|
|
/* Mailbox 1 Requests */
|
|
#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
|
|
#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
|
|
#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
|
|
#define PLL_SOC0_OFF 0x1
|
|
#define PLL_SOC0_ON 0x2
|
|
#define PLL_SOC1_OFF 0x4
|
|
#define PLL_SOC1_ON 0x8
|
|
|
|
/* Mailbox 1 ACKs */
|
|
#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
|
|
#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
|
|
#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
|
|
#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
|
|
|
|
/* Mailbox 2 headers */
|
|
#define MB2H_DPS 0x0
|
|
#define MB2H_AUTO_PWR 0x1
|
|
|
|
/* Mailbox 2 REQs */
|
|
#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
|
|
#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
|
|
#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
|
|
#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
|
|
#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
|
|
#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
|
|
#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
|
|
#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
|
|
#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
|
|
#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
|
|
|
|
/* Mailbox 2 ACKs */
|
|
#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
|
|
#define HWACC_PWR_ST_OK 0xFE
|
|
|
|
/* Mailbox 3 headers */
|
|
#define MB3H_ANC 0x0
|
|
#define MB3H_SIDETONE 0x1
|
|
#define MB3H_SYSCLK 0xE
|
|
|
|
/* Mailbox 3 Requests */
|
|
#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
|
|
#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
|
|
#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
|
|
#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
|
|
#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
|
|
#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
|
|
#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
|
|
|
|
/* Mailbox 4 headers */
|
|
#define MB4H_DDR_INIT 0x0
|
|
#define MB4H_MEM_ST 0x1
|
|
#define MB4H_HOTDOG 0x12
|
|
#define MB4H_HOTMON 0x13
|
|
#define MB4H_HOT_PERIOD 0x14
|
|
#define MB4H_A9WDOG_CONF 0x16
|
|
#define MB4H_A9WDOG_EN 0x17
|
|
#define MB4H_A9WDOG_DIS 0x18
|
|
#define MB4H_A9WDOG_LOAD 0x19
|
|
#define MB4H_A9WDOG_KICK 0x20
|
|
|
|
/* Mailbox 4 Requests */
|
|
#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
|
|
#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
|
|
#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
|
|
#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
|
|
#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
|
|
#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
|
|
#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
|
|
#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
|
|
#define HOTMON_CONFIG_LOW BIT(0)
|
|
#define HOTMON_CONFIG_HIGH BIT(1)
|
|
#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
|
|
#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
|
|
#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
|
|
#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
|
|
#define A9WDOG_AUTO_OFF_EN BIT(7)
|
|
#define A9WDOG_AUTO_OFF_DIS 0
|
|
#define A9WDOG_ID_MASK 0xf
|
|
|
|
/* Mailbox 5 Requests */
|
|
#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
|
|
#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
|
|
#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
|
|
#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
|
|
#define PRCMU_I2C_WRITE(slave) \
|
|
(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
|
|
#define PRCMU_I2C_READ(slave) \
|
|
(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
|
|
#define PRCMU_I2C_STOP_EN BIT(3)
|
|
|
|
/* Mailbox 5 ACKs */
|
|
#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
|
|
#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
|
|
#define I2C_WR_OK 0x1
|
|
#define I2C_RD_OK 0x2
|
|
|
|
#define NUM_MB 8
|
|
#define MBOX_BIT BIT
|
|
#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
|
|
|
|
/*
|
|
* Wakeups/IRQs
|
|
*/
|
|
|
|
#define WAKEUP_BIT_RTC BIT(0)
|
|
#define WAKEUP_BIT_RTT0 BIT(1)
|
|
#define WAKEUP_BIT_RTT1 BIT(2)
|
|
#define WAKEUP_BIT_HSI0 BIT(3)
|
|
#define WAKEUP_BIT_HSI1 BIT(4)
|
|
#define WAKEUP_BIT_CA_WAKE BIT(5)
|
|
#define WAKEUP_BIT_USB BIT(6)
|
|
#define WAKEUP_BIT_ABB BIT(7)
|
|
#define WAKEUP_BIT_ABB_FIFO BIT(8)
|
|
#define WAKEUP_BIT_SYSCLK_OK BIT(9)
|
|
#define WAKEUP_BIT_CA_SLEEP BIT(10)
|
|
#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
|
|
#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
|
|
#define WAKEUP_BIT_ANC_OK BIT(13)
|
|
#define WAKEUP_BIT_SW_ERROR BIT(14)
|
|
#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
|
|
#define WAKEUP_BIT_ARM BIT(17)
|
|
#define WAKEUP_BIT_HOTMON_LOW BIT(18)
|
|
#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
|
|
#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
|
|
#define WAKEUP_BIT_GPIO0 BIT(23)
|
|
#define WAKEUP_BIT_GPIO1 BIT(24)
|
|
#define WAKEUP_BIT_GPIO2 BIT(25)
|
|
#define WAKEUP_BIT_GPIO3 BIT(26)
|
|
#define WAKEUP_BIT_GPIO4 BIT(27)
|
|
#define WAKEUP_BIT_GPIO5 BIT(28)
|
|
#define WAKEUP_BIT_GPIO6 BIT(29)
|
|
#define WAKEUP_BIT_GPIO7 BIT(30)
|
|
#define WAKEUP_BIT_GPIO8 BIT(31)
|
|
|
|
static struct {
|
|
bool valid;
|
|
struct prcmu_fw_version version;
|
|
} fw_info;
|
|
|
|
/*
|
|
* This vector maps irq numbers to the bits in the bit field used in
|
|
* communication with the PRCMU firmware.
|
|
*
|
|
* The reason for having this is to keep the irq numbers contiguous even though
|
|
* the bits in the bit field are not. (The bits also have a tendency to move
|
|
* around, to further complicate matters.)
|
|
*/
|
|
#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
|
|
#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
|
|
static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
|
|
IRQ_ENTRY(RTC),
|
|
IRQ_ENTRY(RTT0),
|
|
IRQ_ENTRY(RTT1),
|
|
IRQ_ENTRY(HSI0),
|
|
IRQ_ENTRY(HSI1),
|
|
IRQ_ENTRY(CA_WAKE),
|
|
IRQ_ENTRY(USB),
|
|
IRQ_ENTRY(ABB),
|
|
IRQ_ENTRY(ABB_FIFO),
|
|
IRQ_ENTRY(CA_SLEEP),
|
|
IRQ_ENTRY(ARM),
|
|
IRQ_ENTRY(HOTMON_LOW),
|
|
IRQ_ENTRY(HOTMON_HIGH),
|
|
IRQ_ENTRY(MODEM_SW_RESET_REQ),
|
|
IRQ_ENTRY(GPIO0),
|
|
IRQ_ENTRY(GPIO1),
|
|
IRQ_ENTRY(GPIO2),
|
|
IRQ_ENTRY(GPIO3),
|
|
IRQ_ENTRY(GPIO4),
|
|
IRQ_ENTRY(GPIO5),
|
|
IRQ_ENTRY(GPIO6),
|
|
IRQ_ENTRY(GPIO7),
|
|
IRQ_ENTRY(GPIO8)
|
|
};
|
|
|
|
#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
|
|
#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
|
|
static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
|
|
WAKEUP_ENTRY(RTC),
|
|
WAKEUP_ENTRY(RTT0),
|
|
WAKEUP_ENTRY(RTT1),
|
|
WAKEUP_ENTRY(HSI0),
|
|
WAKEUP_ENTRY(HSI1),
|
|
WAKEUP_ENTRY(USB),
|
|
WAKEUP_ENTRY(ABB),
|
|
WAKEUP_ENTRY(ABB_FIFO),
|
|
WAKEUP_ENTRY(ARM)
|
|
};
|
|
|
|
/*
|
|
* mb0_transfer - state needed for mailbox 0 communication.
|
|
* @lock: The transaction lock.
|
|
* @dbb_events_lock: A lock used to handle concurrent access to (parts of)
|
|
* the request data.
|
|
* @mask_work: Work structure used for (un)masking wakeup interrupts.
|
|
* @req: Request data that need to persist between requests.
|
|
*/
|
|
static struct {
|
|
spinlock_t lock;
|
|
spinlock_t dbb_irqs_lock;
|
|
struct work_struct mask_work;
|
|
struct mutex ac_wake_lock;
|
|
struct completion ac_wake_work;
|
|
struct {
|
|
u32 dbb_irqs;
|
|
u32 dbb_wakeups;
|
|
u32 abb_events;
|
|
} req;
|
|
} mb0_transfer;
|
|
|
|
/*
|
|
* mb1_transfer - state needed for mailbox 1 communication.
|
|
* @lock: The transaction lock.
|
|
* @work: The transaction completion structure.
|
|
* @ape_opp: The current APE OPP.
|
|
* @ack: Reply ("acknowledge") data.
|
|
*/
|
|
static struct {
|
|
struct mutex lock;
|
|
struct completion work;
|
|
u8 ape_opp;
|
|
struct {
|
|
u8 header;
|
|
u8 arm_opp;
|
|
u8 ape_opp;
|
|
u8 ape_voltage_status;
|
|
} ack;
|
|
} mb1_transfer;
|
|
|
|
/*
|
|
* mb2_transfer - state needed for mailbox 2 communication.
|
|
* @lock: The transaction lock.
|
|
* @work: The transaction completion structure.
|
|
* @auto_pm_lock: The autonomous power management configuration lock.
|
|
* @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
|
|
* @req: Request data that need to persist between requests.
|
|
* @ack: Reply ("acknowledge") data.
|
|
*/
|
|
static struct {
|
|
struct mutex lock;
|
|
struct completion work;
|
|
spinlock_t auto_pm_lock;
|
|
bool auto_pm_enabled;
|
|
struct {
|
|
u8 status;
|
|
} ack;
|
|
} mb2_transfer;
|
|
|
|
/*
|
|
* mb3_transfer - state needed for mailbox 3 communication.
|
|
* @lock: The request lock.
|
|
* @sysclk_lock: A lock used to handle concurrent sysclk requests.
|
|
* @sysclk_work: Work structure used for sysclk requests.
|
|
*/
|
|
static struct {
|
|
spinlock_t lock;
|
|
struct mutex sysclk_lock;
|
|
struct completion sysclk_work;
|
|
} mb3_transfer;
|
|
|
|
/*
|
|
* mb4_transfer - state needed for mailbox 4 communication.
|
|
* @lock: The transaction lock.
|
|
* @work: The transaction completion structure.
|
|
*/
|
|
static struct {
|
|
struct mutex lock;
|
|
struct completion work;
|
|
} mb4_transfer;
|
|
|
|
/*
|
|
* mb5_transfer - state needed for mailbox 5 communication.
|
|
* @lock: The transaction lock.
|
|
* @work: The transaction completion structure.
|
|
* @ack: Reply ("acknowledge") data.
|
|
*/
|
|
static struct {
|
|
struct mutex lock;
|
|
struct completion work;
|
|
struct {
|
|
u8 status;
|
|
u8 value;
|
|
} ack;
|
|
} mb5_transfer;
|
|
|
|
static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
|
|
|
|
/* Spinlocks */
|
|
static DEFINE_SPINLOCK(prcmu_lock);
|
|
static DEFINE_SPINLOCK(clkout_lock);
|
|
|
|
/* Global var to runtime determine TCDM base for v2 or v1 */
|
|
static __iomem void *tcdm_base;
|
|
|
|
struct clk_mgt {
|
|
void __iomem *reg;
|
|
u32 pllsw;
|
|
int branch;
|
|
bool clk38div;
|
|
};
|
|
|
|
enum {
|
|
PLL_RAW,
|
|
PLL_FIX,
|
|
PLL_DIV
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(clk_mgt_lock);
|
|
|
|
#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
|
|
{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
|
|
struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
|
|
CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
|
|
CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
|
|
CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
|
|
CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
|
|
CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
|
|
CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
|
|
};
|
|
|
|
struct dsiclk {
|
|
u32 divsel_mask;
|
|
u32 divsel_shift;
|
|
u32 divsel;
|
|
};
|
|
|
|
static struct dsiclk dsiclk[2] = {
|
|
{
|
|
.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
|
|
.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
|
|
.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
|
|
},
|
|
{
|
|
.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
|
|
.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
|
|
.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
|
|
}
|
|
};
|
|
|
|
struct dsiescclk {
|
|
u32 en;
|
|
u32 div_mask;
|
|
u32 div_shift;
|
|
};
|
|
|
|
static struct dsiescclk dsiescclk[3] = {
|
|
{
|
|
.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
|
|
.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
|
|
.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
|
|
},
|
|
{
|
|
.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
|
|
.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
|
|
.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
|
|
},
|
|
{
|
|
.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
|
|
.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
|
|
.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Used by MCDE to setup all necessary PRCMU registers
|
|
*/
|
|
#define PRCMU_RESET_DSIPLL 0x00004000
|
|
#define PRCMU_UNCLAMP_DSIPLL 0x00400800
|
|
|
|
#define PRCMU_CLK_PLL_DIV_SHIFT 0
|
|
#define PRCMU_CLK_PLL_SW_SHIFT 5
|
|
#define PRCMU_CLK_38 (1 << 9)
|
|
#define PRCMU_CLK_38_SRC (1 << 10)
|
|
#define PRCMU_CLK_38_DIV (1 << 11)
|
|
|
|
/* PLLDIV=12, PLLSW=4 (PLLDDR) */
|
|
#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
|
|
|
|
/* DPI 50000000 Hz */
|
|
#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
|
|
(16 << PRCMU_CLK_PLL_DIV_SHIFT))
|
|
#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
|
|
|
|
/* D=101, N=1, R=4, SELDIV2=0 */
|
|
#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
|
|
|
|
#define PRCMU_ENABLE_PLLDSI 0x00000001
|
|
#define PRCMU_DISABLE_PLLDSI 0x00000000
|
|
#define PRCMU_RELEASE_RESET_DSS 0x0000400C
|
|
#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
|
|
/* ESC clk, div0=1, div1=1, div2=3 */
|
|
#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
|
|
#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
|
|
#define PRCMU_DSI_RESET_SW 0x00000007
|
|
|
|
#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
|
|
|
|
int db8500_prcmu_enable_dsipll(void)
|
|
{
|
|
int i;
|
|
|
|
/* Clear DSIPLL_RESETN */
|
|
writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
|
|
/* Unclamp DSIPLL in/out */
|
|
writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
|
|
|
|
/* Set DSI PLL FREQ */
|
|
writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
|
|
writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
|
|
/* Enable Escape clocks */
|
|
writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
|
|
|
|
/* Start DSI PLL */
|
|
writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
|
|
/* Reset DSI PLL */
|
|
writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
|
|
for (i = 0; i < 10; i++) {
|
|
if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
|
|
== PRCMU_PLLDSI_LOCKP_LOCKED)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
/* Set DSIPLL_RESETN */
|
|
writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
|
|
return 0;
|
|
}
|
|
|
|
int db8500_prcmu_disable_dsipll(void)
|
|
{
|
|
/* Disable dsi pll */
|
|
writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
|
|
/* Disable escapeclock */
|
|
writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
|
|
return 0;
|
|
}
|
|
|
|
int db8500_prcmu_set_display_clocks(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&clk_mgt_lock, flags);
|
|
|
|
/* Grab the HW semaphore. */
|
|
while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
|
|
cpu_relax();
|
|
|
|
writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
|
|
writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
|
|
writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
|
|
|
|
/* Release the HW semaphore. */
|
|
writel(0, PRCM_SEM);
|
|
|
|
spin_unlock_irqrestore(&clk_mgt_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 db8500_prcmu_read(unsigned int reg)
|
|
{
|
|
return readl(_PRCMU_BASE + reg);
|
|
}
|
|
|
|
void db8500_prcmu_write(unsigned int reg, u32 value)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&prcmu_lock, flags);
|
|
writel(value, (_PRCMU_BASE + reg));
|
|
spin_unlock_irqrestore(&prcmu_lock, flags);
|
|
}
|
|
|
|
void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
|
|
{
|
|
u32 val;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&prcmu_lock, flags);
|
|
val = readl(_PRCMU_BASE + reg);
|
|
val = ((val & ~mask) | (value & mask));
|
|
writel(val, (_PRCMU_BASE + reg));
|
|
spin_unlock_irqrestore(&prcmu_lock, flags);
|
|
}
|
|
|
|
struct prcmu_fw_version *prcmu_get_fw_version(void)
|
|
{
|
|
return fw_info.valid ? &fw_info.version : NULL;
|
|
}
|
|
|
|
bool prcmu_has_arm_maxopp(void)
|
|
{
|
|
return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
|
|
PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
|
|
}
|
|
|
|
/**
|
|
* prcmu_get_boot_status - PRCMU boot status checking
|
|
* Returns: the current PRCMU boot status
|
|
*/
|
|
int prcmu_get_boot_status(void)
|
|
{
|
|
return readb(tcdm_base + PRCM_BOOT_STATUS);
|
|
}
|
|
|
|
/**
|
|
* prcmu_set_rc_a2p - This function is used to run few power state sequences
|
|
* @val: Value to be set, i.e. transition requested
|
|
* Returns: 0 on success, -EINVAL on invalid argument
|
|
*
|
|
* This function is used to run the following power state sequences -
|
|
* any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
|
|
*/
|
|
int prcmu_set_rc_a2p(enum romcode_write val)
|
|
{
|
|
if (val < RDY_2_DS || val > RDY_2_XP70_RST)
|
|
return -EINVAL;
|
|
writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* prcmu_get_rc_p2a - This function is used to get power state sequences
|
|
* Returns: the power transition that has last happened
|
|
*
|
|
* This function can return the following transitions-
|
|
* any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
|
|
*/
|
|
enum romcode_read prcmu_get_rc_p2a(void)
|
|
{
|
|
return readb(tcdm_base + PRCM_ROMCODE_P2A);
|
|
}
|
|
|
|
/**
|
|
* prcmu_get_current_mode - Return the current XP70 power mode
|
|
* Returns: Returns the current AP(ARM) power mode: init,
|
|
* apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
|
|
*/
|
|
enum ap_pwrst prcmu_get_xp70_current_state(void)
|
|
{
|
|
return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
|
|
}
|
|
|
|
/**
|
|
* prcmu_config_clkout - Configure one of the programmable clock outputs.
|
|
* @clkout: The CLKOUT number (0 or 1).
|
|
* @source: The clock to be used (one of the PRCMU_CLKSRC_*).
|
|
* @div: The divider to be applied.
|
|
*
|
|
* Configures one of the programmable clock outputs (CLKOUTs).
|
|
* @div should be in the range [1,63] to request a configuration, or 0 to
|
|
* inform that the configuration is no longer requested.
|
|
*/
|
|
int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
|
|
{
|
|
static int requests[2];
|
|
int r = 0;
|
|
unsigned long flags;
|
|
u32 val;
|
|
u32 bits;
|
|
u32 mask;
|
|
u32 div_mask;
|
|
|
|
BUG_ON(clkout > 1);
|
|
BUG_ON(div > 63);
|
|
BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
|
|
|
|
if (!div && !requests[clkout])
|
|
return -EINVAL;
|
|
|
|
switch (clkout) {
|
|
case 0:
|
|
div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
|
|
mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
|
|
bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
|
|
(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
|
|
break;
|
|
case 1:
|
|
div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
|
|
mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
|
|
PRCM_CLKOCR_CLK1TYPE);
|
|
bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
|
|
(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
|
|
break;
|
|
}
|
|
bits &= mask;
|
|
|
|
spin_lock_irqsave(&clkout_lock, flags);
|
|
|
|
val = readl(PRCM_CLKOCR);
|
|
if (val & div_mask) {
|
|
if (div) {
|
|
if ((val & mask) != bits) {
|
|
r = -EBUSY;
|
|
goto unlock_and_return;
|
|
}
|
|
} else {
|
|
if ((val & mask & ~div_mask) != bits) {
|
|
r = -EINVAL;
|
|
goto unlock_and_return;
|
|
}
|
|
}
|
|
}
|
|
writel((bits | (val & ~mask)), PRCM_CLKOCR);
|
|
requests[clkout] += (div ? 1 : -1);
|
|
|
|
unlock_and_return:
|
|
spin_unlock_irqrestore(&clkout_lock, flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
|
|
{
|
|
unsigned long flags;
|
|
|
|
BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
|
|
|
|
spin_lock_irqsave(&mb0_transfer.lock, flags);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
|
|
cpu_relax();
|
|
|
|
writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
|
|
writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
|
|
writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
|
|
writeb((keep_ulp_clk ? 1 : 0),
|
|
(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
|
|
writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
|
|
writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
|
|
|
|
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
u8 db8500_prcmu_get_power_state_result(void)
|
|
{
|
|
return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
|
|
}
|
|
|
|
/* This function decouple the gic from the prcmu */
|
|
int db8500_prcmu_gic_decouple(void)
|
|
{
|
|
u32 val = readl(PRCM_A9_MASK_REQ);
|
|
|
|
/* Set bit 0 register value to 1 */
|
|
writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
|
|
PRCM_A9_MASK_REQ);
|
|
|
|
/* Make sure the register is updated */
|
|
readl(PRCM_A9_MASK_REQ);
|
|
|
|
/* Wait a few cycles for the gic mask completion */
|
|
udelay(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function recouple the gic with the prcmu */
|
|
int db8500_prcmu_gic_recouple(void)
|
|
{
|
|
u32 val = readl(PRCM_A9_MASK_REQ);
|
|
|
|
/* Set bit 0 register value to 0 */
|
|
writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PRCMU_GIC_NUMBER_REGS 5
|
|
|
|
/*
|
|
* This function checks if there are pending irq on the gic. It only
|
|
* makes sense if the gic has been decoupled before with the
|
|
* db8500_prcmu_gic_decouple function. Disabling an interrupt only
|
|
* disables the forwarding of the interrupt to any CPU interface. It
|
|
* does not prevent the interrupt from changing state, for example
|
|
* becoming pending, or active and pending if it is already
|
|
* active. Hence, we have to check the interrupt is pending *and* is
|
|
* active.
|
|
*/
|
|
bool db8500_prcmu_gic_pending_irq(void)
|
|
{
|
|
u32 pr; /* Pending register */
|
|
u32 er; /* Enable register */
|
|
void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
|
|
int i;
|
|
|
|
/* 5 registers. STI & PPI not skipped */
|
|
for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
|
|
|
|
pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
|
|
er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
|
|
|
|
if (pr & er)
|
|
return true; /* There is a pending interrupt */
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This function checks if there are pending interrupt on the
|
|
* prcmu which has been delegated to monitor the irqs with the
|
|
* db8500_prcmu_copy_gic_settings function.
|
|
*/
|
|
bool db8500_prcmu_pending_irq(void)
|
|
{
|
|
u32 it, im;
|
|
int i;
|
|
|
|
for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
|
|
it = readl(PRCM_ARMITVAL31TO0 + i * 4);
|
|
im = readl(PRCM_ARMITMSK31TO0 + i * 4);
|
|
if (it & im)
|
|
return true; /* There is a pending interrupt */
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This function checks if the specified cpu is in in WFI. It's usage
|
|
* makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
|
|
* function. Of course passing smp_processor_id() to this function will
|
|
* always return false...
|
|
*/
|
|
bool db8500_prcmu_is_cpu_in_wfi(int cpu)
|
|
{
|
|
return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
|
|
PRCM_ARM_WFI_STANDBY_WFI0;
|
|
}
|
|
|
|
/*
|
|
* This function copies the gic SPI settings to the prcmu in order to
|
|
* monitor them and abort/finish the retention/off sequence or state.
|
|
*/
|
|
int db8500_prcmu_copy_gic_settings(void)
|
|
{
|
|
u32 er; /* Enable register */
|
|
void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
|
|
int i;
|
|
|
|
/* We skip the STI and PPI */
|
|
for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
|
|
er = readl_relaxed(dist_base +
|
|
GIC_DIST_ENABLE_SET + (i + 1) * 4);
|
|
writel(er, PRCM_ARMITMSK31TO0 + i * 4);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function should only be called while mb0_transfer.lock is held. */
|
|
static void config_wakeups(void)
|
|
{
|
|
const u8 header[2] = {
|
|
MB0H_CONFIG_WAKEUPS_EXE,
|
|
MB0H_CONFIG_WAKEUPS_SLEEP
|
|
};
|
|
static u32 last_dbb_events;
|
|
static u32 last_abb_events;
|
|
u32 dbb_events;
|
|
u32 abb_events;
|
|
unsigned int i;
|
|
|
|
dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
|
|
dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
|
|
|
|
abb_events = mb0_transfer.req.abb_events;
|
|
|
|
if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
|
|
return;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
|
|
cpu_relax();
|
|
writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
|
|
writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
|
|
writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
|
|
writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
|
|
}
|
|
last_dbb_events = dbb_events;
|
|
last_abb_events = abb_events;
|
|
}
|
|
|
|
void db8500_prcmu_enable_wakeups(u32 wakeups)
|
|
{
|
|
unsigned long flags;
|
|
u32 bits;
|
|
int i;
|
|
|
|
BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
|
|
|
|
for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
|
|
if (wakeups & BIT(i))
|
|
bits |= prcmu_wakeup_bit[i];
|
|
}
|
|
|
|
spin_lock_irqsave(&mb0_transfer.lock, flags);
|
|
|
|
mb0_transfer.req.dbb_wakeups = bits;
|
|
config_wakeups();
|
|
|
|
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
|
|
}
|
|
|
|
void db8500_prcmu_config_abb_event_readout(u32 abb_events)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mb0_transfer.lock, flags);
|
|
|
|
mb0_transfer.req.abb_events = abb_events;
|
|
config_wakeups();
|
|
|
|
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
|
|
}
|
|
|
|
void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
|
|
{
|
|
if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
|
|
*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
|
|
else
|
|
*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
|
|
* @opp: The new ARM operating point to which transition is to be made
|
|
* Returns: 0 on success, non-zero on failure
|
|
*
|
|
* This function sets the the operating point of the ARM.
|
|
*/
|
|
int db8500_prcmu_set_arm_opp(u8 opp)
|
|
{
|
|
int r;
|
|
|
|
if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
|
|
return -EINVAL;
|
|
|
|
r = 0;
|
|
|
|
mutex_lock(&mb1_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
|
|
cpu_relax();
|
|
|
|
writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
|
|
writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
|
|
writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
|
|
|
|
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb1_transfer.work);
|
|
|
|
if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
|
|
(mb1_transfer.ack.arm_opp != opp))
|
|
r = -EIO;
|
|
|
|
mutex_unlock(&mb1_transfer.lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_get_arm_opp - get the current ARM OPP
|
|
*
|
|
* Returns: the current ARM OPP
|
|
*/
|
|
int db8500_prcmu_get_arm_opp(void)
|
|
{
|
|
return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_get_ddr_opp - get the current DDR OPP
|
|
*
|
|
* Returns: the current DDR OPP
|
|
*/
|
|
int db8500_prcmu_get_ddr_opp(void)
|
|
{
|
|
return readb(PRCM_DDR_SUBSYS_APE_MINBW);
|
|
}
|
|
|
|
/**
|
|
* db8500_set_ddr_opp - set the appropriate DDR OPP
|
|
* @opp: The new DDR operating point to which transition is to be made
|
|
* Returns: 0 on success, non-zero on failure
|
|
*
|
|
* This function sets the operating point of the DDR.
|
|
*/
|
|
int db8500_prcmu_set_ddr_opp(u8 opp)
|
|
{
|
|
if (opp < DDR_100_OPP || opp > DDR_25_OPP)
|
|
return -EINVAL;
|
|
/* Changing the DDR OPP can hang the hardware pre-v21 */
|
|
if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
|
|
writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
|
|
static void request_even_slower_clocks(bool enable)
|
|
{
|
|
void __iomem *clock_reg[] = {
|
|
PRCM_ACLK_MGT,
|
|
PRCM_DMACLK_MGT
|
|
};
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
|
|
spin_lock_irqsave(&clk_mgt_lock, flags);
|
|
|
|
/* Grab the HW semaphore. */
|
|
while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
|
|
cpu_relax();
|
|
|
|
for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
|
|
u32 val;
|
|
u32 div;
|
|
|
|
val = readl(clock_reg[i]);
|
|
div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
|
|
if (enable) {
|
|
if ((div <= 1) || (div > 15)) {
|
|
pr_err("prcmu: Bad clock divider %d in %s\n",
|
|
div, __func__);
|
|
goto unlock_and_return;
|
|
}
|
|
div <<= 1;
|
|
} else {
|
|
if (div <= 2)
|
|
goto unlock_and_return;
|
|
div >>= 1;
|
|
}
|
|
val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
|
|
(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
|
|
writel(val, clock_reg[i]);
|
|
}
|
|
|
|
unlock_and_return:
|
|
/* Release the HW semaphore. */
|
|
writel(0, PRCM_SEM);
|
|
|
|
spin_unlock_irqrestore(&clk_mgt_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* db8500_set_ape_opp - set the appropriate APE OPP
|
|
* @opp: The new APE operating point to which transition is to be made
|
|
* Returns: 0 on success, non-zero on failure
|
|
*
|
|
* This function sets the operating point of the APE.
|
|
*/
|
|
int db8500_prcmu_set_ape_opp(u8 opp)
|
|
{
|
|
int r = 0;
|
|
|
|
if (opp == mb1_transfer.ape_opp)
|
|
return 0;
|
|
|
|
mutex_lock(&mb1_transfer.lock);
|
|
|
|
if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
|
|
request_even_slower_clocks(false);
|
|
|
|
if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
|
|
goto skip_message;
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
|
|
cpu_relax();
|
|
|
|
writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
|
|
writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
|
|
writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
|
|
(tcdm_base + PRCM_REQ_MB1_APE_OPP));
|
|
|
|
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb1_transfer.work);
|
|
|
|
if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
|
|
(mb1_transfer.ack.ape_opp != opp))
|
|
r = -EIO;
|
|
|
|
skip_message:
|
|
if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
|
|
(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
|
|
request_even_slower_clocks(true);
|
|
if (!r)
|
|
mb1_transfer.ape_opp = opp;
|
|
|
|
mutex_unlock(&mb1_transfer.lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_get_ape_opp - get the current APE OPP
|
|
*
|
|
* Returns: the current APE OPP
|
|
*/
|
|
int db8500_prcmu_get_ape_opp(void)
|
|
{
|
|
return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
|
|
}
|
|
|
|
/**
|
|
* prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
|
|
* @enable: true to request the higher voltage, false to drop a request.
|
|
*
|
|
* Calls to this function to enable and disable requests must be balanced.
|
|
*/
|
|
int prcmu_request_ape_opp_100_voltage(bool enable)
|
|
{
|
|
int r = 0;
|
|
u8 header;
|
|
static unsigned int requests;
|
|
|
|
mutex_lock(&mb1_transfer.lock);
|
|
|
|
if (enable) {
|
|
if (0 != requests++)
|
|
goto unlock_and_return;
|
|
header = MB1H_REQUEST_APE_OPP_100_VOLT;
|
|
} else {
|
|
if (requests == 0) {
|
|
r = -EIO;
|
|
goto unlock_and_return;
|
|
} else if (1 != requests--) {
|
|
goto unlock_and_return;
|
|
}
|
|
header = MB1H_RELEASE_APE_OPP_100_VOLT;
|
|
}
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
|
|
cpu_relax();
|
|
|
|
writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
|
|
|
|
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb1_transfer.work);
|
|
|
|
if ((mb1_transfer.ack.header != header) ||
|
|
((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
|
|
r = -EIO;
|
|
|
|
unlock_and_return:
|
|
mutex_unlock(&mb1_transfer.lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
|
|
*
|
|
* This function releases the power state requirements of a USB wakeup.
|
|
*/
|
|
int prcmu_release_usb_wakeup_state(void)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&mb1_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
|
|
cpu_relax();
|
|
|
|
writeb(MB1H_RELEASE_USB_WAKEUP,
|
|
(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
|
|
|
|
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb1_transfer.work);
|
|
|
|
if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
|
|
((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
|
|
r = -EIO;
|
|
|
|
mutex_unlock(&mb1_transfer.lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int request_pll(u8 clock, bool enable)
|
|
{
|
|
int r = 0;
|
|
|
|
if (clock == PRCMU_PLLSOC0)
|
|
clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
|
|
else if (clock == PRCMU_PLLSOC1)
|
|
clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
|
|
else
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mb1_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
|
|
cpu_relax();
|
|
|
|
writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
|
|
writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
|
|
|
|
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb1_transfer.work);
|
|
|
|
if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
|
|
r = -EIO;
|
|
|
|
mutex_unlock(&mb1_transfer.lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_set_epod - set the state of a EPOD (power domain)
|
|
* @epod_id: The EPOD to set
|
|
* @epod_state: The new EPOD state
|
|
*
|
|
* This function sets the state of a EPOD (power domain). It may not be called
|
|
* from interrupt context.
|
|
*/
|
|
int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
|
|
{
|
|
int r = 0;
|
|
bool ram_retention = false;
|
|
int i;
|
|
|
|
/* check argument */
|
|
BUG_ON(epod_id >= NUM_EPOD_ID);
|
|
|
|
/* set flag if retention is possible */
|
|
switch (epod_id) {
|
|
case EPOD_ID_SVAMMDSP:
|
|
case EPOD_ID_SIAMMDSP:
|
|
case EPOD_ID_ESRAM12:
|
|
case EPOD_ID_ESRAM34:
|
|
ram_retention = true;
|
|
break;
|
|
}
|
|
|
|
/* check argument */
|
|
BUG_ON(epod_state > EPOD_STATE_ON);
|
|
BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
|
|
|
|
/* get lock */
|
|
mutex_lock(&mb2_transfer.lock);
|
|
|
|
/* wait for mailbox */
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
|
|
cpu_relax();
|
|
|
|
/* fill in mailbox */
|
|
for (i = 0; i < NUM_EPOD_ID; i++)
|
|
writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
|
|
writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
|
|
|
|
writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
|
|
|
|
writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
|
|
|
|
/*
|
|
* The current firmware version does not handle errors correctly,
|
|
* and we cannot recover if there is an error.
|
|
* This is expected to change when the firmware is updated.
|
|
*/
|
|
if (!wait_for_completion_timeout(&mb2_transfer.work,
|
|
msecs_to_jiffies(20000))) {
|
|
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
|
|
__func__);
|
|
r = -EIO;
|
|
goto unlock_and_return;
|
|
}
|
|
|
|
if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
|
|
r = -EIO;
|
|
|
|
unlock_and_return:
|
|
mutex_unlock(&mb2_transfer.lock);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* prcmu_configure_auto_pm - Configure autonomous power management.
|
|
* @sleep: Configuration for ApSleep.
|
|
* @idle: Configuration for ApIdle.
|
|
*/
|
|
void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
|
|
struct prcmu_auto_pm_config *idle)
|
|
{
|
|
u32 sleep_cfg;
|
|
u32 idle_cfg;
|
|
unsigned long flags;
|
|
|
|
BUG_ON((sleep == NULL) || (idle == NULL));
|
|
|
|
sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
|
|
sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
|
|
sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
|
|
sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
|
|
sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
|
|
sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
|
|
|
|
idle_cfg = (idle->sva_auto_pm_enable & 0xF);
|
|
idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
|
|
idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
|
|
idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
|
|
idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
|
|
idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
|
|
|
|
spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
|
|
|
|
/*
|
|
* The autonomous power management configuration is done through
|
|
* fields in mailbox 2, but these fields are only used as shared
|
|
* variables - i.e. there is no need to send a message.
|
|
*/
|
|
writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
|
|
writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
|
|
|
|
mb2_transfer.auto_pm_enabled =
|
|
((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
|
|
(sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
|
|
(idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
|
|
(idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
|
|
|
|
spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(prcmu_configure_auto_pm);
|
|
|
|
bool prcmu_is_auto_pm_enabled(void)
|
|
{
|
|
return mb2_transfer.auto_pm_enabled;
|
|
}
|
|
|
|
static int request_sysclk(bool enable)
|
|
{
|
|
int r;
|
|
unsigned long flags;
|
|
|
|
r = 0;
|
|
|
|
mutex_lock(&mb3_transfer.sysclk_lock);
|
|
|
|
spin_lock_irqsave(&mb3_transfer.lock, flags);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
|
|
cpu_relax();
|
|
|
|
writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
|
|
|
|
writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
|
|
writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
|
|
|
|
spin_unlock_irqrestore(&mb3_transfer.lock, flags);
|
|
|
|
/*
|
|
* The firmware only sends an ACK if we want to enable the
|
|
* SysClk, and it succeeds.
|
|
*/
|
|
if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
|
|
msecs_to_jiffies(20000))) {
|
|
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
|
|
__func__);
|
|
r = -EIO;
|
|
}
|
|
|
|
mutex_unlock(&mb3_transfer.sysclk_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int request_timclk(bool enable)
|
|
{
|
|
u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
|
|
|
|
if (!enable)
|
|
val |= PRCM_TCR_STOP_TIMERS;
|
|
writel(val, PRCM_TCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int request_clock(u8 clock, bool enable)
|
|
{
|
|
u32 val;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&clk_mgt_lock, flags);
|
|
|
|
/* Grab the HW semaphore. */
|
|
while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
|
|
cpu_relax();
|
|
|
|
val = readl(clk_mgt[clock].reg);
|
|
if (enable) {
|
|
val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
|
|
} else {
|
|
clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
|
|
val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
|
|
}
|
|
writel(val, clk_mgt[clock].reg);
|
|
|
|
/* Release the HW semaphore. */
|
|
writel(0, PRCM_SEM);
|
|
|
|
spin_unlock_irqrestore(&clk_mgt_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int request_sga_clock(u8 clock, bool enable)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
if (enable) {
|
|
val = readl(PRCM_CGATING_BYPASS);
|
|
writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
|
|
}
|
|
|
|
ret = request_clock(clock, enable);
|
|
|
|
if (!ret && !enable) {
|
|
val = readl(PRCM_CGATING_BYPASS);
|
|
writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline bool plldsi_locked(void)
|
|
{
|
|
return (readl(PRCM_PLLDSI_LOCKP) &
|
|
(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
|
|
PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
|
|
(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
|
|
PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
|
|
}
|
|
|
|
static int request_plldsi(bool enable)
|
|
{
|
|
int r = 0;
|
|
u32 val;
|
|
|
|
writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
|
|
PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
|
|
PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
|
|
|
|
val = readl(PRCM_PLLDSI_ENABLE);
|
|
if (enable)
|
|
val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
|
|
else
|
|
val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
|
|
writel(val, PRCM_PLLDSI_ENABLE);
|
|
|
|
if (enable) {
|
|
unsigned int i;
|
|
bool locked = plldsi_locked();
|
|
|
|
for (i = 10; !locked && (i > 0); --i) {
|
|
udelay(100);
|
|
locked = plldsi_locked();
|
|
}
|
|
if (locked) {
|
|
writel(PRCM_APE_RESETN_DSIPLL_RESETN,
|
|
PRCM_APE_RESETN_SET);
|
|
} else {
|
|
writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
|
|
PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
|
|
PRCM_MMIP_LS_CLAMP_SET);
|
|
val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
|
|
writel(val, PRCM_PLLDSI_ENABLE);
|
|
r = -EAGAIN;
|
|
}
|
|
} else {
|
|
writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int request_dsiclk(u8 n, bool enable)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(PRCM_DSI_PLLOUT_SEL);
|
|
val &= ~dsiclk[n].divsel_mask;
|
|
val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
|
|
dsiclk[n].divsel_shift);
|
|
writel(val, PRCM_DSI_PLLOUT_SEL);
|
|
return 0;
|
|
}
|
|
|
|
static int request_dsiescclk(u8 n, bool enable)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(PRCM_DSITVCLK_DIV);
|
|
enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
|
|
writel(val, PRCM_DSITVCLK_DIV);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
|
|
* @clock: The clock for which the request is made.
|
|
* @enable: Whether the clock should be enabled (true) or disabled (false).
|
|
*
|
|
* This function should only be used by the clock implementation.
|
|
* Do not use it from any other place!
|
|
*/
|
|
int db8500_prcmu_request_clock(u8 clock, bool enable)
|
|
{
|
|
if (clock == PRCMU_SGACLK)
|
|
return request_sga_clock(clock, enable);
|
|
else if (clock < PRCMU_NUM_REG_CLOCKS)
|
|
return request_clock(clock, enable);
|
|
else if (clock == PRCMU_TIMCLK)
|
|
return request_timclk(enable);
|
|
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
|
|
return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
|
|
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
|
|
return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
|
|
else if (clock == PRCMU_PLLDSI)
|
|
return request_plldsi(enable);
|
|
else if (clock == PRCMU_SYSCLK)
|
|
return request_sysclk(enable);
|
|
else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
|
|
return request_pll(clock, enable);
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
|
|
int branch)
|
|
{
|
|
u64 rate;
|
|
u32 val;
|
|
u32 d;
|
|
u32 div = 1;
|
|
|
|
val = readl(reg);
|
|
|
|
rate = src_rate;
|
|
rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
|
|
|
|
d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
|
|
if (d > 1)
|
|
div *= d;
|
|
|
|
d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
|
|
if (d > 1)
|
|
div *= d;
|
|
|
|
if (val & PRCM_PLL_FREQ_SELDIV2)
|
|
div *= 2;
|
|
|
|
if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
|
|
(val & PRCM_PLL_FREQ_DIV2EN) &&
|
|
((reg == PRCM_PLLSOC0_FREQ) ||
|
|
(reg == PRCM_PLLDDR_FREQ))))
|
|
div *= 2;
|
|
|
|
(void)do_div(rate, div);
|
|
|
|
return (unsigned long)rate;
|
|
}
|
|
|
|
#define ROOT_CLOCK_RATE 38400000
|
|
|
|
static unsigned long clock_rate(u8 clock)
|
|
{
|
|
u32 val;
|
|
u32 pllsw;
|
|
unsigned long rate = ROOT_CLOCK_RATE;
|
|
|
|
val = readl(clk_mgt[clock].reg);
|
|
|
|
if (val & PRCM_CLK_MGT_CLK38) {
|
|
if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
|
|
rate /= 2;
|
|
return rate;
|
|
}
|
|
|
|
val |= clk_mgt[clock].pllsw;
|
|
pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
|
|
|
|
if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
|
|
rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
|
|
else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
|
|
rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
|
|
else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
|
|
rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
|
|
else
|
|
return 0;
|
|
|
|
if ((clock == PRCMU_SGACLK) &&
|
|
(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
|
|
u64 r = (rate * 10);
|
|
|
|
(void)do_div(r, 25);
|
|
return (unsigned long)r;
|
|
}
|
|
val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
|
|
if (val)
|
|
return rate / val;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long dsiclk_rate(u8 n)
|
|
{
|
|
u32 divsel;
|
|
u32 div = 1;
|
|
|
|
divsel = readl(PRCM_DSI_PLLOUT_SEL);
|
|
divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
|
|
|
|
if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
|
|
divsel = dsiclk[n].divsel;
|
|
|
|
switch (divsel) {
|
|
case PRCM_DSI_PLLOUT_SEL_PHI_4:
|
|
div *= 2;
|
|
case PRCM_DSI_PLLOUT_SEL_PHI_2:
|
|
div *= 2;
|
|
case PRCM_DSI_PLLOUT_SEL_PHI:
|
|
return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
|
|
PLL_RAW) / div;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static unsigned long dsiescclk_rate(u8 n)
|
|
{
|
|
u32 div;
|
|
|
|
div = readl(PRCM_DSITVCLK_DIV);
|
|
div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
|
|
return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
|
|
}
|
|
|
|
unsigned long prcmu_clock_rate(u8 clock)
|
|
{
|
|
if (clock < PRCMU_NUM_REG_CLOCKS)
|
|
return clock_rate(clock);
|
|
else if (clock == PRCMU_TIMCLK)
|
|
return ROOT_CLOCK_RATE / 16;
|
|
else if (clock == PRCMU_SYSCLK)
|
|
return ROOT_CLOCK_RATE;
|
|
else if (clock == PRCMU_PLLSOC0)
|
|
return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
|
|
else if (clock == PRCMU_PLLSOC1)
|
|
return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
|
|
else if (clock == PRCMU_PLLDDR)
|
|
return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
|
|
else if (clock == PRCMU_PLLDSI)
|
|
return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
|
|
PLL_RAW);
|
|
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
|
|
return dsiclk_rate(clock - PRCMU_DSI0CLK);
|
|
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
|
|
return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
|
|
{
|
|
if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
|
|
return ROOT_CLOCK_RATE;
|
|
clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
|
|
if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
|
|
return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
|
|
else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
|
|
return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
|
|
else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
|
|
return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static u32 clock_divider(unsigned long src_rate, unsigned long rate)
|
|
{
|
|
u32 div;
|
|
|
|
div = (src_rate / rate);
|
|
if (div == 0)
|
|
return 1;
|
|
if (rate < (src_rate / div))
|
|
div++;
|
|
return div;
|
|
}
|
|
|
|
static long round_clock_rate(u8 clock, unsigned long rate)
|
|
{
|
|
u32 val;
|
|
u32 div;
|
|
unsigned long src_rate;
|
|
long rounded_rate;
|
|
|
|
val = readl(clk_mgt[clock].reg);
|
|
src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
|
|
clk_mgt[clock].branch);
|
|
div = clock_divider(src_rate, rate);
|
|
if (val & PRCM_CLK_MGT_CLK38) {
|
|
if (clk_mgt[clock].clk38div) {
|
|
if (div > 2)
|
|
div = 2;
|
|
} else {
|
|
div = 1;
|
|
}
|
|
} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
|
|
u64 r = (src_rate * 10);
|
|
|
|
(void)do_div(r, 25);
|
|
if (r <= rate)
|
|
return (unsigned long)r;
|
|
}
|
|
rounded_rate = (src_rate / min(div, (u32)31));
|
|
|
|
return rounded_rate;
|
|
}
|
|
|
|
#define MIN_PLL_VCO_RATE 600000000ULL
|
|
#define MAX_PLL_VCO_RATE 1680640000ULL
|
|
|
|
static long round_plldsi_rate(unsigned long rate)
|
|
{
|
|
long rounded_rate = 0;
|
|
unsigned long src_rate;
|
|
unsigned long rem;
|
|
u32 r;
|
|
|
|
src_rate = clock_rate(PRCMU_HDMICLK);
|
|
rem = rate;
|
|
|
|
for (r = 7; (rem > 0) && (r > 0); r--) {
|
|
u64 d;
|
|
|
|
d = (r * rate);
|
|
(void)do_div(d, src_rate);
|
|
if (d < 6)
|
|
d = 6;
|
|
else if (d > 255)
|
|
d = 255;
|
|
d *= src_rate;
|
|
if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
|
|
((r * MAX_PLL_VCO_RATE) < (2 * d)))
|
|
continue;
|
|
(void)do_div(d, r);
|
|
if (rate < d) {
|
|
if (rounded_rate == 0)
|
|
rounded_rate = (long)d;
|
|
break;
|
|
}
|
|
if ((rate - d) < rem) {
|
|
rem = (rate - d);
|
|
rounded_rate = (long)d;
|
|
}
|
|
}
|
|
return rounded_rate;
|
|
}
|
|
|
|
static long round_dsiclk_rate(unsigned long rate)
|
|
{
|
|
u32 div;
|
|
unsigned long src_rate;
|
|
long rounded_rate;
|
|
|
|
src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
|
|
PLL_RAW);
|
|
div = clock_divider(src_rate, rate);
|
|
rounded_rate = (src_rate / ((div > 2) ? 4 : div));
|
|
|
|
return rounded_rate;
|
|
}
|
|
|
|
static long round_dsiescclk_rate(unsigned long rate)
|
|
{
|
|
u32 div;
|
|
unsigned long src_rate;
|
|
long rounded_rate;
|
|
|
|
src_rate = clock_rate(PRCMU_TVCLK);
|
|
div = clock_divider(src_rate, rate);
|
|
rounded_rate = (src_rate / min(div, (u32)255));
|
|
|
|
return rounded_rate;
|
|
}
|
|
|
|
long prcmu_round_clock_rate(u8 clock, unsigned long rate)
|
|
{
|
|
if (clock < PRCMU_NUM_REG_CLOCKS)
|
|
return round_clock_rate(clock, rate);
|
|
else if (clock == PRCMU_PLLDSI)
|
|
return round_plldsi_rate(rate);
|
|
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
|
|
return round_dsiclk_rate(rate);
|
|
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
|
|
return round_dsiescclk_rate(rate);
|
|
else
|
|
return (long)prcmu_clock_rate(clock);
|
|
}
|
|
|
|
static void set_clock_rate(u8 clock, unsigned long rate)
|
|
{
|
|
u32 val;
|
|
u32 div;
|
|
unsigned long src_rate;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&clk_mgt_lock, flags);
|
|
|
|
/* Grab the HW semaphore. */
|
|
while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
|
|
cpu_relax();
|
|
|
|
val = readl(clk_mgt[clock].reg);
|
|
src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
|
|
clk_mgt[clock].branch);
|
|
div = clock_divider(src_rate, rate);
|
|
if (val & PRCM_CLK_MGT_CLK38) {
|
|
if (clk_mgt[clock].clk38div) {
|
|
if (div > 1)
|
|
val |= PRCM_CLK_MGT_CLK38DIV;
|
|
else
|
|
val &= ~PRCM_CLK_MGT_CLK38DIV;
|
|
}
|
|
} else if (clock == PRCMU_SGACLK) {
|
|
val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
|
|
PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
|
|
if (div == 3) {
|
|
u64 r = (src_rate * 10);
|
|
|
|
(void)do_div(r, 25);
|
|
if (r <= rate) {
|
|
val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
|
|
div = 0;
|
|
}
|
|
}
|
|
val |= min(div, (u32)31);
|
|
} else {
|
|
val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
|
|
val |= min(div, (u32)31);
|
|
}
|
|
writel(val, clk_mgt[clock].reg);
|
|
|
|
/* Release the HW semaphore. */
|
|
writel(0, PRCM_SEM);
|
|
|
|
spin_unlock_irqrestore(&clk_mgt_lock, flags);
|
|
}
|
|
|
|
static int set_plldsi_rate(unsigned long rate)
|
|
{
|
|
unsigned long src_rate;
|
|
unsigned long rem;
|
|
u32 pll_freq = 0;
|
|
u32 r;
|
|
|
|
src_rate = clock_rate(PRCMU_HDMICLK);
|
|
rem = rate;
|
|
|
|
for (r = 7; (rem > 0) && (r > 0); r--) {
|
|
u64 d;
|
|
u64 hwrate;
|
|
|
|
d = (r * rate);
|
|
(void)do_div(d, src_rate);
|
|
if (d < 6)
|
|
d = 6;
|
|
else if (d > 255)
|
|
d = 255;
|
|
hwrate = (d * src_rate);
|
|
if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
|
|
((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
|
|
continue;
|
|
(void)do_div(hwrate, r);
|
|
if (rate < hwrate) {
|
|
if (pll_freq == 0)
|
|
pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
|
|
(r << PRCM_PLL_FREQ_R_SHIFT));
|
|
break;
|
|
}
|
|
if ((rate - hwrate) < rem) {
|
|
rem = (rate - hwrate);
|
|
pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
|
|
(r << PRCM_PLL_FREQ_R_SHIFT));
|
|
}
|
|
}
|
|
if (pll_freq == 0)
|
|
return -EINVAL;
|
|
|
|
pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
|
|
writel(pll_freq, PRCM_PLLDSI_FREQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_dsiclk_rate(u8 n, unsigned long rate)
|
|
{
|
|
u32 val;
|
|
u32 div;
|
|
|
|
div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
|
|
clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
|
|
|
|
dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
|
|
(div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
|
|
/* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
|
|
|
|
val = readl(PRCM_DSI_PLLOUT_SEL);
|
|
val &= ~dsiclk[n].divsel_mask;
|
|
val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
|
|
writel(val, PRCM_DSI_PLLOUT_SEL);
|
|
}
|
|
|
|
static void set_dsiescclk_rate(u8 n, unsigned long rate)
|
|
{
|
|
u32 val;
|
|
u32 div;
|
|
|
|
div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
|
|
val = readl(PRCM_DSITVCLK_DIV);
|
|
val &= ~dsiescclk[n].div_mask;
|
|
val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
|
|
writel(val, PRCM_DSITVCLK_DIV);
|
|
}
|
|
|
|
int prcmu_set_clock_rate(u8 clock, unsigned long rate)
|
|
{
|
|
if (clock < PRCMU_NUM_REG_CLOCKS)
|
|
set_clock_rate(clock, rate);
|
|
else if (clock == PRCMU_PLLDSI)
|
|
return set_plldsi_rate(rate);
|
|
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
|
|
set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
|
|
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
|
|
set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
|
|
return 0;
|
|
}
|
|
|
|
int db8500_prcmu_config_esram0_deep_sleep(u8 state)
|
|
{
|
|
if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
|
|
(state < ESRAM0_DEEP_SLEEP_STATE_OFF))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mb4_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
|
|
cpu_relax();
|
|
|
|
writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
|
|
writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
|
|
(tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
|
|
writeb(DDR_PWR_STATE_ON,
|
|
(tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
|
|
writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
|
|
|
|
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb4_transfer.work);
|
|
|
|
mutex_unlock(&mb4_transfer.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int db8500_prcmu_config_hotdog(u8 threshold)
|
|
{
|
|
mutex_lock(&mb4_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
|
|
cpu_relax();
|
|
|
|
writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
|
|
writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
|
|
|
|
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb4_transfer.work);
|
|
|
|
mutex_unlock(&mb4_transfer.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int db8500_prcmu_config_hotmon(u8 low, u8 high)
|
|
{
|
|
mutex_lock(&mb4_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
|
|
cpu_relax();
|
|
|
|
writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
|
|
writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
|
|
writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
|
|
(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
|
|
writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
|
|
|
|
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb4_transfer.work);
|
|
|
|
mutex_unlock(&mb4_transfer.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int config_hot_period(u16 val)
|
|
{
|
|
mutex_lock(&mb4_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
|
|
cpu_relax();
|
|
|
|
writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
|
|
writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
|
|
|
|
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb4_transfer.work);
|
|
|
|
mutex_unlock(&mb4_transfer.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int db8500_prcmu_start_temp_sense(u16 cycles32k)
|
|
{
|
|
if (cycles32k == 0xFFFF)
|
|
return -EINVAL;
|
|
|
|
return config_hot_period(cycles32k);
|
|
}
|
|
|
|
int db8500_prcmu_stop_temp_sense(void)
|
|
{
|
|
return config_hot_period(0xFFFF);
|
|
}
|
|
|
|
static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
|
|
{
|
|
|
|
mutex_lock(&mb4_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
|
|
cpu_relax();
|
|
|
|
writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
|
|
writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
|
|
writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
|
|
writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
|
|
|
|
writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
|
|
|
|
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb4_transfer.work);
|
|
|
|
mutex_unlock(&mb4_transfer.lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
|
|
{
|
|
BUG_ON(num == 0 || num > 0xf);
|
|
return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
|
|
sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
|
|
A9WDOG_AUTO_OFF_DIS);
|
|
}
|
|
|
|
int db8500_prcmu_enable_a9wdog(u8 id)
|
|
{
|
|
return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
|
|
}
|
|
|
|
int db8500_prcmu_disable_a9wdog(u8 id)
|
|
{
|
|
return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
|
|
}
|
|
|
|
int db8500_prcmu_kick_a9wdog(u8 id)
|
|
{
|
|
return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* timeout is 28 bit, in ms.
|
|
*/
|
|
int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
|
|
{
|
|
return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
|
|
(id & A9WDOG_ID_MASK) |
|
|
/*
|
|
* Put the lowest 28 bits of timeout at
|
|
* offset 4. Four first bits are used for id.
|
|
*/
|
|
(u8)((timeout << 4) & 0xf0),
|
|
(u8)((timeout >> 4) & 0xff),
|
|
(u8)((timeout >> 12) & 0xff),
|
|
(u8)((timeout >> 20) & 0xff));
|
|
}
|
|
|
|
/**
|
|
* prcmu_abb_read() - Read register value(s) from the ABB.
|
|
* @slave: The I2C slave address.
|
|
* @reg: The (start) register address.
|
|
* @value: The read out value(s).
|
|
* @size: The number of registers to read.
|
|
*
|
|
* Reads register value(s) from the ABB.
|
|
* @size has to be 1 for the current firmware version.
|
|
*/
|
|
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
|
|
{
|
|
int r;
|
|
|
|
if (size != 1)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mb5_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
|
|
cpu_relax();
|
|
|
|
writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
|
|
writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
|
|
writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
|
|
writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
|
|
writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
|
|
|
|
writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
|
|
|
|
if (!wait_for_completion_timeout(&mb5_transfer.work,
|
|
msecs_to_jiffies(20000))) {
|
|
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
|
|
__func__);
|
|
r = -EIO;
|
|
} else {
|
|
r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
|
|
}
|
|
|
|
if (!r)
|
|
*value = mb5_transfer.ack.value;
|
|
|
|
mutex_unlock(&mb5_transfer.lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
|
|
* @slave: The I2C slave address.
|
|
* @reg: The (start) register address.
|
|
* @value: The value(s) to write.
|
|
* @mask: The mask(s) to use.
|
|
* @size: The number of registers to write.
|
|
*
|
|
* Writes masked register value(s) to the ABB.
|
|
* For each @value, only the bits set to 1 in the corresponding @mask
|
|
* will be written. The other bits are not changed.
|
|
* @size has to be 1 for the current firmware version.
|
|
*/
|
|
int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
|
|
{
|
|
int r;
|
|
|
|
if (size != 1)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mb5_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
|
|
cpu_relax();
|
|
|
|
writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
|
|
writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
|
|
writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
|
|
writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
|
|
writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
|
|
|
|
writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
|
|
|
|
if (!wait_for_completion_timeout(&mb5_transfer.work,
|
|
msecs_to_jiffies(20000))) {
|
|
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
|
|
__func__);
|
|
r = -EIO;
|
|
} else {
|
|
r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
|
|
}
|
|
|
|
mutex_unlock(&mb5_transfer.lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* prcmu_abb_write() - Write register value(s) to the ABB.
|
|
* @slave: The I2C slave address.
|
|
* @reg: The (start) register address.
|
|
* @value: The value(s) to write.
|
|
* @size: The number of registers to write.
|
|
*
|
|
* Writes register value(s) to the ABB.
|
|
* @size has to be 1 for the current firmware version.
|
|
*/
|
|
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
|
|
{
|
|
u8 mask = ~0;
|
|
|
|
return prcmu_abb_write_masked(slave, reg, value, &mask, size);
|
|
}
|
|
|
|
/**
|
|
* prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
|
|
*/
|
|
void prcmu_ac_wake_req(void)
|
|
{
|
|
u32 val;
|
|
u32 status;
|
|
|
|
mutex_lock(&mb0_transfer.ac_wake_lock);
|
|
|
|
val = readl(PRCM_HOSTACCESS_REQ);
|
|
if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
|
|
goto unlock_and_return;
|
|
|
|
atomic_set(&ac_wake_req_state, 1);
|
|
|
|
retry:
|
|
writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
|
|
|
|
if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
|
|
msecs_to_jiffies(5000))) {
|
|
pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
|
|
__func__);
|
|
goto unlock_and_return;
|
|
}
|
|
|
|
/*
|
|
* The modem can generate an AC_WAKE_ACK, and then still go to sleep.
|
|
* As a workaround, we wait, and then check that the modem is indeed
|
|
* awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
|
|
* register, which may not be the whole truth).
|
|
*/
|
|
udelay(400);
|
|
status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
|
|
if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
|
|
PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
|
|
pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
|
|
__func__, status);
|
|
udelay(1200);
|
|
writel(val, PRCM_HOSTACCESS_REQ);
|
|
if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
|
|
msecs_to_jiffies(5000)))
|
|
goto retry;
|
|
pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
|
|
__func__);
|
|
}
|
|
|
|
unlock_and_return:
|
|
mutex_unlock(&mb0_transfer.ac_wake_lock);
|
|
}
|
|
|
|
/**
|
|
* prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
|
|
*/
|
|
void prcmu_ac_sleep_req()
|
|
{
|
|
u32 val;
|
|
|
|
mutex_lock(&mb0_transfer.ac_wake_lock);
|
|
|
|
val = readl(PRCM_HOSTACCESS_REQ);
|
|
if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
|
|
goto unlock_and_return;
|
|
|
|
writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
|
|
PRCM_HOSTACCESS_REQ);
|
|
|
|
if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
|
|
msecs_to_jiffies(5000))) {
|
|
pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
|
|
__func__);
|
|
}
|
|
|
|
atomic_set(&ac_wake_req_state, 0);
|
|
|
|
unlock_and_return:
|
|
mutex_unlock(&mb0_transfer.ac_wake_lock);
|
|
}
|
|
|
|
bool db8500_prcmu_is_ac_wake_requested(void)
|
|
{
|
|
return (atomic_read(&ac_wake_req_state) != 0);
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_system_reset - System reset
|
|
*
|
|
* Saves the reset reason code and then sets the APE_SOFTRST register which
|
|
* fires interrupt to fw
|
|
*/
|
|
void db8500_prcmu_system_reset(u16 reset_code)
|
|
{
|
|
writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
|
|
writel(1, PRCM_APE_SOFTRST);
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_get_reset_code - Retrieve SW reset reason code
|
|
*
|
|
* Retrieves the reset reason code stored by prcmu_system_reset() before
|
|
* last restart.
|
|
*/
|
|
u16 db8500_prcmu_get_reset_code(void)
|
|
{
|
|
return readw(tcdm_base + PRCM_SW_RST_REASON);
|
|
}
|
|
|
|
/**
|
|
* db8500_prcmu_reset_modem - ask the PRCMU to reset modem
|
|
*/
|
|
void db8500_prcmu_modem_reset(void)
|
|
{
|
|
mutex_lock(&mb1_transfer.lock);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
|
|
cpu_relax();
|
|
|
|
writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
|
|
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
|
|
wait_for_completion(&mb1_transfer.work);
|
|
|
|
/*
|
|
* No need to check return from PRCMU as modem should go in reset state
|
|
* This state is already managed by upper layer
|
|
*/
|
|
|
|
mutex_unlock(&mb1_transfer.lock);
|
|
}
|
|
|
|
static void ack_dbb_wakeup(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mb0_transfer.lock, flags);
|
|
|
|
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
|
|
cpu_relax();
|
|
|
|
writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
|
|
writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
|
|
|
|
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
|
|
}
|
|
|
|
static inline void print_unknown_header_warning(u8 n, u8 header)
|
|
{
|
|
pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
|
|
header, n);
|
|
}
|
|
|
|
static bool read_mailbox_0(void)
|
|
{
|
|
bool r;
|
|
u32 ev;
|
|
unsigned int n;
|
|
u8 header;
|
|
|
|
header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
|
|
switch (header) {
|
|
case MB0H_WAKEUP_EXE:
|
|
case MB0H_WAKEUP_SLEEP:
|
|
if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
|
|
ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
|
|
else
|
|
ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
|
|
|
|
if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
|
|
complete(&mb0_transfer.ac_wake_work);
|
|
if (ev & WAKEUP_BIT_SYSCLK_OK)
|
|
complete(&mb3_transfer.sysclk_work);
|
|
|
|
ev &= mb0_transfer.req.dbb_irqs;
|
|
|
|
for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
|
|
if (ev & prcmu_irq_bit[n])
|
|
generic_handle_irq(IRQ_PRCMU_BASE + n);
|
|
}
|
|
r = true;
|
|
break;
|
|
default:
|
|
print_unknown_header_warning(0, header);
|
|
r = false;
|
|
break;
|
|
}
|
|
writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
|
|
return r;
|
|
}
|
|
|
|
static bool read_mailbox_1(void)
|
|
{
|
|
mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
|
|
mb1_transfer.ack.arm_opp = readb(tcdm_base +
|
|
PRCM_ACK_MB1_CURRENT_ARM_OPP);
|
|
mb1_transfer.ack.ape_opp = readb(tcdm_base +
|
|
PRCM_ACK_MB1_CURRENT_APE_OPP);
|
|
mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
|
|
PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
|
|
writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
|
|
complete(&mb1_transfer.work);
|
|
return false;
|
|
}
|
|
|
|
static bool read_mailbox_2(void)
|
|
{
|
|
mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
|
|
writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
|
|
complete(&mb2_transfer.work);
|
|
return false;
|
|
}
|
|
|
|
static bool read_mailbox_3(void)
|
|
{
|
|
writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
|
|
return false;
|
|
}
|
|
|
|
static bool read_mailbox_4(void)
|
|
{
|
|
u8 header;
|
|
bool do_complete = true;
|
|
|
|
header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
|
|
switch (header) {
|
|
case MB4H_MEM_ST:
|
|
case MB4H_HOTDOG:
|
|
case MB4H_HOTMON:
|
|
case MB4H_HOT_PERIOD:
|
|
case MB4H_A9WDOG_CONF:
|
|
case MB4H_A9WDOG_EN:
|
|
case MB4H_A9WDOG_DIS:
|
|
case MB4H_A9WDOG_LOAD:
|
|
case MB4H_A9WDOG_KICK:
|
|
break;
|
|
default:
|
|
print_unknown_header_warning(4, header);
|
|
do_complete = false;
|
|
break;
|
|
}
|
|
|
|
writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
|
|
|
|
if (do_complete)
|
|
complete(&mb4_transfer.work);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool read_mailbox_5(void)
|
|
{
|
|
mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
|
|
mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
|
|
writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
|
|
complete(&mb5_transfer.work);
|
|
return false;
|
|
}
|
|
|
|
static bool read_mailbox_6(void)
|
|
{
|
|
writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
|
|
return false;
|
|
}
|
|
|
|
static bool read_mailbox_7(void)
|
|
{
|
|
writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
|
|
return false;
|
|
}
|
|
|
|
static bool (* const read_mailbox[NUM_MB])(void) = {
|
|
read_mailbox_0,
|
|
read_mailbox_1,
|
|
read_mailbox_2,
|
|
read_mailbox_3,
|
|
read_mailbox_4,
|
|
read_mailbox_5,
|
|
read_mailbox_6,
|
|
read_mailbox_7
|
|
};
|
|
|
|
static irqreturn_t prcmu_irq_handler(int irq, void *data)
|
|
{
|
|
u32 bits;
|
|
u8 n;
|
|
irqreturn_t r;
|
|
|
|
bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
|
|
if (unlikely(!bits))
|
|
return IRQ_NONE;
|
|
|
|
r = IRQ_HANDLED;
|
|
for (n = 0; bits; n++) {
|
|
if (bits & MBOX_BIT(n)) {
|
|
bits -= MBOX_BIT(n);
|
|
if (read_mailbox[n]())
|
|
r = IRQ_WAKE_THREAD;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
|
|
{
|
|
ack_dbb_wakeup();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void prcmu_mask_work(struct work_struct *work)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mb0_transfer.lock, flags);
|
|
|
|
config_wakeups();
|
|
|
|
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
|
|
}
|
|
|
|
static void prcmu_irq_mask(struct irq_data *d)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
|
|
|
|
mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
|
|
|
|
spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
|
|
|
|
if (d->irq != IRQ_PRCMU_CA_SLEEP)
|
|
schedule_work(&mb0_transfer.mask_work);
|
|
}
|
|
|
|
static void prcmu_irq_unmask(struct irq_data *d)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
|
|
|
|
mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
|
|
|
|
spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
|
|
|
|
if (d->irq != IRQ_PRCMU_CA_SLEEP)
|
|
schedule_work(&mb0_transfer.mask_work);
|
|
}
|
|
|
|
static void noop(struct irq_data *d)
|
|
{
|
|
}
|
|
|
|
static struct irq_chip prcmu_irq_chip = {
|
|
.name = "prcmu",
|
|
.irq_disable = prcmu_irq_mask,
|
|
.irq_ack = noop,
|
|
.irq_mask = prcmu_irq_mask,
|
|
.irq_unmask = prcmu_irq_unmask,
|
|
};
|
|
|
|
static char *fw_project_name(u8 project)
|
|
{
|
|
switch (project) {
|
|
case PRCMU_FW_PROJECT_U8500:
|
|
return "U8500";
|
|
case PRCMU_FW_PROJECT_U8500_C2:
|
|
return "U8500 C2";
|
|
case PRCMU_FW_PROJECT_U9500:
|
|
return "U9500";
|
|
case PRCMU_FW_PROJECT_U9500_C2:
|
|
return "U9500 C2";
|
|
case PRCMU_FW_PROJECT_U8520:
|
|
return "U8520";
|
|
case PRCMU_FW_PROJECT_U8420:
|
|
return "U8420";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
void __init db8500_prcmu_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
if (cpu_is_u8500v2()) {
|
|
void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
|
|
|
|
if (tcpm_base != NULL) {
|
|
u32 version;
|
|
version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
|
|
fw_info.version.project = version & 0xFF;
|
|
fw_info.version.api_version = (version >> 8) & 0xFF;
|
|
fw_info.version.func_version = (version >> 16) & 0xFF;
|
|
fw_info.version.errata = (version >> 24) & 0xFF;
|
|
fw_info.valid = true;
|
|
pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
|
|
fw_project_name(fw_info.version.project),
|
|
(version >> 8) & 0xFF, (version >> 16) & 0xFF,
|
|
(version >> 24) & 0xFF);
|
|
iounmap(tcpm_base);
|
|
}
|
|
|
|
tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
|
|
} else {
|
|
pr_err("prcmu: Unsupported chip version\n");
|
|
BUG();
|
|
}
|
|
|
|
spin_lock_init(&mb0_transfer.lock);
|
|
spin_lock_init(&mb0_transfer.dbb_irqs_lock);
|
|
mutex_init(&mb0_transfer.ac_wake_lock);
|
|
init_completion(&mb0_transfer.ac_wake_work);
|
|
mutex_init(&mb1_transfer.lock);
|
|
init_completion(&mb1_transfer.work);
|
|
mb1_transfer.ape_opp = APE_NO_CHANGE;
|
|
mutex_init(&mb2_transfer.lock);
|
|
init_completion(&mb2_transfer.work);
|
|
spin_lock_init(&mb2_transfer.auto_pm_lock);
|
|
spin_lock_init(&mb3_transfer.lock);
|
|
mutex_init(&mb3_transfer.sysclk_lock);
|
|
init_completion(&mb3_transfer.sysclk_work);
|
|
mutex_init(&mb4_transfer.lock);
|
|
init_completion(&mb4_transfer.work);
|
|
mutex_init(&mb5_transfer.lock);
|
|
init_completion(&mb5_transfer.work);
|
|
|
|
INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
|
|
|
|
/* Initalize irqs. */
|
|
for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
|
|
unsigned int irq;
|
|
|
|
irq = IRQ_PRCMU_BASE + i;
|
|
irq_set_chip_and_handler(irq, &prcmu_irq_chip,
|
|
handle_simple_irq);
|
|
set_irq_flags(irq, IRQF_VALID);
|
|
}
|
|
}
|
|
|
|
static void __init init_prcm_registers(void)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(PRCM_A9PL_FORCE_CLKEN);
|
|
val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
|
|
PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
|
|
writel(val, (PRCM_A9PL_FORCE_CLKEN));
|
|
}
|
|
|
|
/*
|
|
* Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
|
|
*/
|
|
static struct regulator_consumer_supply db8500_vape_consumers[] = {
|
|
REGULATOR_SUPPLY("v-ape", NULL),
|
|
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
|
|
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
|
|
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
|
|
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
|
|
/* "v-mmc" changed to "vcore" in the mainline kernel */
|
|
REGULATOR_SUPPLY("vcore", "sdi0"),
|
|
REGULATOR_SUPPLY("vcore", "sdi1"),
|
|
REGULATOR_SUPPLY("vcore", "sdi2"),
|
|
REGULATOR_SUPPLY("vcore", "sdi3"),
|
|
REGULATOR_SUPPLY("vcore", "sdi4"),
|
|
REGULATOR_SUPPLY("v-dma", "dma40.0"),
|
|
REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
|
|
/* "v-uart" changed to "vcore" in the mainline kernel */
|
|
REGULATOR_SUPPLY("vcore", "uart0"),
|
|
REGULATOR_SUPPLY("vcore", "uart1"),
|
|
REGULATOR_SUPPLY("vcore", "uart2"),
|
|
REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
|
|
REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
|
|
};
|
|
|
|
static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
|
|
REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
|
|
/* AV8100 regulator */
|
|
REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
|
|
};
|
|
|
|
static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
|
|
REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
|
|
REGULATOR_SUPPLY("vsupply", "mcde"),
|
|
};
|
|
|
|
/* SVA MMDSP regulator switch */
|
|
static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
|
|
REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
|
|
};
|
|
|
|
/* SVA pipe regulator switch */
|
|
static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
|
|
REGULATOR_SUPPLY("sva-pipe", "cm_control"),
|
|
};
|
|
|
|
/* SIA MMDSP regulator switch */
|
|
static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
|
|
REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
|
|
};
|
|
|
|
/* SIA pipe regulator switch */
|
|
static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
|
|
REGULATOR_SUPPLY("sia-pipe", "cm_control"),
|
|
};
|
|
|
|
static struct regulator_consumer_supply db8500_sga_consumers[] = {
|
|
REGULATOR_SUPPLY("v-mali", NULL),
|
|
};
|
|
|
|
/* ESRAM1 and 2 regulator switch */
|
|
static struct regulator_consumer_supply db8500_esram12_consumers[] = {
|
|
REGULATOR_SUPPLY("esram12", "cm_control"),
|
|
};
|
|
|
|
/* ESRAM3 and 4 regulator switch */
|
|
static struct regulator_consumer_supply db8500_esram34_consumers[] = {
|
|
REGULATOR_SUPPLY("v-esram34", "mcde"),
|
|
REGULATOR_SUPPLY("esram34", "cm_control"),
|
|
REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
|
|
};
|
|
|
|
static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
|
|
[DB8500_REGULATOR_VAPE] = {
|
|
.constraints = {
|
|
.name = "db8500-vape",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
.always_on = true,
|
|
},
|
|
.consumer_supplies = db8500_vape_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
|
|
},
|
|
[DB8500_REGULATOR_VARM] = {
|
|
.constraints = {
|
|
.name = "db8500-varm",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_VMODEM] = {
|
|
.constraints = {
|
|
.name = "db8500-vmodem",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_VPLL] = {
|
|
.constraints = {
|
|
.name = "db8500-vpll",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_VSMPS1] = {
|
|
.constraints = {
|
|
.name = "db8500-vsmps1",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_VSMPS2] = {
|
|
.constraints = {
|
|
.name = "db8500-vsmps2",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_vsmps2_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
|
|
},
|
|
[DB8500_REGULATOR_VSMPS3] = {
|
|
.constraints = {
|
|
.name = "db8500-vsmps3",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_VRF1] = {
|
|
.constraints = {
|
|
.name = "db8500-vrf1",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
|
|
/* dependency to u8500-vape is handled outside regulator framework */
|
|
.constraints = {
|
|
.name = "db8500-sva-mmdsp",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_svammdsp_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
|
|
.constraints = {
|
|
/* "ret" means "retention" */
|
|
.name = "db8500-sva-mmdsp-ret",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
|
|
/* dependency to u8500-vape is handled outside regulator framework */
|
|
.constraints = {
|
|
.name = "db8500-sva-pipe",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_svapipe_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
|
|
/* dependency to u8500-vape is handled outside regulator framework */
|
|
.constraints = {
|
|
.name = "db8500-sia-mmdsp",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_siammdsp_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
|
|
.constraints = {
|
|
.name = "db8500-sia-mmdsp-ret",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
|
|
/* dependency to u8500-vape is handled outside regulator framework */
|
|
.constraints = {
|
|
.name = "db8500-sia-pipe",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_siapipe_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_SGA] = {
|
|
.supply_regulator = "db8500-vape",
|
|
.constraints = {
|
|
.name = "db8500-sga",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_sga_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
|
|
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
|
|
.supply_regulator = "db8500-vape",
|
|
.constraints = {
|
|
.name = "db8500-b2r2-mcde",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_b2r2_mcde_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_ESRAM12] = {
|
|
/*
|
|
* esram12 is set in retention and supplied by Vsafe when Vape is off,
|
|
* no need to hold Vape
|
|
*/
|
|
.constraints = {
|
|
.name = "db8500-esram12",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_esram12_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
|
|
.constraints = {
|
|
.name = "db8500-esram12-ret",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_ESRAM34] = {
|
|
/*
|
|
* esram34 is set in retention and supplied by Vsafe when Vape is off,
|
|
* no need to hold Vape
|
|
*/
|
|
.constraints = {
|
|
.name = "db8500-esram34",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
.consumer_supplies = db8500_esram34_consumers,
|
|
.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
|
|
},
|
|
[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
|
|
.constraints = {
|
|
.name = "db8500-esram34-ret",
|
|
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
|
|
},
|
|
},
|
|
};
|
|
|
|
static struct mfd_cell db8500_prcmu_devs[] = {
|
|
{
|
|
.name = "db8500-prcmu-regulators",
|
|
.platform_data = &db8500_regulators,
|
|
.pdata_size = sizeof(db8500_regulators),
|
|
},
|
|
{
|
|
.name = "cpufreq-u8500",
|
|
},
|
|
};
|
|
|
|
/**
|
|
* prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
|
|
*
|
|
*/
|
|
static int __init db8500_prcmu_probe(struct platform_device *pdev)
|
|
{
|
|
int err = 0;
|
|
|
|
if (ux500_is_svp())
|
|
return -ENODEV;
|
|
|
|
init_prcm_registers();
|
|
|
|
/* Clean up the mailbox interrupts after pre-kernel code. */
|
|
writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
|
|
|
|
err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
|
|
prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
|
|
if (err < 0) {
|
|
pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
|
|
err = -EBUSY;
|
|
goto no_irq_return;
|
|
}
|
|
|
|
if (cpu_is_u8500v20_or_later())
|
|
prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
|
|
|
|
err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
|
|
ARRAY_SIZE(db8500_prcmu_devs), NULL,
|
|
0);
|
|
|
|
if (err)
|
|
pr_err("prcmu: Failed to add subdevices\n");
|
|
else
|
|
pr_info("DB8500 PRCMU initialized\n");
|
|
|
|
no_irq_return:
|
|
return err;
|
|
}
|
|
|
|
static struct platform_driver db8500_prcmu_driver = {
|
|
.driver = {
|
|
.name = "db8500-prcmu",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init db8500_prcmu_init(void)
|
|
{
|
|
return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
|
|
}
|
|
|
|
arch_initcall(db8500_prcmu_init);
|
|
|
|
MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
|
|
MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
|
|
MODULE_LICENSE("GPL v2");
|