Nick Kossifidis 8892e4ec62 ath5k: Update RF Buffer handling
* Use the new way to modify rf buffer and put some rf buffer
   documentation on rfbufer.h

 * Merge all rf regs functions to one

 * Sync with legacy HAL and Sam's HAL

 * Set gain_F settings so that gain_F optimization engine works
   on RF5111/RF5112 (note that both HALs only use step 0 for RF5111
   and they don't use gain_F optimization for this chip, code is
   there but is never used)

  Signed-off-by: Nick Kossifidis <mickflemm@gmail.com>

Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-02-13 13:44:45 -05:00

1562 lines
40 KiB
C

/*
* PHY functions
*
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#define _ATH5K_PHY
#include <linux/delay.h>
#include "ath5k.h"
#include "reg.h"
#include "base.h"
#include "rfbuffer.h"
#include "rfgain.h"
/*
* Used to modify RF Banks before writing them to AR5K_RF_BUFFER
*/
static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
const struct ath5k_rf_reg *rf_regs,
u32 val, u8 reg_id, bool set)
{
const struct ath5k_rf_reg *rfreg = NULL;
u8 offset, bank, num_bits, col, position;
u16 entry;
u32 mask, data, last_bit, bits_shifted, first_bit;
u32 *rfb;
s32 bits_left;
int i;
data = 0;
rfb = ah->ah_rf_banks;
for (i = 0; i < ah->ah_rf_regs_count; i++) {
if (rf_regs[i].index == reg_id) {
rfreg = &rf_regs[i];
break;
}
}
if (rfb == NULL || rfreg == NULL) {
ATH5K_PRINTF("Rf register not found!\n");
/* should not happen */
return 0;
}
bank = rfreg->bank;
num_bits = rfreg->field.len;
first_bit = rfreg->field.pos;
col = rfreg->field.col;
/* first_bit is an offset from bank's
* start. Since we have all banks on
* the same array, we use this offset
* to mark each bank's start */
offset = ah->ah_offset[bank];
/* Boundary check */
if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
ATH5K_PRINTF("invalid values at offset %u\n", offset);
return 0;
}
entry = ((first_bit - 1) / 8) + offset;
position = (first_bit - 1) % 8;
if (set)
data = ath5k_hw_bitswap(val, num_bits);
for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
position = 0, entry++) {
last_bit = (position + bits_left > 8) ? 8 :
position + bits_left;
mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
(col * 8);
if (set) {
rfb[entry] &= ~mask;
rfb[entry] |= ((data << position) << (col * 8)) & mask;
data >>= (8 - position);
} else {
data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
<< bits_shifted;
bits_shifted += last_bit - position;
}
bits_left -= 8 - position;
}
data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
return data;
}
/**********************\
* RF Gain optimization *
\**********************/
/*
* This code is used to optimize rf gain on different environments
* (temprature mostly) based on feedback from a power detector.
*
* It's only used on RF5111 and RF5112, later RF chips seem to have
* auto adjustment on hw -notice they have a much smaller BANK 7 and
* no gain optimization ladder-.
*
* For more infos check out this patent doc
* http://www.freepatentsonline.com/7400691.html
*
* This paper describes power drops as seen on the receiver due to
* probe packets
* http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
* %20of%20Power%20Control.pdf
*
* And this is the MadWiFi bug entry related to the above
* http://madwifi-project.org/ticket/1659
* with various measurements and diagrams
*
* TODO: Deal with power drops due to probes by setting an apropriate
* tx power on the probe packets ! Make this part of the calibration process.
*/
/* Initialize ah_gain durring attach */
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
{
/* Initialize the gain optimization values */
switch (ah->ah_radio) {
case AR5K_RF5111:
ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
ah->ah_gain.g_low = 20;
ah->ah_gain.g_high = 35;
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
break;
case AR5K_RF5112:
ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
ah->ah_gain.g_low = 20;
ah->ah_gain.g_high = 85;
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
break;
default:
return -EINVAL;
}
return 0;
}
/* Schedule a gain probe check on the next transmited packet.
* That means our next packet is going to be sent with lower
* tx power and a Peak to Average Power Detector (PAPD) will try
* to measure the gain.
*
* TODO: Use propper tx power setting for the probe packet so
* that we don't observe a serious power drop on the receiver
*
* XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
* just after we enable the probe so that we don't mess with
* standard traffic ? Maybe it's time to use sw interrupts and
* a probe tasklet !!!
*/
static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
{
/* Skip if gain calibration is inactive or
* we already handle a probe request */
if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
return;
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max,
AR5K_PHY_PAPD_PROBE_TXPOWER) |
AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
}
/* Calculate gain_F measurement correction
* based on the current step for RF5112 rev. 2 */
static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
{
u32 mix, step;
u32 *rf;
const struct ath5k_gain_opt *go;
const struct ath5k_gain_opt_step *g_step;
const struct ath5k_rf_reg *rf_regs;
/* Only RF5112 Rev. 2 supports it */
if ((ah->ah_radio != AR5K_RF5112) ||
(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
return 0;
go = &rfgain_opt_5112;
rf_regs = rf_regs_5112a;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
g_step = &go->go_step[ah->ah_gain.g_step_idx];
if (ah->ah_rf_banks == NULL)
return 0;
rf = ah->ah_rf_banks;
ah->ah_gain.g_f_corr = 0;
/* No VGA (Variable Gain Amplifier) override, skip */
if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
return 0;
/* Mix gain stepping */
step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
/* Mix gain override */
mix = g_step->gos_param[0];
switch (mix) {
case 3:
ah->ah_gain.g_f_corr = step * 2;
break;
case 2:
ah->ah_gain.g_f_corr = (step - 5) * 2;
break;
case 1:
ah->ah_gain.g_f_corr = step;
break;
default:
ah->ah_gain.g_f_corr = 0;
break;
}
return ah->ah_gain.g_f_corr;
}
/* Check if current gain_F measurement is in the range of our
* power detector windows. If we get a measurement outside range
* we know it's not accurate (detectors can't measure anything outside
* their detection window) so we must ignore it */
static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
{
const struct ath5k_rf_reg *rf_regs;
u32 step, mix_ovr, level[4];
u32 *rf;
if (ah->ah_rf_banks == NULL)
return false;
rf = ah->ah_rf_banks;
if (ah->ah_radio == AR5K_RF5111) {
rf_regs = rf_regs_5111;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
false);
level[0] = 0;
level[1] = (step == 63) ? 50 : step + 4;
level[2] = (step != 63) ? 64 : level[0];
level[3] = level[2] + 50 ;
ah->ah_gain.g_high = level[3] -
(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
ah->ah_gain.g_low = level[0] +
(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
} else {
rf_regs = rf_regs_5112;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
false);
level[0] = level[2] = 0;
if (mix_ovr == 1) {
level[1] = level[3] = 83;
} else {
level[1] = level[3] = 107;
ah->ah_gain.g_high = 55;
}
}
return (ah->ah_gain.g_current >= level[0] &&
ah->ah_gain.g_current <= level[1]) ||
(ah->ah_gain.g_current >= level[2] &&
ah->ah_gain.g_current <= level[3]);
}
/* Perform gain_F adjustment by choosing the right set
* of parameters from rf gain optimization ladder */
static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
{
const struct ath5k_gain_opt *go;
const struct ath5k_gain_opt_step *g_step;
int ret = 0;
switch (ah->ah_radio) {
case AR5K_RF5111:
go = &rfgain_opt_5111;
break;
case AR5K_RF5112:
go = &rfgain_opt_5112;
break;
default:
return 0;
}
g_step = &go->go_step[ah->ah_gain.g_step_idx];
if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
/* Reached maximum */
if (ah->ah_gain.g_step_idx == 0)
return -1;
for (ah->ah_gain.g_target = ah->ah_gain.g_current;
ah->ah_gain.g_target >= ah->ah_gain.g_high &&
ah->ah_gain.g_step_idx > 0;
g_step = &go->go_step[ah->ah_gain.g_step_idx])
ah->ah_gain.g_target -= 2 *
(go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
g_step->gos_gain);
ret = 1;
goto done;
}
if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
/* Reached minimum */
if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
return -2;
for (ah->ah_gain.g_target = ah->ah_gain.g_current;
ah->ah_gain.g_target <= ah->ah_gain.g_low &&
ah->ah_gain.g_step_idx < go->go_steps_count-1;
g_step = &go->go_step[ah->ah_gain.g_step_idx])
ah->ah_gain.g_target -= 2 *
(go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
g_step->gos_gain);
ret = 2;
goto done;
}
done:
ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
"ret %d, gain step %u, current gain %u, target gain %u\n",
ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
ah->ah_gain.g_target);
return ret;
}
/* Main callback for thermal rf gain calibration engine
* Check for a new gain reading and schedule an adjustment
* if needed.
*
* TODO: Use sw interrupt to schedule reset if gain_F needs
* adjustment */
enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
{
u32 data, type;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
ATH5K_TRACE(ah->ah_sc);
if (ah->ah_rf_banks == NULL ||
ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
return AR5K_RFGAIN_INACTIVE;
/* No check requested, either engine is inactive
* or an adjustment is already requested */
if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
goto done;
/* Read the PAPD (Peak to Average Power Detector)
* register */
data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
/* No probe is scheduled, read gain_F measurement */
if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
/* If tx packet is CCK correct the gain_F measurement
* by cck ofdm gain delta */
if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
ah->ah_gain.g_current +=
ee->ee_cck_ofdm_gain_delta;
else
ah->ah_gain.g_current +=
AR5K_GAIN_CCK_PROBE_CORR;
}
/* Further correct gain_F measurement for
* RF5112A radios */
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
ath5k_hw_rf_gainf_corr(ah);
ah->ah_gain.g_current =
ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
0;
}
/* Check if measurement is ok and if we need
* to adjust gain, schedule a gain adjustment,
* else switch back to the acive state */
if (ath5k_hw_rf_check_gainf_readback(ah) &&
AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
ath5k_hw_rf_gainf_adjust(ah)) {
ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
} else {
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
}
done:
return ah->ah_gain.g_state;
}
/* Write initial rf gain table to set the RF sensitivity
* this one works on all RF chips and has nothing to do
* with gain_F calibration */
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
{
const struct ath5k_ini_rfgain *ath5k_rfg;
unsigned int i, size;
switch (ah->ah_radio) {
case AR5K_RF5111:
ath5k_rfg = rfgain_5111;
size = ARRAY_SIZE(rfgain_5111);
break;
case AR5K_RF5112:
ath5k_rfg = rfgain_5112;
size = ARRAY_SIZE(rfgain_5112);
break;
case AR5K_RF2413:
ath5k_rfg = rfgain_2413;
size = ARRAY_SIZE(rfgain_2413);
break;
case AR5K_RF2316:
ath5k_rfg = rfgain_2316;
size = ARRAY_SIZE(rfgain_2316);
break;
case AR5K_RF5413:
ath5k_rfg = rfgain_5413;
size = ARRAY_SIZE(rfgain_5413);
break;
case AR5K_RF2317:
case AR5K_RF2425:
ath5k_rfg = rfgain_2425;
size = ARRAY_SIZE(rfgain_2425);
break;
default:
return -EINVAL;
}
switch (freq) {
case AR5K_INI_RFGAIN_2GHZ:
case AR5K_INI_RFGAIN_5GHZ:
break;
default:
return -EINVAL;
}
for (i = 0; i < size; i++) {
AR5K_REG_WAIT(i);
ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
(u32)ath5k_rfg[i].rfg_register);
}
return 0;
}
/********************\
* RF Registers setup *
\********************/
/*
* Setup RF registers by writing rf buffer on hw
*/
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
unsigned int mode)
{
const struct ath5k_rf_reg *rf_regs;
const struct ath5k_ini_rfbuffer *ini_rfb;
const struct ath5k_gain_opt *go = NULL;
const struct ath5k_gain_opt_step *g_step;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u8 ee_mode = 0;
u32 *rfb;
int i, obdb = -1, bank = -1;
switch (ah->ah_radio) {
case AR5K_RF5111:
rf_regs = rf_regs_5111;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
ini_rfb = rfb_5111;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
go = &rfgain_opt_5111;
break;
case AR5K_RF5112:
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
rf_regs = rf_regs_5112a;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
ini_rfb = rfb_5112a;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
} else {
rf_regs = rf_regs_5112;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
ini_rfb = rfb_5112;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
}
go = &rfgain_opt_5112;
break;
case AR5K_RF2413:
rf_regs = rf_regs_2413;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
ini_rfb = rfb_2413;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
break;
case AR5K_RF2316:
rf_regs = rf_regs_2316;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
ini_rfb = rfb_2316;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
break;
case AR5K_RF5413:
rf_regs = rf_regs_5413;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
ini_rfb = rfb_5413;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
break;
case AR5K_RF2317:
rf_regs = rf_regs_2425;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
ini_rfb = rfb_2317;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
break;
case AR5K_RF2425:
rf_regs = rf_regs_2425;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
ini_rfb = rfb_2425;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
} else {
ini_rfb = rfb_2417;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
}
break;
default:
return -EINVAL;
}
/* If it's the first time we set rf buffer, allocate
* ah->ah_rf_banks based on ah->ah_rf_banks_size
* we set above */
if (ah->ah_rf_banks == NULL) {
ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
GFP_KERNEL);
if (ah->ah_rf_banks == NULL) {
ATH5K_ERR(ah->ah_sc, "out of memory\n");
return -ENOMEM;
}
}
/* Copy values to modify them */
rfb = ah->ah_rf_banks;
for (i = 0; i < ah->ah_rf_banks_size; i++) {
if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
ATH5K_ERR(ah->ah_sc, "invalid bank\n");
return -EINVAL;
}
/* Bank changed, write down the offset */
if (bank != ini_rfb[i].rfb_bank) {
bank = ini_rfb[i].rfb_bank;
ah->ah_offset[bank] = i;
}
rfb[i] = ini_rfb[i].rfb_mode_data[mode];
}
/* Set Output and Driver bias current (OB/DB) */
if (channel->hw_value & CHANNEL_2GHZ) {
if (channel->hw_value & CHANNEL_CCK)
ee_mode = AR5K_EEPROM_MODE_11B;
else
ee_mode = AR5K_EEPROM_MODE_11G;
/* For RF511X/RF211X combination we
* use b_OB and b_DB parameters stored
* in eeprom on ee->ee_ob[ee_mode][0]
*
* For all other chips we use OB/DB for 2Ghz
* stored in the b/g modal section just like
* 802.11a on ee->ee_ob[ee_mode][1] */
if ((ah->ah_radio == AR5K_RF5111) ||
(ah->ah_radio == AR5K_RF5112))
obdb = 0;
else
obdb = 1;
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
AR5K_RF_OB_2GHZ, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
AR5K_RF_DB_2GHZ, true);
/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
} else if ((channel->hw_value & CHANNEL_5GHZ) ||
(ah->ah_radio == AR5K_RF5111)) {
/* For 11a, Turbo and XR we need to choose
* OB/DB based on frequency range */
ee_mode = AR5K_EEPROM_MODE_11A;
obdb = channel->center_freq >= 5725 ? 3 :
(channel->center_freq >= 5500 ? 2 :
(channel->center_freq >= 5260 ? 1 :
(channel->center_freq > 4000 ? 0 : -1)));
if (obdb < 0)
return -EINVAL;
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
AR5K_RF_OB_5GHZ, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
AR5K_RF_DB_5GHZ, true);
}
g_step = &go->go_step[ah->ah_gain.g_step_idx];
/* Bank Modifications (chip-specific) */
if (ah->ah_radio == AR5K_RF5111) {
/* Set gain_F settings according to current step */
if (channel->hw_value & CHANNEL_OFDM) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
AR5K_PHY_FRAME_CTL_TX_CLIP,
g_step->gos_param[0]);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
AR5K_RF_PWD_90, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
AR5K_RF_PWD_84, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
AR5K_RF_RFGAIN_SEL, true);
/* We programmed gain_F parameters, switch back
* to active state */
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
/* Bank 6/7 setup */
ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
AR5K_RF_PWD_XPD, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
AR5K_RF_XPD_GAIN, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
AR5K_RF_GAIN_I, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
AR5K_RF_PLO_SEL, true);
/* TODO: Half/quarter channel support */
}
if (ah->ah_radio == AR5K_RF5112) {
/* Set gain_F settings according to current step */
if (channel->hw_value & CHANNEL_OFDM) {
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
AR5K_RF_MIXGAIN_OVR, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
AR5K_RF_PWD_138, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
AR5K_RF_PWD_137, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
AR5K_RF_PWD_136, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
AR5K_RF_PWD_132, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
AR5K_RF_PWD_131, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
AR5K_RF_PWD_130, true);
/* We programmed gain_F parameters, switch back
* to active state */
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
/* Bank 6/7 setup */
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
AR5K_RF_XPD_SEL, true);
if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
/* Rev. 1 supports only one xpd */
ath5k_hw_rfb_op(ah, rf_regs,
ee->ee_x_gain[ee_mode],
AR5K_RF_XPD_GAIN, true);
} else {
/* TODO: Set high and low gain bits */
ath5k_hw_rfb_op(ah, rf_regs,
ee->ee_x_gain[ee_mode],
AR5K_RF_PD_GAIN_LO, true);
ath5k_hw_rfb_op(ah, rf_regs,
ee->ee_x_gain[ee_mode],
AR5K_RF_PD_GAIN_HI, true);
/* Lower synth voltage on Rev 2 */
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_HIGH_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_MID_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_LOW_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_PUSH_UP, true);
/* Decrease power consumption on 5213+ BaseBand */
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PAD2GND, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_XB2_LVL, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_XB5_LVL, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PWD_167, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PWD_166, true);
}
}
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
AR5K_RF_GAIN_I, true);
/* TODO: Half/quarter channel support */
}
if (ah->ah_radio == AR5K_RF5413 &&
channel->hw_value & CHANNEL_2GHZ) {
ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
true);
/* Set optimum value for early revisions (on pci-e chips) */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
ah->ah_mac_srev < AR5K_SREV_AR5413)
ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
AR5K_RF_PWD_ICLOBUF_2G, true);
}
/* Write RF banks on hw */
for (i = 0; i < ah->ah_rf_banks_size; i++) {
AR5K_REG_WAIT(i);
ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
}
return 0;
}
/**************************\
PHY/RF channel functions
\**************************/
/*
* Check if a channel is supported
*/
bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
{
/* Check if the channel is in our supported range */
if (flags & CHANNEL_2GHZ) {
if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
return true;
} else if (flags & CHANNEL_5GHZ)
if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
return true;
return false;
}
/*
* Convertion needed for RF5110
*/
static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
{
u32 athchan;
/*
* Convert IEEE channel/MHz to an internal channel value used
* by the AR5210 chipset. This has not been verified with
* newer chipsets like the AR5212A who have a completely
* different RF/PHY part.
*/
athchan = (ath5k_hw_bitswap(
(ieee80211_frequency_to_channel(
channel->center_freq) - 24) / 2, 5)
<< 1) | (1 << 6) | 0x1;
return athchan;
}
/*
* Set channel on RF5110
*/
static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data;
/*
* Set the channel and wait
*/
data = ath5k_hw_rf5110_chan2athchan(channel);
ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
mdelay(1);
return 0;
}
/*
* Convertion needed for 5111
*/
static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
struct ath5k_athchan_2ghz *athchan)
{
int channel;
/* Cast this value to catch negative channel numbers (>= -19) */
channel = (int)ieee;
/*
* Map 2GHz IEEE channel to 5GHz Atheros channel
*/
if (channel <= 13) {
athchan->a2_athchan = 115 + channel;
athchan->a2_flags = 0x46;
} else if (channel == 14) {
athchan->a2_athchan = 124;
athchan->a2_flags = 0x44;
} else if (channel >= 15 && channel <= 26) {
athchan->a2_athchan = ((channel - 14) * 4) + 132;
athchan->a2_flags = 0x46;
} else
return -EINVAL;
return 0;
}
/*
* Set channel on 5111
*/
static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath5k_athchan_2ghz ath5k_channel_2ghz;
unsigned int ath5k_channel =
ieee80211_frequency_to_channel(channel->center_freq);
u32 data0, data1, clock;
int ret;
/*
* Set the channel on the RF5111 radio
*/
data0 = data1 = 0;
if (channel->hw_value & CHANNEL_2GHZ) {
/* Map 2GHz channel to 5GHz Atheros channel ID */
ret = ath5k_hw_rf5111_chan2athchan(
ieee80211_frequency_to_channel(channel->center_freq),
&ath5k_channel_2ghz);
if (ret)
return ret;
ath5k_channel = ath5k_channel_2ghz.a2_athchan;
data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
<< 5) | (1 << 4);
}
if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
clock = 1;
data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
(clock << 1) | (1 << 10) | 1;
} else {
clock = 0;
data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
<< 2) | (clock << 1) | (1 << 10) | 1;
}
ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
AR5K_RF_BUFFER_CONTROL_3);
return 0;
}
/*
* Set channel on 5112 and newer
*/
static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data, data0, data1, data2;
u16 c;
data = data0 = data1 = data2 = 0;
c = channel->center_freq;
if (c < 4800) {
if (!((c - 2224) % 5)) {
data0 = ((2 * (c - 704)) - 3040) / 10;
data1 = 1;
} else if (!((c - 2192) % 5)) {
data0 = ((2 * (c - 672)) - 3040) / 10;
data1 = 0;
} else
return -EINVAL;
data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
} else if ((c - (c % 5)) != 2 || c > 5435) {
if (!(c % 20) && c >= 5120) {
data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
data2 = ath5k_hw_bitswap(3, 2);
} else if (!(c % 10)) {
data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
data2 = ath5k_hw_bitswap(2, 2);
} else if (!(c % 5)) {
data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
data2 = ath5k_hw_bitswap(1, 2);
} else
return -EINVAL;
} else {
data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
data2 = ath5k_hw_bitswap(0, 2);
}
data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
return 0;
}
/*
* Set the channel on the RF2425
*/
static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data, data0, data2;
u16 c;
data = data0 = data2 = 0;
c = channel->center_freq;
if (c < 4800) {
data0 = ath5k_hw_bitswap((c - 2272), 8);
data2 = 0;
/* ? 5GHz ? */
} else if ((c - (c % 5)) != 2 || c > 5435) {
if (!(c % 20) && c < 5120)
data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
else if (!(c % 10))
data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
else if (!(c % 5))
data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
else
return -EINVAL;
data2 = ath5k_hw_bitswap(1, 2);
} else {
data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
data2 = ath5k_hw_bitswap(0, 2);
}
data = (data0 << 4) | data2 << 2 | 0x1001;
ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
return 0;
}
/*
* Set a channel on the radio chip
*/
int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
{
int ret;
/*
* Check bounds supported by the PHY (we don't care about regultory
* restrictions at this point). Note: hw_value already has the band
* (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
* of the band by that */
if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
ATH5K_ERR(ah->ah_sc,
"channel frequency (%u MHz) out of supported "
"band range\n",
channel->center_freq);
return -EINVAL;
}
/*
* Set the channel and wait
*/
switch (ah->ah_radio) {
case AR5K_RF5110:
ret = ath5k_hw_rf5110_channel(ah, channel);
break;
case AR5K_RF5111:
ret = ath5k_hw_rf5111_channel(ah, channel);
break;
case AR5K_RF2425:
ret = ath5k_hw_rf2425_channel(ah, channel);
break;
default:
ret = ath5k_hw_rf5112_channel(ah, channel);
break;
}
if (ret)
return ret;
/* Set JAPAN setting for channel 14 */
if (channel->center_freq == 2484) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
AR5K_PHY_CCKTXCTL_JAPAN);
} else {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
AR5K_PHY_CCKTXCTL_WORLD);
}
ah->ah_current_channel.center_freq = channel->center_freq;
ah->ah_current_channel.hw_value = channel->hw_value;
ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
return 0;
}
/*****************\
PHY calibration
\*****************/
/**
* ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
*
* @ah: struct ath5k_hw pointer we are operating on
* @freq: the channel frequency, just used for error logging
*
* This function performs a noise floor calibration of the PHY and waits for
* it to complete. Then the noise floor value is compared to some maximum
* noise floor we consider valid.
*
* Note that this is different from what the madwifi HAL does: it reads the
* noise floor and afterwards initiates the calibration. Since the noise floor
* calibration can take some time to finish, depending on the current channel
* use, that avoids the occasional timeout warnings we are seeing now.
*
* See the following link for an Atheros patent on noise floor calibration:
* http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
* &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
*
* XXX: Since during noise floor calibration antennas are detached according to
* the patent, we should stop tx queues here.
*/
int
ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
{
int ret;
unsigned int i;
s32 noise_floor;
/*
* Enable noise floor calibration
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_NF);
ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_NF, 0, false);
if (ret) {
ATH5K_ERR(ah->ah_sc,
"noise floor calibration timeout (%uMHz)\n", freq);
return -EAGAIN;
}
/* Wait until the noise floor is calibrated and read the value */
for (i = 20; i > 0; i--) {
mdelay(1);
noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
if (noise_floor & AR5K_PHY_NF_ACTIVE) {
noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
break;
}
}
ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
"noise floor %d\n", noise_floor);
if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
ATH5K_ERR(ah->ah_sc,
"noise floor calibration failed (%uMHz)\n", freq);
return -EAGAIN;
}
ah->ah_noise_floor = noise_floor;
return 0;
}
/*
* Perform a PHY calibration on RF5110
* -Fix BPSK/QAM Constellation (I/Q correction)
* -Calculate Noise Floor
*/
static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 phy_sig, phy_agc, phy_sat, beacon;
int ret;
/*
* Disable beacons and RX/TX queues, wait
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
mdelay(2);
/*
* Set the channel (with AGC turned off)
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
udelay(10);
ret = ath5k_hw_channel(ah, channel);
/*
* Activate PHY and wait
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
mdelay(1);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
if (ret)
return ret;
/*
* Calibrate the radio chip
*/
/* Remember normal state */
phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
/* Update radio registers */
ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
AR5K_PHY_AGCCOARSE_LO)) |
AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
AR5K_PHY_ADCSAT_THR)) |
AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
udelay(20);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
udelay(10);
ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
mdelay(1);
/*
* Enable calibration and wait until completion
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false);
/* Reset to normal state */
ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
if (ret) {
ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
channel->center_freq);
return ret;
}
ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
/*
* Re-enable RX/TX and beacons
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
return 0;
}
/*
* Perform a PHY calibration on RF5111/5112 and newer chips
*/
static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 i_pwr, q_pwr;
s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
int i;
ATH5K_TRACE(ah->ah_sc);
if (!ah->ah_calibration ||
ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
goto done;
/* Calibration has finished, get the results and re-run */
for (i = 0; i <= 10; i++) {
iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
}
i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
q_coffd = q_pwr >> 7;
/* No correction */
if (i_coffd == 0 || q_coffd == 0)
goto done;
i_coff = ((-iq_corr) / i_coffd) & 0x3f;
/* Boundary check */
if (i_coff > 31)
i_coff = 31;
if (i_coff < -32)
i_coff = -32;
q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
/* Boundary check */
if (q_coff > 15)
q_coff = 15;
if (q_coff < -16)
q_coff = -16;
/* Commit new I/Q value */
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
/* Re-enable calibration -if we don't we'll commit
* the same values again and again */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
done:
/* TODO: Separate noise floor calibration from I/Q calibration
* since noise floor calibration interrupts rx path while I/Q
* calibration doesn't. We don't need to run noise floor calibration
* as often as I/Q calibration.*/
ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
/* Initiate a gain_F calibration */
ath5k_hw_request_rfgain_probe(ah);
return 0;
}
/*
* Perform a PHY calibration
*/
int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
int ret;
if (ah->ah_radio == AR5K_RF5110)
ret = ath5k_hw_rf5110_calibrate(ah, channel);
else
ret = ath5k_hw_rf511x_calibrate(ah, channel);
return ret;
}
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
/*Just a try M.F.*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
return 0;
}
/********************\
Misc PHY functions
\********************/
/*
* Get the PHY Chip revision
*/
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
{
unsigned int i;
u32 srev;
u16 ret;
ATH5K_TRACE(ah->ah_sc);
/*
* Set the radio chip access register
*/
switch (chan) {
case CHANNEL_2GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
break;
case CHANNEL_5GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
break;
default:
return 0;
}
mdelay(2);
/* ...wait until PHY is ready and read the selected radio revision */
ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
for (i = 0; i < 8; i++)
ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
if (ah->ah_version == AR5K_AR5210) {
srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
} else {
srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
((srev & 0x0f) << 4), 8);
}
/* Reset to the 5GHz mode */
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
return ret;
}
void /*TODO:Boundary check*/
ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
{
ATH5K_TRACE(ah->ah_sc);
/*Just a try M.F.*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
}
unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
/*Just a try M.F.*/
if (ah->ah_version != AR5K_AR5210)
return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
return false; /*XXX: What do we return for 5210 ?*/
}
/*
* TX power setup
*/
/*
* Initialize the tx power table (not fully implemented)
*/
static void ath5k_txpower_table(struct ath5k_hw *ah,
struct ieee80211_channel *channel, s16 max_power)
{
unsigned int i, min, max, n;
u16 txpower, *rates;
rates = ah->ah_txpower.txp_rates;
txpower = AR5K_TUNE_DEFAULT_TXPOWER * 2;
if (max_power > txpower)
txpower = max_power > AR5K_TUNE_MAX_TXPOWER ?
AR5K_TUNE_MAX_TXPOWER : max_power;
for (i = 0; i < AR5K_MAX_RATES; i++)
rates[i] = txpower;
/* XXX setup target powers by rate */
ah->ah_txpower.txp_min = rates[7];
ah->ah_txpower.txp_max = rates[0];
ah->ah_txpower.txp_ofdm = rates[0];
/* Calculate the power table */
n = ARRAY_SIZE(ah->ah_txpower.txp_pcdac);
min = AR5K_EEPROM_PCDAC_START;
max = AR5K_EEPROM_PCDAC_STOP;
for (i = 0; i < n; i += AR5K_EEPROM_PCDAC_STEP)
ah->ah_txpower.txp_pcdac[i] =
#ifdef notyet
min + ((i * (max - min)) / n);
#else
min;
#endif
}
/*
* Set transmition power
*/
int /*O.K. - txpower_table is unimplemented so this doesn't work*/
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
unsigned int txpower)
{
bool tpc = ah->ah_txpower.txp_tpc;
unsigned int i;
ATH5K_TRACE(ah->ah_sc);
if (txpower > AR5K_TUNE_MAX_TXPOWER) {
ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
return -EINVAL;
}
/*
* RF2413 for some reason can't
* transmit anything if we call
* this funtion, so we skip it
* until we fix txpower.
*
* XXX: Assume same for RF2425
* to be safe.
*/
if ((ah->ah_radio == AR5K_RF2413) || (ah->ah_radio == AR5K_RF2425))
return 0;
/* Reset TX power values */
memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
ah->ah_txpower.txp_tpc = tpc;
/* Initialize TX power table */
ath5k_txpower_table(ah, channel, txpower);
/*
* Write TX power values
*/
for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
ath5k_hw_reg_write(ah,
((((ah->ah_txpower.txp_pcdac[(i << 1) + 1] << 8) | 0xff) & 0xffff) << 16) |
(((ah->ah_txpower.txp_pcdac[(i << 1) ] << 8) | 0xff) & 0xffff),
AR5K_PHY_PCDAC_TXPOWER(i));
}
ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
if (ah->ah_txpower.txp_tpc)
ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
else
ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
return 0;
}
int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power)
{
/*Just a try M.F.*/
struct ieee80211_channel *channel = &ah->ah_current_channel;
ATH5K_TRACE(ah->ah_sc);
ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
"changing txpower to %d\n", power);
return ath5k_hw_txpower(ah, channel, power);
}
#undef _ATH5K_PHY