mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-04 08:15:44 +00:00
37ef38f3f8
The work-around for Qualcomm Technologies QDF2400 Erratum 44 hinges on a
global variable defined in the pl011 driver. The ACPI SPCR parsing code
determines whether the work-around is needed, and if so, it changes the
console name from "pl011" to "qdf2400_e44". The expectation is that
the pl011 driver will implement the work-around when it sees the console
name. The global variable qdf2400_e44_present is set when that happens.
The problem is that work-around needs to be enabled when the pl011
driver probes, not when the console name is queried. However, sbsa_probe()
is called before pl011_console_match(). The work-around appeared to work
previously because the default console on QDF2400 platforms was always
ttyAMA1. The first time sbsa_probe() is called (for ttyAMA0),
qdf2400_e44_present is still false. Then pl011_console_match() is called,
and it sets qdf2400_e44_present to true. All subsequent calls to
sbsa_probe() enable the work-around.
The solution is to move the global variable into spcr.c and let the
pl011 driver query it during probe time. This works because all QDF2400
platforms require SPCR, so parse_spcr() will always be called.
pl011_console_match still checks for the "qdf2400_e44" console name,
but it doesn't do anything else special.
Fixes: 5a0722b898
("tty: pl011: use "qdf2400_e44" as the earlycon name for QDF2400 E44")
Tested-by: Jeffrey Hugo <jhugo@codeaurora.org>
Signed-off-by: Timur Tabi <timur@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
201 lines
5.0 KiB
C
201 lines
5.0 KiB
C
/*
|
|
* Copyright (c) 2012, Intel Corporation
|
|
* Copyright (c) 2015, Red Hat, Inc.
|
|
* Copyright (c) 2015, 2016 Linaro Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "ACPI: SPCR: " fmt
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/console.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/serial_core.h>
|
|
|
|
/*
|
|
* Erratum 44 for QDF2432v1 and QDF2400v1 SoCs describes the BUSY bit as
|
|
* occasionally getting stuck as 1. To avoid the potential for a hang, check
|
|
* TXFE == 0 instead of BUSY == 1. This may not be suitable for all UART
|
|
* implementations, so only do so if an affected platform is detected in
|
|
* parse_spcr().
|
|
*/
|
|
bool qdf2400_e44_present;
|
|
EXPORT_SYMBOL(qdf2400_e44_present);
|
|
|
|
/*
|
|
* Some Qualcomm Datacenter Technologies SoCs have a defective UART BUSY bit.
|
|
* Detect them by examining the OEM fields in the SPCR header, similiar to PCI
|
|
* quirk detection in pci_mcfg.c.
|
|
*/
|
|
static bool qdf2400_erratum_44_present(struct acpi_table_header *h)
|
|
{
|
|
if (memcmp(h->oem_id, "QCOM ", ACPI_OEM_ID_SIZE))
|
|
return false;
|
|
|
|
if (!memcmp(h->oem_table_id, "QDF2432 ", ACPI_OEM_TABLE_ID_SIZE))
|
|
return true;
|
|
|
|
if (!memcmp(h->oem_table_id, "QDF2400 ", ACPI_OEM_TABLE_ID_SIZE) &&
|
|
h->oem_revision == 1)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* APM X-Gene v1 and v2 UART hardware is an 16550 like device but has its
|
|
* register aligned to 32-bit. In addition, the BIOS also encoded the
|
|
* access width to be 8 bits. This function detects this errata condition.
|
|
*/
|
|
static bool xgene_8250_erratum_present(struct acpi_table_spcr *tb)
|
|
{
|
|
if (tb->interface_type != ACPI_DBG2_16550_COMPATIBLE)
|
|
return false;
|
|
|
|
if (memcmp(tb->header.oem_id, "APMC0D", ACPI_OEM_ID_SIZE))
|
|
return false;
|
|
|
|
if (!memcmp(tb->header.oem_table_id, "XGENESPC",
|
|
ACPI_OEM_TABLE_ID_SIZE) && tb->header.oem_revision == 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* parse_spcr() - parse ACPI SPCR table and add preferred console
|
|
*
|
|
* @earlycon: set up earlycon for the console specified by the table
|
|
*
|
|
* For the architectures with support for ACPI, CONFIG_ACPI_SPCR_TABLE may be
|
|
* defined to parse ACPI SPCR table. As a result of the parsing preferred
|
|
* console is registered and if @earlycon is true, earlycon is set up.
|
|
*
|
|
* When CONFIG_ACPI_SPCR_TABLE is defined, this function should be called
|
|
* from arch initialization code as soon as the DT/ACPI decision is made.
|
|
*
|
|
*/
|
|
int __init parse_spcr(bool earlycon)
|
|
{
|
|
static char opts[64];
|
|
struct acpi_table_spcr *table;
|
|
acpi_status status;
|
|
char *uart;
|
|
char *iotype;
|
|
int baud_rate;
|
|
int err;
|
|
|
|
if (acpi_disabled)
|
|
return -ENODEV;
|
|
|
|
status = acpi_get_table(ACPI_SIG_SPCR, 0,
|
|
(struct acpi_table_header **)&table);
|
|
|
|
if (ACPI_FAILURE(status))
|
|
return -ENOENT;
|
|
|
|
if (table->header.revision < 2) {
|
|
err = -ENOENT;
|
|
pr_err("wrong table version\n");
|
|
goto done;
|
|
}
|
|
|
|
if (table->serial_port.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
|
|
switch (table->serial_port.access_width) {
|
|
default:
|
|
pr_err("Unexpected SPCR Access Width. Defaulting to byte size\n");
|
|
case ACPI_ACCESS_SIZE_BYTE:
|
|
iotype = "mmio";
|
|
break;
|
|
case ACPI_ACCESS_SIZE_WORD:
|
|
iotype = "mmio16";
|
|
break;
|
|
case ACPI_ACCESS_SIZE_DWORD:
|
|
iotype = "mmio32";
|
|
break;
|
|
}
|
|
} else
|
|
iotype = "io";
|
|
|
|
switch (table->interface_type) {
|
|
case ACPI_DBG2_ARM_SBSA_32BIT:
|
|
iotype = "mmio32";
|
|
/* fall through */
|
|
case ACPI_DBG2_ARM_PL011:
|
|
case ACPI_DBG2_ARM_SBSA_GENERIC:
|
|
case ACPI_DBG2_BCM2835:
|
|
uart = "pl011";
|
|
break;
|
|
case ACPI_DBG2_16550_COMPATIBLE:
|
|
case ACPI_DBG2_16550_SUBSET:
|
|
uart = "uart";
|
|
break;
|
|
default:
|
|
err = -ENOENT;
|
|
goto done;
|
|
}
|
|
|
|
switch (table->baud_rate) {
|
|
case 3:
|
|
baud_rate = 9600;
|
|
break;
|
|
case 4:
|
|
baud_rate = 19200;
|
|
break;
|
|
case 6:
|
|
baud_rate = 57600;
|
|
break;
|
|
case 7:
|
|
baud_rate = 115200;
|
|
break;
|
|
default:
|
|
err = -ENOENT;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the E44 erratum is required, then we need to tell the pl011
|
|
* driver to implement the work-around.
|
|
*
|
|
* The global variable is used by the probe function when it
|
|
* creates the UARTs, whether or not they're used as a console.
|
|
*
|
|
* If the user specifies "traditional" earlycon, the qdf2400_e44
|
|
* console name matches the EARLYCON_DECLARE() statement, and
|
|
* SPCR is not used. Parameter "earlycon" is false.
|
|
*
|
|
* If the user specifies "SPCR" earlycon, then we need to update
|
|
* the console name so that it also says "qdf2400_e44". Parameter
|
|
* "earlycon" is true.
|
|
*
|
|
* For consistency, if we change the console name, then we do it
|
|
* for everyone, not just earlycon.
|
|
*/
|
|
if (qdf2400_erratum_44_present(&table->header)) {
|
|
qdf2400_e44_present = true;
|
|
if (earlycon)
|
|
uart = "qdf2400_e44";
|
|
}
|
|
|
|
if (xgene_8250_erratum_present(table))
|
|
iotype = "mmio32";
|
|
|
|
snprintf(opts, sizeof(opts), "%s,%s,0x%llx,%d", uart, iotype,
|
|
table->serial_port.address, baud_rate);
|
|
|
|
pr_info("console: %s\n", opts);
|
|
|
|
if (earlycon)
|
|
setup_earlycon(opts);
|
|
|
|
err = add_preferred_console(uart, 0, opts + strlen(uart) + 1);
|
|
|
|
done:
|
|
acpi_put_table((struct acpi_table_header *)table);
|
|
return err;
|
|
}
|