mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-15 05:11:32 +00:00
66e1707bc3
Add the page_cgroup to the per cgroup LRU. The reclaim algorithm has been modified to make the isolate_lru_pages() as a pluggable component. The scan_control data structure now accepts the cgroup on behalf of which reclaims are carried out. try_to_free_pages() has been extended to become cgroup aware. [akpm@linux-foundation.org: fix warning] [Lee.Schermerhorn@hp.com: initialize all scan_control's isolate_pages member] [bunk@kernel.org: make do_try_to_free_pages() static] [hugh@veritas.com: memcgroup: fix try_to_free order] [kamezawa.hiroyu@jp.fujitsu.com: this unlock_page_cgroup() is unnecessary] Signed-off-by: Pavel Emelianov <xemul@openvz.org> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
510 lines
12 KiB
C
510 lines
12 KiB
C
/* memcontrol.c - Memory Controller
|
|
*
|
|
* Copyright IBM Corporation, 2007
|
|
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
|
|
*
|
|
* Copyright 2007 OpenVZ SWsoft Inc
|
|
* Author: Pavel Emelianov <xemul@openvz.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/res_counter.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/bit_spinlock.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/fs.h>
|
|
|
|
struct cgroup_subsys mem_cgroup_subsys;
|
|
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
|
|
|
|
/*
|
|
* The memory controller data structure. The memory controller controls both
|
|
* page cache and RSS per cgroup. We would eventually like to provide
|
|
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
|
|
* to help the administrator determine what knobs to tune.
|
|
*
|
|
* TODO: Add a water mark for the memory controller. Reclaim will begin when
|
|
* we hit the water mark. May be even add a low water mark, such that
|
|
* no reclaim occurs from a cgroup at it's low water mark, this is
|
|
* a feature that will be implemented much later in the future.
|
|
*/
|
|
struct mem_cgroup {
|
|
struct cgroup_subsys_state css;
|
|
/*
|
|
* the counter to account for memory usage
|
|
*/
|
|
struct res_counter res;
|
|
/*
|
|
* Per cgroup active and inactive list, similar to the
|
|
* per zone LRU lists.
|
|
* TODO: Consider making these lists per zone
|
|
*/
|
|
struct list_head active_list;
|
|
struct list_head inactive_list;
|
|
/*
|
|
* spin_lock to protect the per cgroup LRU
|
|
*/
|
|
spinlock_t lru_lock;
|
|
};
|
|
|
|
/*
|
|
* We use the lower bit of the page->page_cgroup pointer as a bit spin
|
|
* lock. We need to ensure that page->page_cgroup is atleast two
|
|
* byte aligned (based on comments from Nick Piggin)
|
|
*/
|
|
#define PAGE_CGROUP_LOCK_BIT 0x0
|
|
#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
|
|
|
|
/*
|
|
* A page_cgroup page is associated with every page descriptor. The
|
|
* page_cgroup helps us identify information about the cgroup
|
|
*/
|
|
struct page_cgroup {
|
|
struct list_head lru; /* per cgroup LRU list */
|
|
struct page *page;
|
|
struct mem_cgroup *mem_cgroup;
|
|
atomic_t ref_cnt; /* Helpful when pages move b/w */
|
|
/* mapped and cached states */
|
|
};
|
|
|
|
|
|
static inline
|
|
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
|
|
{
|
|
return container_of(cgroup_subsys_state(cont,
|
|
mem_cgroup_subsys_id), struct mem_cgroup,
|
|
css);
|
|
}
|
|
|
|
static inline
|
|
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
|
|
{
|
|
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
|
|
struct mem_cgroup, css);
|
|
}
|
|
|
|
void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
|
|
mem = mem_cgroup_from_task(p);
|
|
css_get(&mem->css);
|
|
mm->mem_cgroup = mem;
|
|
}
|
|
|
|
void mm_free_cgroup(struct mm_struct *mm)
|
|
{
|
|
css_put(&mm->mem_cgroup->css);
|
|
}
|
|
|
|
static inline int page_cgroup_locked(struct page *page)
|
|
{
|
|
return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
|
|
&page->page_cgroup);
|
|
}
|
|
|
|
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
|
|
{
|
|
int locked;
|
|
|
|
/*
|
|
* While resetting the page_cgroup we might not hold the
|
|
* page_cgroup lock. free_hot_cold_page() is an example
|
|
* of such a scenario
|
|
*/
|
|
if (pc)
|
|
VM_BUG_ON(!page_cgroup_locked(page));
|
|
locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
|
|
page->page_cgroup = ((unsigned long)pc | locked);
|
|
}
|
|
|
|
struct page_cgroup *page_get_page_cgroup(struct page *page)
|
|
{
|
|
return (struct page_cgroup *)
|
|
(page->page_cgroup & ~PAGE_CGROUP_LOCK);
|
|
}
|
|
|
|
void __always_inline lock_page_cgroup(struct page *page)
|
|
{
|
|
bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
|
|
VM_BUG_ON(!page_cgroup_locked(page));
|
|
}
|
|
|
|
void __always_inline unlock_page_cgroup(struct page *page)
|
|
{
|
|
bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
|
|
}
|
|
|
|
void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
|
|
{
|
|
if (active)
|
|
list_move(&pc->lru, &pc->mem_cgroup->active_list);
|
|
else
|
|
list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
|
|
}
|
|
|
|
/*
|
|
* This routine assumes that the appropriate zone's lru lock is already held
|
|
*/
|
|
void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
if (!pc)
|
|
return;
|
|
|
|
mem = pc->mem_cgroup;
|
|
|
|
spin_lock(&mem->lru_lock);
|
|
__mem_cgroup_move_lists(pc, active);
|
|
spin_unlock(&mem->lru_lock);
|
|
}
|
|
|
|
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
|
|
struct list_head *dst,
|
|
unsigned long *scanned, int order,
|
|
int mode, struct zone *z,
|
|
struct mem_cgroup *mem_cont,
|
|
int active)
|
|
{
|
|
unsigned long nr_taken = 0;
|
|
struct page *page;
|
|
unsigned long scan;
|
|
LIST_HEAD(pc_list);
|
|
struct list_head *src;
|
|
struct page_cgroup *pc;
|
|
|
|
if (active)
|
|
src = &mem_cont->active_list;
|
|
else
|
|
src = &mem_cont->inactive_list;
|
|
|
|
spin_lock(&mem_cont->lru_lock);
|
|
for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
|
|
pc = list_entry(src->prev, struct page_cgroup, lru);
|
|
page = pc->page;
|
|
VM_BUG_ON(!pc);
|
|
|
|
if (PageActive(page) && !active) {
|
|
__mem_cgroup_move_lists(pc, true);
|
|
scan--;
|
|
continue;
|
|
}
|
|
if (!PageActive(page) && active) {
|
|
__mem_cgroup_move_lists(pc, false);
|
|
scan--;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Reclaim, per zone
|
|
* TODO: make the active/inactive lists per zone
|
|
*/
|
|
if (page_zone(page) != z)
|
|
continue;
|
|
|
|
/*
|
|
* Check if the meta page went away from under us
|
|
*/
|
|
if (!list_empty(&pc->lru))
|
|
list_move(&pc->lru, &pc_list);
|
|
else
|
|
continue;
|
|
|
|
if (__isolate_lru_page(page, mode) == 0) {
|
|
list_move(&page->lru, dst);
|
|
nr_taken++;
|
|
}
|
|
}
|
|
|
|
list_splice(&pc_list, src);
|
|
spin_unlock(&mem_cont->lru_lock);
|
|
|
|
*scanned = scan;
|
|
return nr_taken;
|
|
}
|
|
|
|
/*
|
|
* Charge the memory controller for page usage.
|
|
* Return
|
|
* 0 if the charge was successful
|
|
* < 0 if the cgroup is over its limit
|
|
*/
|
|
int mem_cgroup_charge(struct page *page, struct mm_struct *mm)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
struct page_cgroup *pc, *race_pc;
|
|
unsigned long flags;
|
|
unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
|
|
|
|
/*
|
|
* Should page_cgroup's go to their own slab?
|
|
* One could optimize the performance of the charging routine
|
|
* by saving a bit in the page_flags and using it as a lock
|
|
* to see if the cgroup page already has a page_cgroup associated
|
|
* with it
|
|
*/
|
|
retry:
|
|
lock_page_cgroup(page);
|
|
pc = page_get_page_cgroup(page);
|
|
/*
|
|
* The page_cgroup exists and the page has already been accounted
|
|
*/
|
|
if (pc) {
|
|
if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
|
|
/* this page is under being uncharged ? */
|
|
unlock_page_cgroup(page);
|
|
cpu_relax();
|
|
goto retry;
|
|
} else
|
|
goto done;
|
|
}
|
|
|
|
unlock_page_cgroup(page);
|
|
|
|
pc = kzalloc(sizeof(struct page_cgroup), GFP_KERNEL);
|
|
if (pc == NULL)
|
|
goto err;
|
|
|
|
rcu_read_lock();
|
|
/*
|
|
* We always charge the cgroup the mm_struct belongs to
|
|
* the mm_struct's mem_cgroup changes on task migration if the
|
|
* thread group leader migrates. It's possible that mm is not
|
|
* set, if so charge the init_mm (happens for pagecache usage).
|
|
*/
|
|
if (!mm)
|
|
mm = &init_mm;
|
|
|
|
mem = rcu_dereference(mm->mem_cgroup);
|
|
/*
|
|
* For every charge from the cgroup, increment reference
|
|
* count
|
|
*/
|
|
css_get(&mem->css);
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* If we created the page_cgroup, we should free it on exceeding
|
|
* the cgroup limit.
|
|
*/
|
|
while (res_counter_charge(&mem->res, 1)) {
|
|
if (try_to_free_mem_cgroup_pages(mem))
|
|
continue;
|
|
|
|
/*
|
|
* try_to_free_mem_cgroup_pages() might not give us a full
|
|
* picture of reclaim. Some pages are reclaimed and might be
|
|
* moved to swap cache or just unmapped from the cgroup.
|
|
* Check the limit again to see if the reclaim reduced the
|
|
* current usage of the cgroup before giving up
|
|
*/
|
|
if (res_counter_check_under_limit(&mem->res))
|
|
continue;
|
|
/*
|
|
* Since we control both RSS and cache, we end up with a
|
|
* very interesting scenario where we end up reclaiming
|
|
* memory (essentially RSS), since the memory is pushed
|
|
* to swap cache, we eventually end up adding those
|
|
* pages back to our list. Hence we give ourselves a
|
|
* few chances before we fail
|
|
*/
|
|
else if (nr_retries--) {
|
|
congestion_wait(WRITE, HZ/10);
|
|
continue;
|
|
}
|
|
|
|
css_put(&mem->css);
|
|
goto free_pc;
|
|
}
|
|
|
|
lock_page_cgroup(page);
|
|
/*
|
|
* Check if somebody else beat us to allocating the page_cgroup
|
|
*/
|
|
race_pc = page_get_page_cgroup(page);
|
|
if (race_pc) {
|
|
kfree(pc);
|
|
pc = race_pc;
|
|
atomic_inc(&pc->ref_cnt);
|
|
res_counter_uncharge(&mem->res, 1);
|
|
css_put(&mem->css);
|
|
goto done;
|
|
}
|
|
|
|
atomic_set(&pc->ref_cnt, 1);
|
|
pc->mem_cgroup = mem;
|
|
pc->page = page;
|
|
page_assign_page_cgroup(page, pc);
|
|
|
|
spin_lock_irqsave(&mem->lru_lock, flags);
|
|
list_add(&pc->lru, &mem->active_list);
|
|
spin_unlock_irqrestore(&mem->lru_lock, flags);
|
|
|
|
done:
|
|
unlock_page_cgroup(page);
|
|
return 0;
|
|
free_pc:
|
|
kfree(pc);
|
|
err:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Uncharging is always a welcome operation, we never complain, simply
|
|
* uncharge.
|
|
*/
|
|
void mem_cgroup_uncharge(struct page_cgroup *pc)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
struct page *page;
|
|
unsigned long flags;
|
|
|
|
if (!pc)
|
|
return;
|
|
|
|
if (atomic_dec_and_test(&pc->ref_cnt)) {
|
|
page = pc->page;
|
|
lock_page_cgroup(page);
|
|
mem = pc->mem_cgroup;
|
|
css_put(&mem->css);
|
|
page_assign_page_cgroup(page, NULL);
|
|
unlock_page_cgroup(page);
|
|
res_counter_uncharge(&mem->res, 1);
|
|
|
|
spin_lock_irqsave(&mem->lru_lock, flags);
|
|
list_del_init(&pc->lru);
|
|
spin_unlock_irqrestore(&mem->lru_lock, flags);
|
|
kfree(pc);
|
|
}
|
|
}
|
|
|
|
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
|
|
struct file *file, char __user *userbuf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
return res_counter_read(&mem_cgroup_from_cont(cont)->res,
|
|
cft->private, userbuf, nbytes, ppos);
|
|
}
|
|
|
|
static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
|
|
struct file *file, const char __user *userbuf,
|
|
size_t nbytes, loff_t *ppos)
|
|
{
|
|
return res_counter_write(&mem_cgroup_from_cont(cont)->res,
|
|
cft->private, userbuf, nbytes, ppos);
|
|
}
|
|
|
|
static struct cftype mem_cgroup_files[] = {
|
|
{
|
|
.name = "usage",
|
|
.private = RES_USAGE,
|
|
.read = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "limit",
|
|
.private = RES_LIMIT,
|
|
.write = mem_cgroup_write,
|
|
.read = mem_cgroup_read,
|
|
},
|
|
{
|
|
.name = "failcnt",
|
|
.private = RES_FAILCNT,
|
|
.read = mem_cgroup_read,
|
|
},
|
|
};
|
|
|
|
static struct mem_cgroup init_mem_cgroup;
|
|
|
|
static struct cgroup_subsys_state *
|
|
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
|
|
{
|
|
struct mem_cgroup *mem;
|
|
|
|
if (unlikely((cont->parent) == NULL)) {
|
|
mem = &init_mem_cgroup;
|
|
init_mm.mem_cgroup = mem;
|
|
} else
|
|
mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
|
|
|
|
if (mem == NULL)
|
|
return NULL;
|
|
|
|
res_counter_init(&mem->res);
|
|
INIT_LIST_HEAD(&mem->active_list);
|
|
INIT_LIST_HEAD(&mem->inactive_list);
|
|
spin_lock_init(&mem->lru_lock);
|
|
return &mem->css;
|
|
}
|
|
|
|
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
|
|
struct cgroup *cont)
|
|
{
|
|
kfree(mem_cgroup_from_cont(cont));
|
|
}
|
|
|
|
static int mem_cgroup_populate(struct cgroup_subsys *ss,
|
|
struct cgroup *cont)
|
|
{
|
|
return cgroup_add_files(cont, ss, mem_cgroup_files,
|
|
ARRAY_SIZE(mem_cgroup_files));
|
|
}
|
|
|
|
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
|
|
struct cgroup *cont,
|
|
struct cgroup *old_cont,
|
|
struct task_struct *p)
|
|
{
|
|
struct mm_struct *mm;
|
|
struct mem_cgroup *mem, *old_mem;
|
|
|
|
mm = get_task_mm(p);
|
|
if (mm == NULL)
|
|
return;
|
|
|
|
mem = mem_cgroup_from_cont(cont);
|
|
old_mem = mem_cgroup_from_cont(old_cont);
|
|
|
|
if (mem == old_mem)
|
|
goto out;
|
|
|
|
/*
|
|
* Only thread group leaders are allowed to migrate, the mm_struct is
|
|
* in effect owned by the leader
|
|
*/
|
|
if (p->tgid != p->pid)
|
|
goto out;
|
|
|
|
css_get(&mem->css);
|
|
rcu_assign_pointer(mm->mem_cgroup, mem);
|
|
css_put(&old_mem->css);
|
|
|
|
out:
|
|
mmput(mm);
|
|
return;
|
|
}
|
|
|
|
struct cgroup_subsys mem_cgroup_subsys = {
|
|
.name = "memory",
|
|
.subsys_id = mem_cgroup_subsys_id,
|
|
.create = mem_cgroup_create,
|
|
.destroy = mem_cgroup_destroy,
|
|
.populate = mem_cgroup_populate,
|
|
.attach = mem_cgroup_move_task,
|
|
.early_init = 1,
|
|
};
|