mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-28 20:37:27 +00:00
bbee8b3933
Add the required SC register configurations which lets us perform linear scaling for the supported range of horizontal and vertical scaling ratios. The horizontal scaler performs polyphase scaling using it's 8 tap 32 phase filter, decimation is performed when downscaling passes beyond 2x or 4x. The vertical scaler performs polyphase scaling using it's 5 tap 32 phase filter, it switches to a simpler form of scaling using the running average filter when the downscale ratio is more than 4x. Many of the SC features like peaking, trimming and non-linear scaling aren't implemented for now. Only the minimal register fields required for basic scaling operation are configured. The function to configure SC registers takes the sc_data handle, the source and destination widths and heights, and the scaler address data block offsets for the current context so that they can be configured. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
312 lines
7.2 KiB
C
312 lines
7.2 KiB
C
/*
|
|
* Scaler library
|
|
*
|
|
* Copyright (c) 2013 Texas Instruments Inc.
|
|
*
|
|
* David Griego, <dagriego@biglakesoftware.com>
|
|
* Dale Farnsworth, <dale@farnsworth.org>
|
|
* Archit Taneja, <archit@ti.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "sc.h"
|
|
#include "sc_coeff.h"
|
|
|
|
void sc_dump_regs(struct sc_data *sc)
|
|
{
|
|
struct device *dev = &sc->pdev->dev;
|
|
|
|
u32 read_reg(struct sc_data *sc, int offset)
|
|
{
|
|
return ioread32(sc->base + offset);
|
|
}
|
|
|
|
#define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(sc, CFG_##r))
|
|
|
|
DUMPREG(SC0);
|
|
DUMPREG(SC1);
|
|
DUMPREG(SC2);
|
|
DUMPREG(SC3);
|
|
DUMPREG(SC4);
|
|
DUMPREG(SC5);
|
|
DUMPREG(SC6);
|
|
DUMPREG(SC8);
|
|
DUMPREG(SC9);
|
|
DUMPREG(SC10);
|
|
DUMPREG(SC11);
|
|
DUMPREG(SC12);
|
|
DUMPREG(SC13);
|
|
DUMPREG(SC17);
|
|
DUMPREG(SC18);
|
|
DUMPREG(SC19);
|
|
DUMPREG(SC20);
|
|
DUMPREG(SC21);
|
|
DUMPREG(SC22);
|
|
DUMPREG(SC23);
|
|
DUMPREG(SC24);
|
|
DUMPREG(SC25);
|
|
|
|
#undef DUMPREG
|
|
}
|
|
|
|
/*
|
|
* set the horizontal scaler coefficients according to the ratio of output to
|
|
* input widths, after accounting for up to two levels of decimation
|
|
*/
|
|
void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
|
|
unsigned int dst_w)
|
|
{
|
|
int sixteenths;
|
|
int idx;
|
|
int i, j;
|
|
u16 *coeff_h = addr;
|
|
const u16 *cp;
|
|
|
|
if (dst_w > src_w) {
|
|
idx = HS_UP_SCALE;
|
|
} else {
|
|
if ((dst_w << 1) < src_w)
|
|
dst_w <<= 1; /* first level decimation */
|
|
if ((dst_w << 1) < src_w)
|
|
dst_w <<= 1; /* second level decimation */
|
|
|
|
if (dst_w == src_w) {
|
|
idx = HS_LE_16_16_SCALE;
|
|
} else {
|
|
sixteenths = (dst_w << 4) / src_w;
|
|
if (sixteenths < 8)
|
|
sixteenths = 8;
|
|
idx = HS_LT_9_16_SCALE + sixteenths - 8;
|
|
}
|
|
}
|
|
|
|
if (idx == sc->hs_index)
|
|
return;
|
|
|
|
cp = scaler_hs_coeffs[idx];
|
|
|
|
for (i = 0; i < SC_NUM_PHASES * 2; i++) {
|
|
for (j = 0; j < SC_H_NUM_TAPS; j++)
|
|
*coeff_h++ = *cp++;
|
|
/*
|
|
* for each phase, the scaler expects space for 8 coefficients
|
|
* in it's memory. For the horizontal scaler, we copy the first
|
|
* 7 coefficients and skip the last slot to move to the next
|
|
* row to hold coefficients for the next phase
|
|
*/
|
|
coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS;
|
|
}
|
|
|
|
sc->hs_index = idx;
|
|
|
|
sc->load_coeff_h = true;
|
|
}
|
|
|
|
/*
|
|
* set the vertical scaler coefficients according to the ratio of output to
|
|
* input heights
|
|
*/
|
|
void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
|
|
unsigned int dst_h)
|
|
{
|
|
int sixteenths;
|
|
int idx;
|
|
int i, j;
|
|
u16 *coeff_v = addr;
|
|
const u16 *cp;
|
|
|
|
if (dst_h > src_h) {
|
|
idx = VS_UP_SCALE;
|
|
} else if (dst_h == src_h) {
|
|
idx = VS_1_TO_1_SCALE;
|
|
} else {
|
|
sixteenths = (dst_h << 4) / src_h;
|
|
if (sixteenths < 8)
|
|
sixteenths = 8;
|
|
idx = VS_LT_9_16_SCALE + sixteenths - 8;
|
|
}
|
|
|
|
if (idx == sc->vs_index)
|
|
return;
|
|
|
|
cp = scaler_vs_coeffs[idx];
|
|
|
|
for (i = 0; i < SC_NUM_PHASES * 2; i++) {
|
|
for (j = 0; j < SC_V_NUM_TAPS; j++)
|
|
*coeff_v++ = *cp++;
|
|
/*
|
|
* for the vertical scaler, we copy the first 5 coefficients and
|
|
* skip the last 3 slots to move to the next row to hold
|
|
* coefficients for the next phase
|
|
*/
|
|
coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS;
|
|
}
|
|
|
|
sc->vs_index = idx;
|
|
sc->load_coeff_v = true;
|
|
}
|
|
|
|
void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
|
|
u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
|
|
unsigned int dst_w, unsigned int dst_h)
|
|
{
|
|
struct device *dev = &sc->pdev->dev;
|
|
u32 val;
|
|
int dcm_x, dcm_shift;
|
|
bool use_rav;
|
|
unsigned long lltmp;
|
|
u32 lin_acc_inc, lin_acc_inc_u;
|
|
u32 col_acc_offset;
|
|
u16 factor = 0;
|
|
int row_acc_init_rav = 0, row_acc_init_rav_b = 0;
|
|
u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0;
|
|
/*
|
|
* location of SC register in payload memory with respect to the first
|
|
* register in the mmr address data block
|
|
*/
|
|
u32 *sc_reg9 = sc_reg8 + 1;
|
|
u32 *sc_reg12 = sc_reg8 + 4;
|
|
u32 *sc_reg13 = sc_reg8 + 5;
|
|
u32 *sc_reg24 = sc_reg17 + 7;
|
|
|
|
val = sc_reg0[0];
|
|
|
|
/* clear all the features(they may get enabled elsewhere later) */
|
|
val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP |
|
|
CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS |
|
|
CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS |
|
|
CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR);
|
|
|
|
if (src_w == dst_w && src_h == dst_h) {
|
|
val |= CFG_SC_BYPASS;
|
|
sc_reg0[0] = val;
|
|
return;
|
|
}
|
|
|
|
/* we only support linear scaling for now */
|
|
val |= CFG_LINEAR;
|
|
|
|
/* configure horizontal scaler */
|
|
|
|
/* enable 2X or 4X decimation */
|
|
dcm_x = src_w / dst_w;
|
|
if (dcm_x > 4) {
|
|
val |= CFG_DCM_4X;
|
|
dcm_shift = 2;
|
|
} else if (dcm_x > 2) {
|
|
val |= CFG_DCM_2X;
|
|
dcm_shift = 1;
|
|
} else {
|
|
dcm_shift = 0;
|
|
}
|
|
|
|
lltmp = dst_w - 1;
|
|
lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp);
|
|
lin_acc_inc_u = 0;
|
|
col_acc_offset = 0;
|
|
|
|
dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n",
|
|
src_w, dst_w, dcm_shift == 2 ? "4x" :
|
|
(dcm_shift == 1 ? "2x" : "none"), lin_acc_inc);
|
|
|
|
/* configure vertical scaler */
|
|
|
|
/* use RAV for vertical scaler if vertical downscaling is > 4x */
|
|
if (dst_h < (src_h >> 2)) {
|
|
use_rav = true;
|
|
val |= CFG_USE_RAV;
|
|
} else {
|
|
use_rav = false;
|
|
}
|
|
|
|
if (use_rav) {
|
|
/* use RAV */
|
|
factor = (u16) ((dst_h << 10) / src_h);
|
|
|
|
row_acc_init_rav = factor + ((1 + factor) >> 1);
|
|
if (row_acc_init_rav >= 1024)
|
|
row_acc_init_rav -= 1024;
|
|
|
|
row_acc_init_rav_b = row_acc_init_rav +
|
|
(1 + (row_acc_init_rav >> 1)) -
|
|
(1024 >> 1);
|
|
|
|
if (row_acc_init_rav_b < 0) {
|
|
row_acc_init_rav_b += row_acc_init_rav;
|
|
row_acc_init_rav *= 2;
|
|
}
|
|
|
|
dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n",
|
|
src_h, dst_h, factor, row_acc_init_rav,
|
|
row_acc_init_rav_b);
|
|
} else {
|
|
/* use polyphase */
|
|
row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1);
|
|
row_acc_offset = 0;
|
|
row_acc_offset_b = 0;
|
|
|
|
dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n",
|
|
src_h, dst_h, row_acc_inc);
|
|
}
|
|
|
|
|
|
sc_reg0[0] = val;
|
|
sc_reg0[1] = row_acc_inc;
|
|
sc_reg0[2] = row_acc_offset;
|
|
sc_reg0[3] = row_acc_offset_b;
|
|
|
|
sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) <<
|
|
CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) |
|
|
(dst_h << CFG_TAR_H_SHIFT);
|
|
|
|
sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT);
|
|
|
|
sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) |
|
|
(row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT);
|
|
|
|
*sc_reg9 = lin_acc_inc;
|
|
|
|
*sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT;
|
|
|
|
*sc_reg13 = factor;
|
|
|
|
*sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT);
|
|
}
|
|
|
|
struct sc_data *sc_create(struct platform_device *pdev)
|
|
{
|
|
struct sc_data *sc;
|
|
|
|
dev_dbg(&pdev->dev, "sc_create\n");
|
|
|
|
sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL);
|
|
if (!sc) {
|
|
dev_err(&pdev->dev, "couldn't alloc sc_data\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
sc->pdev = pdev;
|
|
|
|
sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sc");
|
|
if (!sc->res) {
|
|
dev_err(&pdev->dev, "missing platform resources data\n");
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
sc->base = devm_ioremap_resource(&pdev->dev, sc->res);
|
|
if (!sc->base) {
|
|
dev_err(&pdev->dev, "failed to ioremap\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return sc;
|
|
}
|