linux/arch/powerpc/mm/hugetlbpage.c
Christoph Lameter 69111bac42 powerpc: Replace __get_cpu_var uses
This still has not been merged and now powerpc is the only arch that does
not have this change. Sorry about missing linuxppc-dev before.

V2->V2
  - Fix up to work against 3.18-rc1

__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x).  This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.

Other use cases are for storing and retrieving data from the current
processors percpu area.  __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.

__get_cpu_var() is defined as :

__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.

this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.

This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset.  Thereby address calculations are avoided and less registers
are used when code is generated.

At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.

The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e.  using a global
register that may be set to the per cpu base.

Transformations done to __get_cpu_var()

1. Determine the address of the percpu instance of the current processor.

	DEFINE_PER_CPU(int, y);
	int *x = &__get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(&y);

2. Same as #1 but this time an array structure is involved.

	DEFINE_PER_CPU(int, y[20]);
	int *x = __get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(y);

3. Retrieve the content of the current processors instance of a per cpu
variable.

	DEFINE_PER_CPU(int, y);
	int x = __get_cpu_var(y)

   Converts to

	int x = __this_cpu_read(y);

4. Retrieve the content of a percpu struct

	DEFINE_PER_CPU(struct mystruct, y);
	struct mystruct x = __get_cpu_var(y);

   Converts to

	memcpy(&x, this_cpu_ptr(&y), sizeof(x));

5. Assignment to a per cpu variable

	DEFINE_PER_CPU(int, y)
	__get_cpu_var(y) = x;

   Converts to

	__this_cpu_write(y, x);

6. Increment/Decrement etc of a per cpu variable

	DEFINE_PER_CPU(int, y);
	__get_cpu_var(y)++

   Converts to

	__this_cpu_inc(y)

Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
[mpe: Fix build errors caused by set/or_softirq_pending(), and rework
      assignment in __set_breakpoint() to use memcpy().]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-11-03 12:12:32 +11:00

1090 lines
26 KiB
C

/*
* PPC Huge TLB Page Support for Kernel.
*
* Copyright (C) 2003 David Gibson, IBM Corporation.
* Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
*
* Based on the IA-32 version:
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
*/
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <linux/export.h>
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
#include <linux/moduleparam.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/hugetlb.h>
#ifdef CONFIG_HUGETLB_PAGE
#define PAGE_SHIFT_64K 16
#define PAGE_SHIFT_16M 24
#define PAGE_SHIFT_16G 34
unsigned int HPAGE_SHIFT;
/*
* Tracks gpages after the device tree is scanned and before the
* huge_boot_pages list is ready. On non-Freescale implementations, this is
* just used to track 16G pages and so is a single array. FSL-based
* implementations may have more than one gpage size, so we need multiple
* arrays
*/
#ifdef CONFIG_PPC_FSL_BOOK3E
#define MAX_NUMBER_GPAGES 128
struct psize_gpages {
u64 gpage_list[MAX_NUMBER_GPAGES];
unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
#else
#define MAX_NUMBER_GPAGES 1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
#endif
#define hugepd_none(hpd) ((hpd).pd == 0)
#ifdef CONFIG_PPC_BOOK3S_64
/*
* At this point we do the placement change only for BOOK3S 64. This would
* possibly work on other subarchs.
*/
/*
* We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
* 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
*/
int pmd_huge(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return ((pmd_val(pmd) & 0x3) != 0x0);
}
int pud_huge(pud_t pud)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return ((pud_val(pud) & 0x3) != 0x0);
}
int pgd_huge(pgd_t pgd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return ((pgd_val(pgd) & 0x3) != 0x0);
}
#else
int pmd_huge(pmd_t pmd)
{
return 0;
}
int pud_huge(pud_t pud)
{
return 0;
}
int pgd_huge(pgd_t pgd)
{
return 0;
}
#endif
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
/* Only called for hugetlbfs pages, hence can ignore THP */
return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
}
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
unsigned long address, unsigned pdshift, unsigned pshift)
{
struct kmem_cache *cachep;
pte_t *new;
#ifdef CONFIG_PPC_FSL_BOOK3E
int i;
int num_hugepd = 1 << (pshift - pdshift);
cachep = hugepte_cache;
#else
cachep = PGT_CACHE(pdshift - pshift);
#endif
new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
if (! new)
return -ENOMEM;
spin_lock(&mm->page_table_lock);
#ifdef CONFIG_PPC_FSL_BOOK3E
/*
* We have multiple higher-level entries that point to the same
* actual pte location. Fill in each as we go and backtrack on error.
* We need all of these so the DTLB pgtable walk code can find the
* right higher-level entry without knowing if it's a hugepage or not.
*/
for (i = 0; i < num_hugepd; i++, hpdp++) {
if (unlikely(!hugepd_none(*hpdp)))
break;
else
/* We use the old format for PPC_FSL_BOOK3E */
hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
}
/* If we bailed from the for loop early, an error occurred, clean up */
if (i < num_hugepd) {
for (i = i - 1 ; i >= 0; i--, hpdp--)
hpdp->pd = 0;
kmem_cache_free(cachep, new);
}
#else
if (!hugepd_none(*hpdp))
kmem_cache_free(cachep, new);
else {
#ifdef CONFIG_PPC_BOOK3S_64
hpdp->pd = (unsigned long)new |
(shift_to_mmu_psize(pshift) << 2);
#else
hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
#endif
}
#endif
spin_unlock(&mm->page_table_lock);
return 0;
}
/*
* These macros define how to determine which level of the page table holds
* the hpdp.
*/
#ifdef CONFIG_PPC_FSL_BOOK3E
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
#define HUGEPD_PUD_SHIFT PUD_SHIFT
#else
#define HUGEPD_PGD_SHIFT PUD_SHIFT
#define HUGEPD_PUD_SHIFT PMD_SHIFT
#endif
#ifdef CONFIG_PPC_BOOK3S_64
/*
* At this point we do the placement change only for BOOK3S 64. This would
* possibly work on other subarchs.
*/
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
pgd_t *pg;
pud_t *pu;
pmd_t *pm;
hugepd_t *hpdp = NULL;
unsigned pshift = __ffs(sz);
unsigned pdshift = PGDIR_SHIFT;
addr &= ~(sz-1);
pg = pgd_offset(mm, addr);
if (pshift == PGDIR_SHIFT)
/* 16GB huge page */
return (pte_t *) pg;
else if (pshift > PUD_SHIFT)
/*
* We need to use hugepd table
*/
hpdp = (hugepd_t *)pg;
else {
pdshift = PUD_SHIFT;
pu = pud_alloc(mm, pg, addr);
if (pshift == PUD_SHIFT)
return (pte_t *)pu;
else if (pshift > PMD_SHIFT)
hpdp = (hugepd_t *)pu;
else {
pdshift = PMD_SHIFT;
pm = pmd_alloc(mm, pu, addr);
if (pshift == PMD_SHIFT)
/* 16MB hugepage */
return (pte_t *)pm;
else
hpdp = (hugepd_t *)pm;
}
}
if (!hpdp)
return NULL;
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
return NULL;
return hugepte_offset(hpdp, addr, pdshift);
}
#else
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
pgd_t *pg;
pud_t *pu;
pmd_t *pm;
hugepd_t *hpdp = NULL;
unsigned pshift = __ffs(sz);
unsigned pdshift = PGDIR_SHIFT;
addr &= ~(sz-1);
pg = pgd_offset(mm, addr);
if (pshift >= HUGEPD_PGD_SHIFT) {
hpdp = (hugepd_t *)pg;
} else {
pdshift = PUD_SHIFT;
pu = pud_alloc(mm, pg, addr);
if (pshift >= HUGEPD_PUD_SHIFT) {
hpdp = (hugepd_t *)pu;
} else {
pdshift = PMD_SHIFT;
pm = pmd_alloc(mm, pu, addr);
hpdp = (hugepd_t *)pm;
}
}
if (!hpdp)
return NULL;
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
return NULL;
return hugepte_offset(hpdp, addr, pdshift);
}
#endif
#ifdef CONFIG_PPC_FSL_BOOK3E
/* Build list of addresses of gigantic pages. This function is used in early
* boot before the buddy or bootmem allocator is setup.
*/
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
int i;
if (addr == 0)
return;
gpage_freearray[idx].nr_gpages = number_of_pages;
for (i = 0; i < number_of_pages; i++) {
gpage_freearray[idx].gpage_list[i] = addr;
addr += page_size;
}
}
/*
* Moves the gigantic page addresses from the temporary list to the
* huge_boot_pages list.
*/
int alloc_bootmem_huge_page(struct hstate *hstate)
{
struct huge_bootmem_page *m;
int idx = shift_to_mmu_psize(huge_page_shift(hstate));
int nr_gpages = gpage_freearray[idx].nr_gpages;
if (nr_gpages == 0)
return 0;
#ifdef CONFIG_HIGHMEM
/*
* If gpages can be in highmem we can't use the trick of storing the
* data structure in the page; allocate space for this
*/
m = alloc_bootmem(sizeof(struct huge_bootmem_page));
m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif
list_add(&m->list, &huge_boot_pages);
gpage_freearray[idx].nr_gpages = nr_gpages;
gpage_freearray[idx].gpage_list[nr_gpages] = 0;
m->hstate = hstate;
return 1;
}
/*
* Scan the command line hugepagesz= options for gigantic pages; store those in
* a list that we use to allocate the memory once all options are parsed.
*/
unsigned long gpage_npages[MMU_PAGE_COUNT];
static int __init do_gpage_early_setup(char *param, char *val,
const char *unused)
{
static phys_addr_t size;
unsigned long npages;
/*
* The hugepagesz and hugepages cmdline options are interleaved. We
* use the size variable to keep track of whether or not this was done
* properly and skip over instances where it is incorrect. Other
* command-line parsing code will issue warnings, so we don't need to.
*
*/
if ((strcmp(param, "default_hugepagesz") == 0) ||
(strcmp(param, "hugepagesz") == 0)) {
size = memparse(val, NULL);
} else if (strcmp(param, "hugepages") == 0) {
if (size != 0) {
if (sscanf(val, "%lu", &npages) <= 0)
npages = 0;
gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
size = 0;
}
}
return 0;
}
/*
* This function allocates physical space for pages that are larger than the
* buddy allocator can handle. We want to allocate these in highmem because
* the amount of lowmem is limited. This means that this function MUST be
* called before lowmem_end_addr is set up in MMU_init() in order for the lmb
* allocate to grab highmem.
*/
void __init reserve_hugetlb_gpages(void)
{
static __initdata char cmdline[COMMAND_LINE_SIZE];
phys_addr_t size, base;
int i;
strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
&do_gpage_early_setup);
/*
* Walk gpage list in reverse, allocating larger page sizes first.
* Skip over unsupported sizes, or sizes that have 0 gpages allocated.
* When we reach the point in the list where pages are no longer
* considered gpages, we're done.
*/
for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
continue;
else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
break;
size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
base = memblock_alloc_base(size * gpage_npages[i], size,
MEMBLOCK_ALLOC_ANYWHERE);
add_gpage(base, size, gpage_npages[i]);
}
}
#else /* !PPC_FSL_BOOK3E */
/* Build list of addresses of gigantic pages. This function is used in early
* boot before the buddy or bootmem allocator is setup.
*/
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
if (!addr)
return;
while (number_of_pages > 0) {
gpage_freearray[nr_gpages] = addr;
nr_gpages++;
number_of_pages--;
addr += page_size;
}
}
/* Moves the gigantic page addresses from the temporary list to the
* huge_boot_pages list.
*/
int alloc_bootmem_huge_page(struct hstate *hstate)
{
struct huge_bootmem_page *m;
if (nr_gpages == 0)
return 0;
m = phys_to_virt(gpage_freearray[--nr_gpages]);
gpage_freearray[nr_gpages] = 0;
list_add(&m->list, &huge_boot_pages);
m->hstate = hstate;
return 1;
}
#endif
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
return 0;
}
#ifdef CONFIG_PPC_FSL_BOOK3E
#define HUGEPD_FREELIST_SIZE \
((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
struct hugepd_freelist {
struct rcu_head rcu;
unsigned int index;
void *ptes[0];
};
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
static void hugepd_free_rcu_callback(struct rcu_head *head)
{
struct hugepd_freelist *batch =
container_of(head, struct hugepd_freelist, rcu);
unsigned int i;
for (i = 0; i < batch->index; i++)
kmem_cache_free(hugepte_cache, batch->ptes[i]);
free_page((unsigned long)batch);
}
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
struct hugepd_freelist **batchp;
batchp = this_cpu_ptr(&hugepd_freelist_cur);
if (atomic_read(&tlb->mm->mm_users) < 2 ||
cpumask_equal(mm_cpumask(tlb->mm),
cpumask_of(smp_processor_id()))) {
kmem_cache_free(hugepte_cache, hugepte);
put_cpu_var(hugepd_freelist_cur);
return;
}
if (*batchp == NULL) {
*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
(*batchp)->index = 0;
}
(*batchp)->ptes[(*batchp)->index++] = hugepte;
if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
*batchp = NULL;
}
put_cpu_var(hugepd_freelist_cur);
}
#endif
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
unsigned long start, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pte_t *hugepte = hugepd_page(*hpdp);
int i;
unsigned long pdmask = ~((1UL << pdshift) - 1);
unsigned int num_hugepd = 1;
#ifdef CONFIG_PPC_FSL_BOOK3E
/* Note: On fsl the hpdp may be the first of several */
num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
#else
unsigned int shift = hugepd_shift(*hpdp);
#endif
start &= pdmask;
if (start < floor)
return;
if (ceiling) {
ceiling &= pdmask;
if (! ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
for (i = 0; i < num_hugepd; i++, hpdp++)
hpdp->pd = 0;
tlb->need_flush = 1;
#ifdef CONFIG_PPC_FSL_BOOK3E
hugepd_free(tlb, hugepte);
#else
pgtable_free_tlb(tlb, hugepte, pdshift - shift);
#endif
}
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pmd_t *pmd;
unsigned long next;
unsigned long start;
start = addr;
do {
pmd = pmd_offset(pud, addr);
next = pmd_addr_end(addr, end);
if (!is_hugepd(pmd)) {
/*
* if it is not hugepd pointer, we should already find
* it cleared.
*/
WARN_ON(!pmd_none_or_clear_bad(pmd));
continue;
}
#ifdef CONFIG_PPC_FSL_BOOK3E
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at this level for a
* single hugepage, but all of them point to
* the same kmem cache that holds the hugepte.
*/
next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
#endif
free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
addr, next, floor, ceiling);
} while (addr = next, addr != end);
start &= PUD_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PUD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd, start);
}
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pud_t *pud;
unsigned long next;
unsigned long start;
start = addr;
do {
pud = pud_offset(pgd, addr);
next = pud_addr_end(addr, end);
if (!is_hugepd(pud)) {
if (pud_none_or_clear_bad(pud))
continue;
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
ceiling);
} else {
#ifdef CONFIG_PPC_FSL_BOOK3E
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at this level for a
* single hugepage, but all of them point to
* the same kmem cache that holds the hugepte.
*/
next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
#endif
free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
addr, next, floor, ceiling);
}
} while (addr = next, addr != end);
start &= PGDIR_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PGDIR_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pud = pud_offset(pgd, start);
pgd_clear(pgd);
pud_free_tlb(tlb, pud, start);
}
/*
* This function frees user-level page tables of a process.
*/
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pgd_t *pgd;
unsigned long next;
/*
* Because there are a number of different possible pagetable
* layouts for hugepage ranges, we limit knowledge of how
* things should be laid out to the allocation path
* (huge_pte_alloc(), above). Everything else works out the
* structure as it goes from information in the hugepd
* pointers. That means that we can't here use the
* optimization used in the normal page free_pgd_range(), of
* checking whether we're actually covering a large enough
* range to have to do anything at the top level of the walk
* instead of at the bottom.
*
* To make sense of this, you should probably go read the big
* block comment at the top of the normal free_pgd_range(),
* too.
*/
do {
next = pgd_addr_end(addr, end);
pgd = pgd_offset(tlb->mm, addr);
if (!is_hugepd(pgd)) {
if (pgd_none_or_clear_bad(pgd))
continue;
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
} else {
#ifdef CONFIG_PPC_FSL_BOOK3E
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at the pgd level
* for a single hugepage, but all of them point to the
* same kmem cache that holds the hugepte.
*/
next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
#endif
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
addr, next, floor, ceiling);
}
} while (addr = next, addr != end);
}
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
pte_t *ptep;
struct page *page;
unsigned shift;
unsigned long mask;
/*
* Transparent hugepages are handled by generic code. We can skip them
* here.
*/
ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
/* Verify it is a huge page else bail. */
if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
return ERR_PTR(-EINVAL);
mask = (1UL << shift) - 1;
page = pte_page(*ptep);
if (page)
page += (address & mask) / PAGE_SIZE;
return page;
}
struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
pmd_t *pmd, int write)
{
BUG();
return NULL;
}
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
unsigned long sz)
{
unsigned long __boundary = (addr + sz) & ~(sz-1);
return (__boundary - 1 < end - 1) ? __boundary : end;
}
int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
unsigned long addr, unsigned long end,
int write, struct page **pages, int *nr)
{
pte_t *ptep;
unsigned long sz = 1UL << hugepd_shift(*hugepd);
unsigned long next;
ptep = hugepte_offset(hugepd, addr, pdshift);
do {
next = hugepte_addr_end(addr, end, sz);
if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
return 0;
} while (ptep++, addr = next, addr != end);
return 1;
}
#ifdef CONFIG_PPC_MM_SLICES
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct hstate *hstate = hstate_file(file);
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
}
#endif
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
#ifdef CONFIG_PPC_MM_SLICES
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
return 1UL << mmu_psize_to_shift(psize);
#else
if (!is_vm_hugetlb_page(vma))
return PAGE_SIZE;
return huge_page_size(hstate_vma(vma));
#endif
}
static inline bool is_power_of_4(unsigned long x)
{
if (is_power_of_2(x))
return (__ilog2(x) % 2) ? false : true;
return false;
}
static int __init add_huge_page_size(unsigned long long size)
{
int shift = __ffs(size);
int mmu_psize;
/* Check that it is a page size supported by the hardware and
* that it fits within pagetable and slice limits. */
#ifdef CONFIG_PPC_FSL_BOOK3E
if ((size < PAGE_SIZE) || !is_power_of_4(size))
return -EINVAL;
#else
if (!is_power_of_2(size)
|| (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
return -EINVAL;
#endif
if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
return -EINVAL;
#ifdef CONFIG_SPU_FS_64K_LS
/* Disable support for 64K huge pages when 64K SPU local store
* support is enabled as the current implementation conflicts.
*/
if (shift == PAGE_SHIFT_64K)
return -EINVAL;
#endif /* CONFIG_SPU_FS_64K_LS */
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
/* Return if huge page size has already been setup */
if (size_to_hstate(size))
return 0;
hugetlb_add_hstate(shift - PAGE_SHIFT);
return 0;
}
static int __init hugepage_setup_sz(char *str)
{
unsigned long long size;
size = memparse(str, &str);
if (add_huge_page_size(size) != 0)
printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);
#ifdef CONFIG_PPC_FSL_BOOK3E
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
int psize;
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
unsigned shift;
if (!mmu_psize_defs[psize].shift)
continue;
shift = mmu_psize_to_shift(psize);
/* Don't treat normal page sizes as huge... */
if (shift != PAGE_SHIFT)
if (add_huge_page_size(1ULL << shift) < 0)
continue;
}
/*
* Create a kmem cache for hugeptes. The bottom bits in the pte have
* size information encoded in them, so align them to allow this
*/
hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
HUGEPD_SHIFT_MASK + 1, 0, NULL);
if (hugepte_cache == NULL)
panic("%s: Unable to create kmem cache for hugeptes\n",
__func__);
/* Default hpage size = 4M */
if (mmu_psize_defs[MMU_PAGE_4M].shift)
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
else
panic("%s: Unable to set default huge page size\n", __func__);
return 0;
}
#else
static int __init hugetlbpage_init(void)
{
int psize;
if (!mmu_has_feature(MMU_FTR_16M_PAGE))
return -ENODEV;
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
unsigned shift;
unsigned pdshift;
if (!mmu_psize_defs[psize].shift)
continue;
shift = mmu_psize_to_shift(psize);
if (add_huge_page_size(1ULL << shift) < 0)
continue;
if (shift < PMD_SHIFT)
pdshift = PMD_SHIFT;
else if (shift < PUD_SHIFT)
pdshift = PUD_SHIFT;
else
pdshift = PGDIR_SHIFT;
/*
* if we have pdshift and shift value same, we don't
* use pgt cache for hugepd.
*/
if (pdshift != shift) {
pgtable_cache_add(pdshift - shift, NULL);
if (!PGT_CACHE(pdshift - shift))
panic("hugetlbpage_init(): could not create "
"pgtable cache for %d bit pagesize\n", shift);
}
}
/* Set default large page size. Currently, we pick 16M or 1M
* depending on what is available
*/
if (mmu_psize_defs[MMU_PAGE_16M].shift)
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
else if (mmu_psize_defs[MMU_PAGE_1M].shift)
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
return 0;
}
#endif
module_init(hugetlbpage_init);
void flush_dcache_icache_hugepage(struct page *page)
{
int i;
void *start;
BUG_ON(!PageCompound(page));
for (i = 0; i < (1UL << compound_order(page)); i++) {
if (!PageHighMem(page)) {
__flush_dcache_icache(page_address(page+i));
} else {
start = kmap_atomic(page+i);
__flush_dcache_icache(start);
kunmap_atomic(start);
}
}
}
#endif /* CONFIG_HUGETLB_PAGE */
/*
* We have 4 cases for pgds and pmds:
* (1) invalid (all zeroes)
* (2) pointer to next table, as normal; bottom 6 bits == 0
* (3) leaf pte for huge page, bottom two bits != 00
* (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
*
* So long as we atomically load page table pointers we are safe against teardown,
* we can follow the address down to the the page and take a ref on it.
*/
pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
{
pgd_t pgd, *pgdp;
pud_t pud, *pudp;
pmd_t pmd, *pmdp;
pte_t *ret_pte;
hugepd_t *hpdp = NULL;
unsigned pdshift = PGDIR_SHIFT;
if (shift)
*shift = 0;
pgdp = pgdir + pgd_index(ea);
pgd = ACCESS_ONCE(*pgdp);
/*
* Always operate on the local stack value. This make sure the
* value don't get updated by a parallel THP split/collapse,
* page fault or a page unmap. The return pte_t * is still not
* stable. So should be checked there for above conditions.
*/
if (pgd_none(pgd))
return NULL;
else if (pgd_huge(pgd)) {
ret_pte = (pte_t *) pgdp;
goto out;
} else if (is_hugepd(&pgd))
hpdp = (hugepd_t *)&pgd;
else {
/*
* Even if we end up with an unmap, the pgtable will not
* be freed, because we do an rcu free and here we are
* irq disabled
*/
pdshift = PUD_SHIFT;
pudp = pud_offset(&pgd, ea);
pud = ACCESS_ONCE(*pudp);
if (pud_none(pud))
return NULL;
else if (pud_huge(pud)) {
ret_pte = (pte_t *) pudp;
goto out;
} else if (is_hugepd(&pud))
hpdp = (hugepd_t *)&pud;
else {
pdshift = PMD_SHIFT;
pmdp = pmd_offset(&pud, ea);
pmd = ACCESS_ONCE(*pmdp);
/*
* A hugepage collapse is captured by pmd_none, because
* it mark the pmd none and do a hpte invalidate.
*
* A hugepage split is captured by pmd_trans_splitting
* because we mark the pmd trans splitting and do a
* hpte invalidate
*
*/
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
return NULL;
if (pmd_huge(pmd) || pmd_large(pmd)) {
ret_pte = (pte_t *) pmdp;
goto out;
} else if (is_hugepd(&pmd))
hpdp = (hugepd_t *)&pmd;
else
return pte_offset_kernel(&pmd, ea);
}
}
if (!hpdp)
return NULL;
ret_pte = hugepte_offset(hpdp, ea, pdshift);
pdshift = hugepd_shift(*hpdp);
out:
if (shift)
*shift = pdshift;
return ret_pte;
}
EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
unsigned long end, int write, struct page **pages, int *nr)
{
unsigned long mask;
unsigned long pte_end;
struct page *head, *page, *tail;
pte_t pte;
int refs;
pte_end = (addr + sz) & ~(sz-1);
if (pte_end < end)
end = pte_end;
pte = ACCESS_ONCE(*ptep);
mask = _PAGE_PRESENT | _PAGE_USER;
if (write)
mask |= _PAGE_RW;
if ((pte_val(pte) & mask) != mask)
return 0;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* check for splitting here
*/
if (pmd_trans_splitting(pte_pmd(pte)))
return 0;
#endif
/* hugepages are never "special" */
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
refs = 0;
head = pte_page(pte);
page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
tail = page;
do {
VM_BUG_ON(compound_head(page) != head);
pages[*nr] = page;
(*nr)++;
page++;
refs++;
} while (addr += PAGE_SIZE, addr != end);
if (!page_cache_add_speculative(head, refs)) {
*nr -= refs;
return 0;
}
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
/* Could be optimized better */
*nr -= refs;
while (refs--)
put_page(head);
return 0;
}
/*
* Any tail page need their mapcount reference taken before we
* return.
*/
while (refs--) {
if (PageTail(tail))
get_huge_page_tail(tail);
tail++;
}
return 1;
}