mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 06:42:31 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
257 lines
5.8 KiB
C
257 lines
5.8 KiB
C
/*
|
|
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
|
|
* Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the GNU General Public License version 2.
|
|
*/
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/exportfs.h>
|
|
#include <linux/gfs2_ondisk.h>
|
|
#include <linux/crc32.h>
|
|
|
|
#include "gfs2.h"
|
|
#include "incore.h"
|
|
#include "dir.h"
|
|
#include "glock.h"
|
|
#include "glops.h"
|
|
#include "inode.h"
|
|
#include "super.h"
|
|
#include "rgrp.h"
|
|
#include "util.h"
|
|
|
|
#define GFS2_SMALL_FH_SIZE 4
|
|
#define GFS2_LARGE_FH_SIZE 8
|
|
#define GFS2_OLD_FH_SIZE 10
|
|
|
|
static int gfs2_encode_fh(struct dentry *dentry, __u32 *p, int *len,
|
|
int connectable)
|
|
{
|
|
__be32 *fh = (__force __be32 *)p;
|
|
struct inode *inode = dentry->d_inode;
|
|
struct super_block *sb = inode->i_sb;
|
|
struct gfs2_inode *ip = GFS2_I(inode);
|
|
|
|
if (*len < GFS2_SMALL_FH_SIZE ||
|
|
(connectable && *len < GFS2_LARGE_FH_SIZE))
|
|
return 255;
|
|
|
|
fh[0] = cpu_to_be32(ip->i_no_formal_ino >> 32);
|
|
fh[1] = cpu_to_be32(ip->i_no_formal_ino & 0xFFFFFFFF);
|
|
fh[2] = cpu_to_be32(ip->i_no_addr >> 32);
|
|
fh[3] = cpu_to_be32(ip->i_no_addr & 0xFFFFFFFF);
|
|
*len = GFS2_SMALL_FH_SIZE;
|
|
|
|
if (!connectable || inode == sb->s_root->d_inode)
|
|
return *len;
|
|
|
|
spin_lock(&dentry->d_lock);
|
|
inode = dentry->d_parent->d_inode;
|
|
ip = GFS2_I(inode);
|
|
igrab(inode);
|
|
spin_unlock(&dentry->d_lock);
|
|
|
|
fh[4] = cpu_to_be32(ip->i_no_formal_ino >> 32);
|
|
fh[5] = cpu_to_be32(ip->i_no_formal_ino & 0xFFFFFFFF);
|
|
fh[6] = cpu_to_be32(ip->i_no_addr >> 32);
|
|
fh[7] = cpu_to_be32(ip->i_no_addr & 0xFFFFFFFF);
|
|
*len = GFS2_LARGE_FH_SIZE;
|
|
|
|
iput(inode);
|
|
|
|
return *len;
|
|
}
|
|
|
|
struct get_name_filldir {
|
|
struct gfs2_inum_host inum;
|
|
char *name;
|
|
};
|
|
|
|
static int get_name_filldir(void *opaque, const char *name, int length,
|
|
loff_t offset, u64 inum, unsigned int type)
|
|
{
|
|
struct get_name_filldir *gnfd = opaque;
|
|
|
|
if (inum != gnfd->inum.no_addr)
|
|
return 0;
|
|
|
|
memcpy(gnfd->name, name, length);
|
|
gnfd->name[length] = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int gfs2_get_name(struct dentry *parent, char *name,
|
|
struct dentry *child)
|
|
{
|
|
struct inode *dir = parent->d_inode;
|
|
struct inode *inode = child->d_inode;
|
|
struct gfs2_inode *dip, *ip;
|
|
struct get_name_filldir gnfd;
|
|
struct gfs2_holder gh;
|
|
u64 offset = 0;
|
|
int error;
|
|
|
|
if (!dir)
|
|
return -EINVAL;
|
|
|
|
if (!S_ISDIR(dir->i_mode) || !inode)
|
|
return -EINVAL;
|
|
|
|
dip = GFS2_I(dir);
|
|
ip = GFS2_I(inode);
|
|
|
|
*name = 0;
|
|
gnfd.inum.no_addr = ip->i_no_addr;
|
|
gnfd.inum.no_formal_ino = ip->i_no_formal_ino;
|
|
gnfd.name = name;
|
|
|
|
error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &gh);
|
|
if (error)
|
|
return error;
|
|
|
|
error = gfs2_dir_read(dir, &offset, &gnfd, get_name_filldir);
|
|
|
|
gfs2_glock_dq_uninit(&gh);
|
|
|
|
if (!error && !*name)
|
|
error = -ENOENT;
|
|
|
|
return error;
|
|
}
|
|
|
|
static struct dentry *gfs2_get_parent(struct dentry *child)
|
|
{
|
|
struct qstr dotdot;
|
|
struct dentry *dentry;
|
|
|
|
/*
|
|
* XXX(hch): it would be a good idea to keep this around as a
|
|
* static variable.
|
|
*/
|
|
gfs2_str2qstr(&dotdot, "..");
|
|
|
|
dentry = d_obtain_alias(gfs2_lookupi(child->d_inode, &dotdot, 1));
|
|
if (!IS_ERR(dentry))
|
|
dentry->d_op = &gfs2_dops;
|
|
return dentry;
|
|
}
|
|
|
|
static struct dentry *gfs2_get_dentry(struct super_block *sb,
|
|
struct gfs2_inum_host *inum)
|
|
{
|
|
struct gfs2_sbd *sdp = sb->s_fs_info;
|
|
struct gfs2_holder i_gh;
|
|
struct inode *inode;
|
|
struct dentry *dentry;
|
|
int error;
|
|
|
|
inode = gfs2_ilookup(sb, inum->no_addr);
|
|
if (inode) {
|
|
if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) {
|
|
iput(inode);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
goto out_inode;
|
|
}
|
|
|
|
error = gfs2_glock_nq_num(sdp, inum->no_addr, &gfs2_inode_glops,
|
|
LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
|
|
if (error)
|
|
return ERR_PTR(error);
|
|
|
|
error = gfs2_check_blk_type(sdp, inum->no_addr, GFS2_BLKST_DINODE);
|
|
if (error)
|
|
goto fail;
|
|
|
|
inode = gfs2_inode_lookup(sb, DT_UNKNOWN, inum->no_addr, 0, 0);
|
|
if (IS_ERR(inode)) {
|
|
error = PTR_ERR(inode);
|
|
goto fail;
|
|
}
|
|
|
|
error = gfs2_inode_refresh(GFS2_I(inode));
|
|
if (error) {
|
|
iput(inode);
|
|
goto fail;
|
|
}
|
|
|
|
/* Pick up the works we bypass in gfs2_inode_lookup */
|
|
if (inode->i_state & I_NEW)
|
|
gfs2_set_iop(inode);
|
|
|
|
if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) {
|
|
iput(inode);
|
|
goto fail;
|
|
}
|
|
|
|
error = -EIO;
|
|
if (GFS2_I(inode)->i_diskflags & GFS2_DIF_SYSTEM) {
|
|
iput(inode);
|
|
goto fail;
|
|
}
|
|
|
|
gfs2_glock_dq_uninit(&i_gh);
|
|
|
|
out_inode:
|
|
dentry = d_obtain_alias(inode);
|
|
if (!IS_ERR(dentry))
|
|
dentry->d_op = &gfs2_dops;
|
|
return dentry;
|
|
fail:
|
|
gfs2_glock_dq_uninit(&i_gh);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
static struct dentry *gfs2_fh_to_dentry(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
struct gfs2_inum_host this;
|
|
__be32 *fh = (__force __be32 *)fid->raw;
|
|
|
|
switch (fh_type) {
|
|
case GFS2_SMALL_FH_SIZE:
|
|
case GFS2_LARGE_FH_SIZE:
|
|
case GFS2_OLD_FH_SIZE:
|
|
this.no_formal_ino = ((u64)be32_to_cpu(fh[0])) << 32;
|
|
this.no_formal_ino |= be32_to_cpu(fh[1]);
|
|
this.no_addr = ((u64)be32_to_cpu(fh[2])) << 32;
|
|
this.no_addr |= be32_to_cpu(fh[3]);
|
|
return gfs2_get_dentry(sb, &this);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static struct dentry *gfs2_fh_to_parent(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
struct gfs2_inum_host parent;
|
|
__be32 *fh = (__force __be32 *)fid->raw;
|
|
|
|
switch (fh_type) {
|
|
case GFS2_LARGE_FH_SIZE:
|
|
case GFS2_OLD_FH_SIZE:
|
|
parent.no_formal_ino = ((u64)be32_to_cpu(fh[4])) << 32;
|
|
parent.no_formal_ino |= be32_to_cpu(fh[5]);
|
|
parent.no_addr = ((u64)be32_to_cpu(fh[6])) << 32;
|
|
parent.no_addr |= be32_to_cpu(fh[7]);
|
|
return gfs2_get_dentry(sb, &parent);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
const struct export_operations gfs2_export_ops = {
|
|
.encode_fh = gfs2_encode_fh,
|
|
.fh_to_dentry = gfs2_fh_to_dentry,
|
|
.fh_to_parent = gfs2_fh_to_parent,
|
|
.get_name = gfs2_get_name,
|
|
.get_parent = gfs2_get_parent,
|
|
};
|
|
|