mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-05 17:01:17 +00:00
f065f41f48
ktime will overflow from 03:14:07 UTC on Tuesday, 19 January 2038, ktime_add() in timecompare_update() will overflow a half earlier. As a result, wrong offset will be gotten, then cause some strange problems. Signed-off-by: Barry Song <21cnbao@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Patrick Ohly <patrick.ohly@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
192 lines
4.8 KiB
C
192 lines
4.8 KiB
C
/*
|
|
* Copyright (C) 2009 Intel Corporation.
|
|
* Author: Patrick Ohly <patrick.ohly@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/timecompare.h>
|
|
#include <linux/module.h>
|
|
#include <linux/math64.h>
|
|
|
|
/*
|
|
* fixed point arithmetic scale factor for skew
|
|
*
|
|
* Usually one would measure skew in ppb (parts per billion, 1e9), but
|
|
* using a factor of 2 simplifies the math.
|
|
*/
|
|
#define TIMECOMPARE_SKEW_RESOLUTION (((s64)1)<<30)
|
|
|
|
ktime_t timecompare_transform(struct timecompare *sync,
|
|
u64 source_tstamp)
|
|
{
|
|
u64 nsec;
|
|
|
|
nsec = source_tstamp + sync->offset;
|
|
nsec += (s64)(source_tstamp - sync->last_update) * sync->skew /
|
|
TIMECOMPARE_SKEW_RESOLUTION;
|
|
|
|
return ns_to_ktime(nsec);
|
|
}
|
|
EXPORT_SYMBOL_GPL(timecompare_transform);
|
|
|
|
int timecompare_offset(struct timecompare *sync,
|
|
s64 *offset,
|
|
u64 *source_tstamp)
|
|
{
|
|
u64 start_source = 0, end_source = 0;
|
|
struct {
|
|
s64 offset;
|
|
s64 duration_target;
|
|
} buffer[10], sample, *samples;
|
|
int counter = 0, i;
|
|
int used;
|
|
int index;
|
|
int num_samples = sync->num_samples;
|
|
|
|
if (num_samples > sizeof(buffer)/sizeof(buffer[0])) {
|
|
samples = kmalloc(sizeof(*samples) * num_samples, GFP_ATOMIC);
|
|
if (!samples) {
|
|
samples = buffer;
|
|
num_samples = sizeof(buffer)/sizeof(buffer[0]);
|
|
}
|
|
} else {
|
|
samples = buffer;
|
|
}
|
|
|
|
/* run until we have enough valid samples, but do not try forever */
|
|
i = 0;
|
|
counter = 0;
|
|
while (1) {
|
|
u64 ts;
|
|
ktime_t start, end;
|
|
|
|
start = sync->target();
|
|
ts = timecounter_read(sync->source);
|
|
end = sync->target();
|
|
|
|
if (!i)
|
|
start_source = ts;
|
|
|
|
/* ignore negative durations */
|
|
sample.duration_target = ktime_to_ns(ktime_sub(end, start));
|
|
if (sample.duration_target >= 0) {
|
|
/*
|
|
* assume symetric delay to and from source:
|
|
* average target time corresponds to measured
|
|
* source time
|
|
*/
|
|
sample.offset =
|
|
(ktime_to_ns(end) + ktime_to_ns(start)) / 2 -
|
|
ts;
|
|
|
|
/* simple insertion sort based on duration */
|
|
index = counter - 1;
|
|
while (index >= 0) {
|
|
if (samples[index].duration_target <
|
|
sample.duration_target)
|
|
break;
|
|
samples[index + 1] = samples[index];
|
|
index--;
|
|
}
|
|
samples[index + 1] = sample;
|
|
counter++;
|
|
}
|
|
|
|
i++;
|
|
if (counter >= num_samples || i >= 100000) {
|
|
end_source = ts;
|
|
break;
|
|
}
|
|
}
|
|
|
|
*source_tstamp = (end_source + start_source) / 2;
|
|
|
|
/* remove outliers by only using 75% of the samples */
|
|
used = counter * 3 / 4;
|
|
if (!used)
|
|
used = counter;
|
|
if (used) {
|
|
/* calculate average */
|
|
s64 off = 0;
|
|
for (index = 0; index < used; index++)
|
|
off += samples[index].offset;
|
|
*offset = div_s64(off, used);
|
|
}
|
|
|
|
if (samples && samples != buffer)
|
|
kfree(samples);
|
|
|
|
return used;
|
|
}
|
|
EXPORT_SYMBOL_GPL(timecompare_offset);
|
|
|
|
void __timecompare_update(struct timecompare *sync,
|
|
u64 source_tstamp)
|
|
{
|
|
s64 offset;
|
|
u64 average_time;
|
|
|
|
if (!timecompare_offset(sync, &offset, &average_time))
|
|
return;
|
|
|
|
if (!sync->last_update) {
|
|
sync->last_update = average_time;
|
|
sync->offset = offset;
|
|
sync->skew = 0;
|
|
} else {
|
|
s64 delta_nsec = average_time - sync->last_update;
|
|
|
|
/* avoid division by negative or small deltas */
|
|
if (delta_nsec >= 10000) {
|
|
s64 delta_offset_nsec = offset - sync->offset;
|
|
s64 skew; /* delta_offset_nsec *
|
|
TIMECOMPARE_SKEW_RESOLUTION /
|
|
delta_nsec */
|
|
u64 divisor;
|
|
|
|
/* div_s64() is limited to 32 bit divisor */
|
|
skew = delta_offset_nsec * TIMECOMPARE_SKEW_RESOLUTION;
|
|
divisor = delta_nsec;
|
|
while (unlikely(divisor >= ((s64)1) << 32)) {
|
|
/* divide both by 2; beware, right shift
|
|
of negative value has undefined
|
|
behavior and can only be used for
|
|
the positive divisor */
|
|
skew = div_s64(skew, 2);
|
|
divisor >>= 1;
|
|
}
|
|
skew = div_s64(skew, divisor);
|
|
|
|
/*
|
|
* Calculate new overall skew as 4/16 the
|
|
* old value and 12/16 the new one. This is
|
|
* a rather arbitrary tradeoff between
|
|
* only using the latest measurement (0/16 and
|
|
* 16/16) and even more weight on past measurements.
|
|
*/
|
|
#define TIMECOMPARE_NEW_SKEW_PER_16 12
|
|
sync->skew =
|
|
div_s64((16 - TIMECOMPARE_NEW_SKEW_PER_16) *
|
|
sync->skew +
|
|
TIMECOMPARE_NEW_SKEW_PER_16 * skew,
|
|
16);
|
|
sync->last_update = average_time;
|
|
sync->offset = offset;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__timecompare_update);
|