linux/arch/x86_64/kernel/setup.c
Len Brown 673d5b43da ACPI: restore CONFIG_ACPI_SLEEP
Restore the 2.6.22 CONFIG_ACPI_SLEEP build option, but now shadowing the
new CONFIG_PM_SLEEP option.

Signed-off-by: Len Brown <len.brown@intel.com>
[ Modified to work with the PM config setup changes. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-29 16:53:59 -07:00

1118 lines
28 KiB
C

/*
* linux/arch/x86-64/kernel/setup.c
*
* Copyright (C) 1995 Linus Torvalds
*
* Nov 2001 Dave Jones <davej@suse.de>
* Forked from i386 setup code.
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <asm/processor.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/crash_dump.h>
#include <linux/root_dev.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/kallsyms.h>
#include <linux/edd.h>
#include <linux/mmzone.h>
#include <linux/kexec.h>
#include <linux/cpufreq.h>
#include <linux/dmi.h>
#include <linux/dma-mapping.h>
#include <linux/ctype.h>
#include <asm/mtrr.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <video/edid.h>
#include <asm/e820.h>
#include <asm/dma.h>
#include <asm/mpspec.h>
#include <asm/mmu_context.h>
#include <asm/bootsetup.h>
#include <asm/proto.h>
#include <asm/setup.h>
#include <asm/mach_apic.h>
#include <asm/numa.h>
#include <asm/sections.h>
#include <asm/dmi.h>
/*
* Machine setup..
*/
struct cpuinfo_x86 boot_cpu_data __read_mostly;
EXPORT_SYMBOL(boot_cpu_data);
unsigned long mmu_cr4_features;
/* Boot loader ID as an integer, for the benefit of proc_dointvec */
int bootloader_type;
unsigned long saved_video_mode;
int force_mwait __cpuinitdata;
/*
* Early DMI memory
*/
int dmi_alloc_index;
char dmi_alloc_data[DMI_MAX_DATA];
/*
* Setup options
*/
struct screen_info screen_info;
EXPORT_SYMBOL(screen_info);
struct sys_desc_table_struct {
unsigned short length;
unsigned char table[0];
};
struct edid_info edid_info;
EXPORT_SYMBOL_GPL(edid_info);
extern int root_mountflags;
char __initdata command_line[COMMAND_LINE_SIZE];
struct resource standard_io_resources[] = {
{ .name = "dma1", .start = 0x00, .end = 0x1f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic1", .start = 0x20, .end = 0x21,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer0", .start = 0x40, .end = 0x43,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer1", .start = 0x50, .end = 0x53,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "keyboard", .start = 0x60, .end = 0x6f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic2", .start = 0xa0, .end = 0xa1,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma2", .start = 0xc0, .end = 0xdf,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "fpu", .start = 0xf0, .end = 0xff,
.flags = IORESOURCE_BUSY | IORESOURCE_IO }
};
#define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
#ifdef CONFIG_PROC_VMCORE
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel. This option will be passed
* by kexec loader to the capture kernel.
*/
static int __init setup_elfcorehdr(char *arg)
{
char *end;
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &end);
return end > arg ? 0 : -EINVAL;
}
early_param("elfcorehdr", setup_elfcorehdr);
#endif
#ifndef CONFIG_NUMA
static void __init
contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long bootmap_size, bootmap;
bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
if (bootmap == -1L)
panic("Cannot find bootmem map of size %ld\n",bootmap_size);
bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
e820_register_active_regions(0, start_pfn, end_pfn);
free_bootmem_with_active_regions(0, end_pfn);
reserve_bootmem(bootmap, bootmap_size);
}
#endif
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
struct edd edd;
#ifdef CONFIG_EDD_MODULE
EXPORT_SYMBOL(edd);
#endif
/**
* copy_edd() - Copy the BIOS EDD information
* from boot_params into a safe place.
*
*/
static inline void copy_edd(void)
{
memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
edd.mbr_signature_nr = EDD_MBR_SIG_NR;
edd.edd_info_nr = EDD_NR;
}
#else
static inline void copy_edd(void)
{
}
#endif
#define EBDA_ADDR_POINTER 0x40E
unsigned __initdata ebda_addr;
unsigned __initdata ebda_size;
static void discover_ebda(void)
{
/*
* there is a real-mode segmented pointer pointing to the
* 4K EBDA area at 0x40E
*/
ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
ebda_addr <<= 4;
ebda_size = *(unsigned short *)__va(ebda_addr);
/* Round EBDA up to pages */
if (ebda_size == 0)
ebda_size = 1;
ebda_size <<= 10;
ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
if (ebda_size > 64*1024)
ebda_size = 64*1024;
}
void __init setup_arch(char **cmdline_p)
{
printk(KERN_INFO "Command line: %s\n", boot_command_line);
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
screen_info = SCREEN_INFO;
edid_info = EDID_INFO;
saved_video_mode = SAVED_VIDEO_MODE;
bootloader_type = LOADER_TYPE;
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
#endif
setup_memory_region();
copy_edd();
if (!MOUNT_ROOT_RDONLY)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) &_text;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
code_resource.start = virt_to_phys(&_text);
code_resource.end = virt_to_phys(&_etext)-1;
data_resource.start = virt_to_phys(&_etext);
data_resource.end = virt_to_phys(&_edata)-1;
early_identify_cpu(&boot_cpu_data);
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
finish_e820_parsing();
e820_register_active_regions(0, 0, -1UL);
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
end_pfn = e820_end_of_ram();
num_physpages = end_pfn;
check_efer();
discover_ebda();
init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
dmi_scan_machine();
#ifdef CONFIG_ACPI
/*
* Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
* Call this early for SRAT node setup.
*/
acpi_boot_table_init();
#endif
/* How many end-of-memory variables you have, grandma! */
max_low_pfn = end_pfn;
max_pfn = end_pfn;
high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
/* Remove active ranges so rediscovery with NUMA-awareness happens */
remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
/*
* Parse SRAT to discover nodes.
*/
acpi_numa_init();
#endif
#ifdef CONFIG_NUMA
numa_initmem_init(0, end_pfn);
#else
contig_initmem_init(0, end_pfn);
#endif
/* Reserve direct mapping */
reserve_bootmem_generic(table_start << PAGE_SHIFT,
(table_end - table_start) << PAGE_SHIFT);
/* reserve kernel */
reserve_bootmem_generic(__pa_symbol(&_text),
__pa_symbol(&_end) - __pa_symbol(&_text));
/*
* reserve physical page 0 - it's a special BIOS page on many boxes,
* enabling clean reboots, SMP operation, laptop functions.
*/
reserve_bootmem_generic(0, PAGE_SIZE);
/* reserve ebda region */
if (ebda_addr)
reserve_bootmem_generic(ebda_addr, ebda_size);
#ifdef CONFIG_NUMA
/* reserve nodemap region */
if (nodemap_addr)
reserve_bootmem_generic(nodemap_addr, nodemap_size);
#endif
#ifdef CONFIG_SMP
/* Reserve SMP trampoline */
reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
#endif
#ifdef CONFIG_ACPI_SLEEP
/*
* Reserve low memory region for sleep support.
*/
acpi_reserve_bootmem();
#endif
/*
* Find and reserve possible boot-time SMP configuration:
*/
find_smp_config();
#ifdef CONFIG_BLK_DEV_INITRD
if (LOADER_TYPE && INITRD_START) {
if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
initrd_start = INITRD_START + PAGE_OFFSET;
initrd_end = initrd_start+INITRD_SIZE;
}
else {
printk(KERN_ERR "initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
(unsigned long)(INITRD_START + INITRD_SIZE),
(unsigned long)(end_pfn << PAGE_SHIFT));
initrd_start = 0;
}
}
#endif
#ifdef CONFIG_KEXEC
if (crashk_res.start != crashk_res.end) {
reserve_bootmem_generic(crashk_res.start,
crashk_res.end - crashk_res.start + 1);
}
#endif
paging_init();
#ifdef CONFIG_PCI
early_quirks();
#endif
/*
* set this early, so we dont allocate cpu0
* if MADT list doesnt list BSP first
* mpparse.c/MP_processor_info() allocates logical cpu numbers.
*/
cpu_set(0, cpu_present_map);
#ifdef CONFIG_ACPI
/*
* Read APIC and some other early information from ACPI tables.
*/
acpi_boot_init();
#endif
init_cpu_to_node();
/*
* get boot-time SMP configuration:
*/
if (smp_found_config)
get_smp_config();
init_apic_mappings();
/*
* We trust e820 completely. No explicit ROM probing in memory.
*/
e820_reserve_resources();
e820_mark_nosave_regions();
{
unsigned i;
/* request I/O space for devices used on all i[345]86 PCs */
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
request_resource(&ioport_resource, &standard_io_resources[i]);
}
e820_setup_gap();
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
if (c->extended_cpuid_level < 0x80000004)
return 0;
v = (unsigned int *) c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
return 1;
}
static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, eax, ebx, ecx, edx;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
c->x86_cache_size=(ecx>>24)+(edx>>24);
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
}
if (n >= 0x80000006) {
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
ecx = cpuid_ecx(0x80000006);
c->x86_cache_size = ecx >> 16;
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
c->x86_cache_size, ecx & 0xFF);
}
if (n >= 0x80000007)
cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
if (n >= 0x80000008) {
cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
}
}
#ifdef CONFIG_NUMA
static int nearby_node(int apicid)
{
int i;
for (i = apicid - 1; i >= 0; i--) {
int node = apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
int node = apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
return first_node(node_online_map); /* Shouldn't happen */
}
#endif
/*
* On a AMD dual core setup the lower bits of the APIC id distingush the cores.
* Assumes number of cores is a power of two.
*/
static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits;
#ifdef CONFIG_NUMA
int cpu = smp_processor_id();
int node = 0;
unsigned apicid = hard_smp_processor_id();
#endif
unsigned ecx = cpuid_ecx(0x80000008);
c->x86_max_cores = (ecx & 0xff) + 1;
/* CPU telling us the core id bits shift? */
bits = (ecx >> 12) & 0xF;
/* Otherwise recompute */
if (bits == 0) {
while ((1 << bits) < c->x86_max_cores)
bits++;
}
/* Low order bits define the core id (index of core in socket) */
c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
/* Convert the APIC ID into the socket ID */
c->phys_proc_id = phys_pkg_id(bits);
#ifdef CONFIG_NUMA
node = c->phys_proc_id;
if (apicid_to_node[apicid] != NUMA_NO_NODE)
node = apicid_to_node[apicid];
if (!node_online(node)) {
/* Two possibilities here:
- The CPU is missing memory and no node was created.
In that case try picking one from a nearby CPU
- The APIC IDs differ from the HyperTransport node IDs
which the K8 northbridge parsing fills in.
Assume they are all increased by a constant offset,
but in the same order as the HT nodeids.
If that doesn't result in a usable node fall back to the
path for the previous case. */
int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
if (ht_nodeid >= 0 &&
apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
node = apicid_to_node[ht_nodeid];
/* Pick a nearby node */
if (!node_online(node))
node = nearby_node(apicid);
}
numa_set_node(cpu, node);
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
#endif
#endif
}
static void __cpuinit init_amd(struct cpuinfo_x86 *c)
{
unsigned level;
#ifdef CONFIG_SMP
unsigned long value;
/*
* Disable TLB flush filter by setting HWCR.FFDIS on K8
* bit 6 of msr C001_0015
*
* Errata 63 for SH-B3 steppings
* Errata 122 for all steppings (F+ have it disabled by default)
*/
if (c->x86 == 15) {
rdmsrl(MSR_K8_HWCR, value);
value |= 1 << 6;
wrmsrl(MSR_K8_HWCR, value);
}
#endif
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, &c->x86_capability);
/* On C+ stepping K8 rep microcode works well for copy/memset */
level = cpuid_eax(1);
if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
if (c->x86 == 0x10)
set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
/* Enable workaround for FXSAVE leak */
if (c->x86 >= 6)
set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
level = get_model_name(c);
if (!level) {
switch (c->x86) {
case 15:
/* Should distinguish Models here, but this is only
a fallback anyways. */
strcpy(c->x86_model_id, "Hammer");
break;
}
}
display_cacheinfo(c);
/* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
if (c->x86_power & (1<<8))
set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
/* Multi core CPU? */
if (c->extended_cpuid_level >= 0x80000008)
amd_detect_cmp(c);
if (c->extended_cpuid_level >= 0x80000006 &&
(cpuid_edx(0x80000006) & 0xf000))
num_cache_leaves = 4;
else
num_cache_leaves = 3;
if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
set_bit(X86_FEATURE_K8, &c->x86_capability);
/* RDTSC can be speculated around */
clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
/* Family 10 doesn't support C states in MWAIT so don't use it */
if (c->x86 == 0x10 && !force_mwait)
clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
}
static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
cpuid(1, &eax, &ebx, &ecx, &edx);
if (!cpu_has(c, X86_FEATURE_HT))
return;
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
goto out;
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
} else if (smp_num_siblings > 1 ) {
if (smp_num_siblings > NR_CPUS) {
printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
smp_num_siblings = 1;
return;
}
index_msb = get_count_order(smp_num_siblings);
c->phys_proc_id = phys_pkg_id(index_msb);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
index_msb = get_count_order(smp_num_siblings) ;
core_bits = get_count_order(c->x86_max_cores);
c->cpu_core_id = phys_pkg_id(index_msb) &
((1 << core_bits) - 1);
}
out:
if ((c->x86_max_cores * smp_num_siblings) > 1) {
printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
}
#endif
}
/*
* find out the number of processor cores on the die
*/
static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
{
unsigned int eax, t;
if (c->cpuid_level < 4)
return 1;
cpuid_count(4, 0, &eax, &t, &t, &t);
if (eax & 0x1f)
return ((eax >> 26) + 1);
else
return 1;
}
static void srat_detect_node(void)
{
#ifdef CONFIG_NUMA
unsigned node;
int cpu = smp_processor_id();
int apicid = hard_smp_processor_id();
/* Don't do the funky fallback heuristics the AMD version employs
for now. */
node = apicid_to_node[apicid];
if (node == NUMA_NO_NODE)
node = first_node(node_online_map);
numa_set_node(cpu, node);
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
#endif
}
static void __cpuinit init_intel(struct cpuinfo_x86 *c)
{
/* Cache sizes */
unsigned n;
init_intel_cacheinfo(c);
if (c->cpuid_level > 9 ) {
unsigned eax = cpuid_eax(10);
/* Check for version and the number of counters */
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
}
if (cpu_has_ds) {
unsigned int l1, l2;
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
if (!(l1 & (1<<11)))
set_bit(X86_FEATURE_BTS, c->x86_capability);
if (!(l1 & (1<<12)))
set_bit(X86_FEATURE_PEBS, c->x86_capability);
}
n = c->extended_cpuid_level;
if (n >= 0x80000008) {
unsigned eax = cpuid_eax(0x80000008);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
/* CPUID workaround for Intel 0F34 CPU */
if (c->x86_vendor == X86_VENDOR_INTEL &&
c->x86 == 0xF && c->x86_model == 0x3 &&
c->x86_mask == 0x4)
c->x86_phys_bits = 36;
}
if (c->x86 == 15)
c->x86_cache_alignment = c->x86_clflush_size * 2;
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
(c->x86 == 0x6 && c->x86_model >= 0x0e))
set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
if (c->x86 == 6)
set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
if (c->x86 == 15)
set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
else
clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
c->x86_max_cores = intel_num_cpu_cores(c);
srat_detect_node();
}
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
if (!strcmp(v, "AuthenticAMD"))
c->x86_vendor = X86_VENDOR_AMD;
else if (!strcmp(v, "GenuineIntel"))
c->x86_vendor = X86_VENDOR_INTEL;
else
c->x86_vendor = X86_VENDOR_UNKNOWN;
}
struct cpu_model_info {
int vendor;
int family;
char *model_names[16];
};
/* Do some early cpuid on the boot CPU to get some parameter that are
needed before check_bugs. Everything advanced is in identify_cpu
below. */
void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
{
u32 tfms;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
c->x86_clflush_size = 64;
c->x86_cache_alignment = c->x86_clflush_size;
c->x86_max_cores = 1;
c->extended_cpuid_level = 0;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
/* Get vendor name */
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
get_cpu_vendor(c);
/* Initialize the standard set of capabilities */
/* Note that the vendor-specific code below might override */
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
__u32 misc;
cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
&c->x86_capability[0]);
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
if (c->x86_capability[0] & (1<<19))
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
} else {
/* Have CPUID level 0 only - unheard of */
c->x86 = 4;
}
#ifdef CONFIG_SMP
c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
#endif
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
{
int i;
u32 xlvl;
early_identify_cpu(c);
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
c->extended_cpuid_level = xlvl;
if ((xlvl & 0xffff0000) == 0x80000000) {
if (xlvl >= 0x80000001) {
c->x86_capability[1] = cpuid_edx(0x80000001);
c->x86_capability[6] = cpuid_ecx(0x80000001);
}
if (xlvl >= 0x80000004)
get_model_name(c); /* Default name */
}
/* Transmeta-defined flags: level 0x80860001 */
xlvl = cpuid_eax(0x80860000);
if ((xlvl & 0xffff0000) == 0x80860000) {
/* Don't set x86_cpuid_level here for now to not confuse. */
if (xlvl >= 0x80860001)
c->x86_capability[2] = cpuid_edx(0x80860001);
}
init_scattered_cpuid_features(c);
c->apicid = phys_pkg_id(0);
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
switch (c->x86_vendor) {
case X86_VENDOR_AMD:
init_amd(c);
break;
case X86_VENDOR_INTEL:
init_intel(c);
break;
case X86_VENDOR_UNKNOWN:
default:
display_cacheinfo(c);
break;
}
select_idle_routine(c);
detect_ht(c);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0 ; i < NCAPINTS ; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
}
#ifdef CONFIG_X86_MCE
mcheck_init(c);
#endif
if (c != &boot_cpu_data)
mtrr_ap_init();
#ifdef CONFIG_NUMA
numa_add_cpu(smp_processor_id());
#endif
}
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
{
if (c->x86_model_id[0])
printk("%s", c->x86_model_id);
if (c->x86_mask || c->cpuid_level >= 0)
printk(" stepping %02x\n", c->x86_mask);
else
printk("\n");
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct cpuinfo_x86 *c = v;
/*
* These flag bits must match the definitions in <asm/cpufeature.h>.
* NULL means this bit is undefined or reserved; either way it doesn't
* have meaning as far as Linux is concerned. Note that it's important
* to realize there is a difference between this table and CPUID -- if
* applications want to get the raw CPUID data, they should access
* /dev/cpu/<cpu_nr>/cpuid instead.
*/
static char *x86_cap_flags[] = {
/* Intel-defined */
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
"fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
/* AMD-defined */
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
"3dnowext", "3dnow",
/* Transmeta-defined */
"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Other (Linux-defined) */
"cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
NULL, NULL, NULL, NULL,
"constant_tsc", "up", NULL, "arch_perfmon",
"pebs", "bts", NULL, "sync_rdtsc",
"rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Intel-defined (#2) */
"pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* VIA/Cyrix/Centaur-defined */
NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
"ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* AMD-defined (#2) */
"lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
"altmovcr8", "abm", "sse4a",
"misalignsse", "3dnowprefetch",
"osvw", "ibs", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Auxiliary (Linux-defined) */
"ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
static char *x86_power_flags[] = {
"ts", /* temperature sensor */
"fid", /* frequency id control */
"vid", /* voltage id control */
"ttp", /* thermal trip */
"tm",
"stc",
"100mhzsteps",
"hwpstate",
"", /* tsc invariant mapped to constant_tsc */
/* nothing */
};
#ifdef CONFIG_SMP
if (!cpu_online(c-cpu_data))
return 0;
#endif
seq_printf(m,"processor\t: %u\n"
"vendor_id\t: %s\n"
"cpu family\t: %d\n"
"model\t\t: %d\n"
"model name\t: %s\n",
(unsigned)(c-cpu_data),
c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
c->x86,
(int)c->x86_model,
c->x86_model_id[0] ? c->x86_model_id : "unknown");
if (c->x86_mask || c->cpuid_level >= 0)
seq_printf(m, "stepping\t: %d\n", c->x86_mask);
else
seq_printf(m, "stepping\t: unknown\n");
if (cpu_has(c,X86_FEATURE_TSC)) {
unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
if (!freq)
freq = cpu_khz;
seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
freq / 1000, (freq % 1000));
}
/* Cache size */
if (c->x86_cache_size >= 0)
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
#ifdef CONFIG_SMP
if (smp_num_siblings * c->x86_max_cores > 1) {
int cpu = c - cpu_data;
seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
}
#endif
seq_printf(m,
"fpu\t\t: yes\n"
"fpu_exception\t: yes\n"
"cpuid level\t: %d\n"
"wp\t\t: yes\n"
"flags\t\t:",
c->cpuid_level);
{
int i;
for ( i = 0 ; i < 32*NCAPINTS ; i++ )
if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
seq_printf(m, " %s", x86_cap_flags[i]);
}
seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
if (c->x86_tlbsize > 0)
seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
c->x86_phys_bits, c->x86_virt_bits);
seq_printf(m, "power management:");
{
unsigned i;
for (i = 0; i < 32; i++)
if (c->x86_power & (1 << i)) {
if (i < ARRAY_SIZE(x86_power_flags) &&
x86_power_flags[i])
seq_printf(m, "%s%s",
x86_power_flags[i][0]?" ":"",
x86_power_flags[i]);
else
seq_printf(m, " [%d]", i);
}
}
seq_printf(m, "\n\n");
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start =c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};