mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 13:38:40 +00:00
ef0dab4aae
The save/restore buffers for VC state is first composed of a 2-byte control
register, then a bunch of 4-byte words.
This causes unaligned accesses which trap on platform such as sparc.
This is easy to fix by simply moving the buffer pointer forward by 4 bytes
instead of 2 after dealing with the control register. The length
adjustment needs to be changed likewise as well.
Fixes: 5f8fc43217
("PCI: Include pci/pcie/Kconfig directly from pci/Kconfig")
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
CC: stable@vger.kernel.org # v4.6+
434 lines
12 KiB
C
434 lines
12 KiB
C
/*
|
|
* PCI Virtual Channel support
|
|
*
|
|
* Copyright (C) 2013 Red Hat, Inc. All rights reserved.
|
|
* Author: Alex Williamson <alex.williamson@redhat.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_regs.h>
|
|
#include <linux/types.h>
|
|
|
|
/**
|
|
* pci_vc_save_restore_dwords - Save or restore a series of dwords
|
|
* @dev: device
|
|
* @pos: starting config space position
|
|
* @buf: buffer to save to or restore from
|
|
* @dwords: number of dwords to save/restore
|
|
* @save: whether to save or restore
|
|
*/
|
|
static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
|
|
u32 *buf, int dwords, bool save)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dwords; i++, buf++) {
|
|
if (save)
|
|
pci_read_config_dword(dev, pos + (i * 4), buf);
|
|
else
|
|
pci_write_config_dword(dev, pos + (i * 4), *buf);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pci_vc_load_arb_table - load and wait for VC arbitration table
|
|
* @dev: device
|
|
* @pos: starting position of VC capability (VC/VC9/MFVC)
|
|
*
|
|
* Set Load VC Arbitration Table bit requesting hardware to apply the VC
|
|
* Arbitration Table (previously loaded). When the VC Arbitration Table
|
|
* Status clears, hardware has latched the table into VC arbitration logic.
|
|
*/
|
|
static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
|
|
{
|
|
u16 ctrl;
|
|
|
|
pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
|
|
pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
|
|
ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
|
|
if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
|
|
PCI_VC_PORT_STATUS_TABLE))
|
|
return;
|
|
|
|
dev_err(&dev->dev, "VC arbitration table failed to load\n");
|
|
}
|
|
|
|
/**
|
|
* pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
|
|
* @dev: device
|
|
* @pos: starting position of VC capability (VC/VC9/MFVC)
|
|
* @res: VC resource number, ie. VCn (0-7)
|
|
*
|
|
* Set Load Port Arbitration Table bit requesting hardware to apply the Port
|
|
* Arbitration Table (previously loaded). When the Port Arbitration Table
|
|
* Status clears, hardware has latched the table into port arbitration logic.
|
|
*/
|
|
static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
|
|
{
|
|
int ctrl_pos, status_pos;
|
|
u32 ctrl;
|
|
|
|
ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
|
|
status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
|
|
|
|
pci_read_config_dword(dev, ctrl_pos, &ctrl);
|
|
pci_write_config_dword(dev, ctrl_pos,
|
|
ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
|
|
|
|
if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
|
|
return;
|
|
|
|
dev_err(&dev->dev, "VC%d port arbitration table failed to load\n", res);
|
|
}
|
|
|
|
/**
|
|
* pci_vc_enable - Enable virtual channel
|
|
* @dev: device
|
|
* @pos: starting position of VC capability (VC/VC9/MFVC)
|
|
* @res: VC res number, ie. VCn (0-7)
|
|
*
|
|
* A VC is enabled by setting the enable bit in matching resource control
|
|
* registers on both sides of a link. We therefore need to find the opposite
|
|
* end of the link. To keep this simple we enable from the downstream device.
|
|
* RC devices do not have an upstream device, nor does it seem that VC9 do
|
|
* (spec is unclear). Once we find the upstream device, match the VC ID to
|
|
* get the correct resource, disable and enable on both ends.
|
|
*/
|
|
static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
|
|
{
|
|
int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
|
|
u32 ctrl, header, cap1, ctrl2;
|
|
struct pci_dev *link = NULL;
|
|
|
|
/* Enable VCs from the downstream device */
|
|
if (!dev->has_secondary_link)
|
|
return;
|
|
|
|
ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
|
|
status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
|
|
|
|
pci_read_config_dword(dev, ctrl_pos, &ctrl);
|
|
id = ctrl & PCI_VC_RES_CTRL_ID;
|
|
|
|
pci_read_config_dword(dev, pos, &header);
|
|
|
|
/* If there is no opposite end of the link, skip to enable */
|
|
if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
|
|
pci_is_root_bus(dev->bus))
|
|
goto enable;
|
|
|
|
pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
|
|
if (!pos2)
|
|
goto enable;
|
|
|
|
pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
|
|
evcc = cap1 & PCI_VC_CAP1_EVCC;
|
|
|
|
/* VC0 is hardwired enabled, so we can start with 1 */
|
|
for (i = 1; i < evcc + 1; i++) {
|
|
ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
|
|
(i * PCI_CAP_VC_PER_VC_SIZEOF);
|
|
status_pos2 = pos2 + PCI_VC_RES_STATUS +
|
|
(i * PCI_CAP_VC_PER_VC_SIZEOF);
|
|
pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
|
|
if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
|
|
link = dev->bus->self;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!link)
|
|
goto enable;
|
|
|
|
/* Disable if enabled */
|
|
if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
|
|
ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
|
|
pci_write_config_dword(link, ctrl_pos2, ctrl2);
|
|
}
|
|
|
|
/* Enable on both ends */
|
|
ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
|
|
pci_write_config_dword(link, ctrl_pos2, ctrl2);
|
|
enable:
|
|
ctrl |= PCI_VC_RES_CTRL_ENABLE;
|
|
pci_write_config_dword(dev, ctrl_pos, ctrl);
|
|
|
|
if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
|
|
dev_err(&dev->dev, "VC%d negotiation stuck pending\n", id);
|
|
|
|
if (link && !pci_wait_for_pending(link, status_pos2,
|
|
PCI_VC_RES_STATUS_NEGO))
|
|
dev_err(&link->dev, "VC%d negotiation stuck pending\n", id);
|
|
}
|
|
|
|
/**
|
|
* pci_vc_do_save_buffer - Size, save, or restore VC state
|
|
* @dev: device
|
|
* @pos: starting position of VC capability (VC/VC9/MFVC)
|
|
* @save_state: buffer for save/restore
|
|
* @name: for error message
|
|
* @save: if provided a buffer, this indicates what to do with it
|
|
*
|
|
* Walking Virtual Channel config space to size, save, or restore it
|
|
* is complicated, so we do it all from one function to reduce code and
|
|
* guarantee ordering matches in the buffer. When called with NULL
|
|
* @save_state, return the size of the necessary save buffer. When called
|
|
* with a non-NULL @save_state, @save determines whether we save to the
|
|
* buffer or restore from it.
|
|
*/
|
|
static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
|
|
struct pci_cap_saved_state *save_state,
|
|
bool save)
|
|
{
|
|
u32 cap1;
|
|
char evcc, lpevcc, parb_size;
|
|
int i, len = 0;
|
|
u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
|
|
|
|
/* Sanity check buffer size for save/restore */
|
|
if (buf && save_state->cap.size !=
|
|
pci_vc_do_save_buffer(dev, pos, NULL, save)) {
|
|
dev_err(&dev->dev,
|
|
"VC save buffer size does not match @0x%x\n", pos);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
|
|
/* Extended VC Count (not counting VC0) */
|
|
evcc = cap1 & PCI_VC_CAP1_EVCC;
|
|
/* Low Priority Extended VC Count (not counting VC0) */
|
|
lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
|
|
/* Port Arbitration Table Entry Size (bits) */
|
|
parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
|
|
|
|
/*
|
|
* Port VC Control Register contains VC Arbitration Select, which
|
|
* cannot be modified when more than one LPVC is in operation. We
|
|
* therefore save/restore it first, as only VC0 should be enabled
|
|
* after device reset.
|
|
*/
|
|
if (buf) {
|
|
if (save)
|
|
pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
|
|
(u16 *)buf);
|
|
else
|
|
pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
|
|
*(u16 *)buf);
|
|
buf += 4;
|
|
}
|
|
len += 4;
|
|
|
|
/*
|
|
* If we have any Low Priority VCs and a VC Arbitration Table Offset
|
|
* in Port VC Capability Register 2 then save/restore it next.
|
|
*/
|
|
if (lpevcc) {
|
|
u32 cap2;
|
|
int vcarb_offset;
|
|
|
|
pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
|
|
vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
|
|
|
|
if (vcarb_offset) {
|
|
int size, vcarb_phases = 0;
|
|
|
|
if (cap2 & PCI_VC_CAP2_128_PHASE)
|
|
vcarb_phases = 128;
|
|
else if (cap2 & PCI_VC_CAP2_64_PHASE)
|
|
vcarb_phases = 64;
|
|
else if (cap2 & PCI_VC_CAP2_32_PHASE)
|
|
vcarb_phases = 32;
|
|
|
|
/* Fixed 4 bits per phase per lpevcc (plus VC0) */
|
|
size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
|
|
|
|
if (size && buf) {
|
|
pci_vc_save_restore_dwords(dev,
|
|
pos + vcarb_offset,
|
|
(u32 *)buf,
|
|
size / 4, save);
|
|
/*
|
|
* On restore, we need to signal hardware to
|
|
* re-load the VC Arbitration Table.
|
|
*/
|
|
if (!save)
|
|
pci_vc_load_arb_table(dev, pos);
|
|
|
|
buf += size;
|
|
}
|
|
len += size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In addition to each VC Resource Control Register, we may have a
|
|
* Port Arbitration Table attached to each VC. The Port Arbitration
|
|
* Table Offset in each VC Resource Capability Register tells us if
|
|
* it exists. The entry size is global from the Port VC Capability
|
|
* Register1 above. The number of phases is determined per VC.
|
|
*/
|
|
for (i = 0; i < evcc + 1; i++) {
|
|
u32 cap;
|
|
int parb_offset;
|
|
|
|
pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
|
|
(i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
|
|
parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
|
|
if (parb_offset) {
|
|
int size, parb_phases = 0;
|
|
|
|
if (cap & PCI_VC_RES_CAP_256_PHASE)
|
|
parb_phases = 256;
|
|
else if (cap & (PCI_VC_RES_CAP_128_PHASE |
|
|
PCI_VC_RES_CAP_128_PHASE_TB))
|
|
parb_phases = 128;
|
|
else if (cap & PCI_VC_RES_CAP_64_PHASE)
|
|
parb_phases = 64;
|
|
else if (cap & PCI_VC_RES_CAP_32_PHASE)
|
|
parb_phases = 32;
|
|
|
|
size = (parb_size * parb_phases) / 8;
|
|
|
|
if (size && buf) {
|
|
pci_vc_save_restore_dwords(dev,
|
|
pos + parb_offset,
|
|
(u32 *)buf,
|
|
size / 4, save);
|
|
buf += size;
|
|
}
|
|
len += size;
|
|
}
|
|
|
|
/* VC Resource Control Register */
|
|
if (buf) {
|
|
int ctrl_pos = pos + PCI_VC_RES_CTRL +
|
|
(i * PCI_CAP_VC_PER_VC_SIZEOF);
|
|
if (save)
|
|
pci_read_config_dword(dev, ctrl_pos,
|
|
(u32 *)buf);
|
|
else {
|
|
u32 tmp, ctrl = *(u32 *)buf;
|
|
/*
|
|
* For an FLR case, the VC config may remain.
|
|
* Preserve enable bit, restore the rest.
|
|
*/
|
|
pci_read_config_dword(dev, ctrl_pos, &tmp);
|
|
tmp &= PCI_VC_RES_CTRL_ENABLE;
|
|
tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
|
|
pci_write_config_dword(dev, ctrl_pos, tmp);
|
|
/* Load port arbitration table if used */
|
|
if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
|
|
pci_vc_load_port_arb_table(dev, pos, i);
|
|
/* Re-enable if needed */
|
|
if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
|
|
pci_vc_enable(dev, pos, i);
|
|
}
|
|
buf += 4;
|
|
}
|
|
len += 4;
|
|
}
|
|
|
|
return buf ? 0 : len;
|
|
}
|
|
|
|
static struct {
|
|
u16 id;
|
|
const char *name;
|
|
} vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
|
|
{ PCI_EXT_CAP_ID_VC, "VC" },
|
|
{ PCI_EXT_CAP_ID_VC9, "VC9" } };
|
|
|
|
/**
|
|
* pci_save_vc_state - Save VC state to pre-allocate save buffer
|
|
* @dev: device
|
|
*
|
|
* For each type of VC capability, VC/VC9/MFVC, find the capability and
|
|
* save it to the pre-allocated save buffer.
|
|
*/
|
|
int pci_save_vc_state(struct pci_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
|
|
int pos, ret;
|
|
struct pci_cap_saved_state *save_state;
|
|
|
|
pos = pci_find_ext_capability(dev, vc_caps[i].id);
|
|
if (!pos)
|
|
continue;
|
|
|
|
save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
|
|
if (!save_state) {
|
|
dev_err(&dev->dev, "%s buffer not found in %s\n",
|
|
vc_caps[i].name, __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "%s save unsuccessful %s\n",
|
|
vc_caps[i].name, __func__);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_restore_vc_state - Restore VC state from save buffer
|
|
* @dev: device
|
|
*
|
|
* For each type of VC capability, VC/VC9/MFVC, find the capability and
|
|
* restore it from the previously saved buffer.
|
|
*/
|
|
void pci_restore_vc_state(struct pci_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
|
|
int pos;
|
|
struct pci_cap_saved_state *save_state;
|
|
|
|
pos = pci_find_ext_capability(dev, vc_caps[i].id);
|
|
save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
|
|
if (!save_state || !pos)
|
|
continue;
|
|
|
|
pci_vc_do_save_buffer(dev, pos, save_state, false);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
|
|
* @dev: device
|
|
*
|
|
* For each type of VC capability, VC/VC9/MFVC, find the capability, size
|
|
* it, and allocate a buffer for save/restore.
|
|
*/
|
|
|
|
void pci_allocate_vc_save_buffers(struct pci_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
|
|
int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
|
|
|
|
if (!pos)
|
|
continue;
|
|
|
|
len = pci_vc_do_save_buffer(dev, pos, NULL, false);
|
|
if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
|
|
dev_err(&dev->dev,
|
|
"unable to preallocate %s save buffer\n",
|
|
vc_caps[i].name);
|
|
}
|
|
}
|