mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 04:19:08 +00:00
14be249c96
The reset value of the uSOF cycle period is incorrect. Set it to 60,000 bits. Without this, several commercial USB flash memory devices and hubs fail to work properly. Signed-off-by: David Daney <ddaney@caviumnetworks.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
201 lines
4.9 KiB
C
201 lines
4.9 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2010, 2011 Cavium Networks
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
#include <asm/octeon/cvmx-uctlx-defs.h>
|
|
|
|
static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
|
|
|
|
static int octeon2_usb_clock_start_cnt;
|
|
|
|
void octeon2_usb_clocks_start(void)
|
|
{
|
|
u64 div;
|
|
union cvmx_uctlx_if_ena if_ena;
|
|
union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
|
|
union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
|
|
union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
|
|
int i;
|
|
unsigned long io_clk_64_to_ns;
|
|
|
|
|
|
mutex_lock(&octeon2_usb_clocks_mutex);
|
|
|
|
octeon2_usb_clock_start_cnt++;
|
|
if (octeon2_usb_clock_start_cnt != 1)
|
|
goto exit;
|
|
|
|
io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
|
|
|
|
/*
|
|
* Step 1: Wait for voltages stable. That surely happened
|
|
* before starting the kernel.
|
|
*
|
|
* Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
|
|
*/
|
|
if_ena.u64 = 0;
|
|
if_ena.s.en = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
|
|
|
|
/* Step 3: Configure the reference clock, PHY, and HCLK */
|
|
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
|
|
|
|
/*
|
|
* If the UCTL looks like it has already been started, skip
|
|
* the initialization, otherwise bus errors are obtained.
|
|
*/
|
|
if (clk_rst_ctl.s.hrst)
|
|
goto end_clock;
|
|
/* 3a */
|
|
clk_rst_ctl.s.p_por = 1;
|
|
clk_rst_ctl.s.hrst = 0;
|
|
clk_rst_ctl.s.p_prst = 0;
|
|
clk_rst_ctl.s.h_clkdiv_rst = 0;
|
|
clk_rst_ctl.s.o_clkdiv_rst = 0;
|
|
clk_rst_ctl.s.h_clkdiv_en = 0;
|
|
clk_rst_ctl.s.o_clkdiv_en = 0;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
/* 3b */
|
|
/* 12MHz crystal. */
|
|
clk_rst_ctl.s.p_refclk_sel = 0;
|
|
clk_rst_ctl.s.p_refclk_div = 0;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
/* 3c */
|
|
div = octeon_get_io_clock_rate() / 130000000ull;
|
|
|
|
switch (div) {
|
|
case 0:
|
|
div = 1;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
break;
|
|
case 5:
|
|
div = 4;
|
|
break;
|
|
case 6:
|
|
case 7:
|
|
div = 6;
|
|
break;
|
|
case 8:
|
|
case 9:
|
|
case 10:
|
|
case 11:
|
|
div = 8;
|
|
break;
|
|
default:
|
|
div = 12;
|
|
break;
|
|
}
|
|
clk_rst_ctl.s.h_div = div;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
/* Read it back, */
|
|
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
|
|
clk_rst_ctl.s.h_clkdiv_en = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
/* 3d */
|
|
clk_rst_ctl.s.h_clkdiv_rst = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
/* 3e: delay 64 io clocks */
|
|
ndelay(io_clk_64_to_ns);
|
|
|
|
/*
|
|
* Step 4: Program the power-on reset field in the UCTL
|
|
* clock-reset-control register.
|
|
*/
|
|
clk_rst_ctl.s.p_por = 0;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
/* Step 5: Wait 1 ms for the PHY clock to start. */
|
|
mdelay(1);
|
|
|
|
/*
|
|
* Step 6: Program the reset input from automatic test
|
|
* equipment field in the UPHY CSR
|
|
*/
|
|
uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
|
|
uphy_ctl_status.s.ate_reset = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
|
|
|
|
/* Step 7: Wait for at least 10ns. */
|
|
ndelay(10);
|
|
|
|
/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
|
|
uphy_ctl_status.s.ate_reset = 0;
|
|
cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
|
|
|
|
/*
|
|
* Step 9: Wait for at least 20ns for UPHY to output PHY clock
|
|
* signals and OHCI_CLK48
|
|
*/
|
|
ndelay(20);
|
|
|
|
/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
|
|
/* 10a */
|
|
clk_rst_ctl.s.o_clkdiv_rst = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
/* 10b */
|
|
clk_rst_ctl.s.o_clkdiv_en = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
/* 10c */
|
|
ndelay(io_clk_64_to_ns);
|
|
|
|
/*
|
|
* Step 11: Program the PHY reset field:
|
|
* UCTL0_CLK_RST_CTL[P_PRST] = 1
|
|
*/
|
|
clk_rst_ctl.s.p_prst = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
/* Step 12: Wait 1 uS. */
|
|
udelay(1);
|
|
|
|
/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
|
|
clk_rst_ctl.s.hrst = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
|
|
|
|
end_clock:
|
|
/* Now we can set some other registers. */
|
|
|
|
for (i = 0; i <= 1; i++) {
|
|
port_ctl_status.u64 =
|
|
cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
|
|
/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
|
|
port_ctl_status.s.txvreftune = 15;
|
|
port_ctl_status.s.txrisetune = 1;
|
|
port_ctl_status.s.txpreemphasistune = 1;
|
|
cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
|
|
port_ctl_status.u64);
|
|
}
|
|
|
|
/* Set uSOF cycle period to 60,000 bits. */
|
|
cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
|
|
exit:
|
|
mutex_unlock(&octeon2_usb_clocks_mutex);
|
|
}
|
|
EXPORT_SYMBOL(octeon2_usb_clocks_start);
|
|
|
|
void octeon2_usb_clocks_stop(void)
|
|
{
|
|
mutex_lock(&octeon2_usb_clocks_mutex);
|
|
octeon2_usb_clock_start_cnt--;
|
|
mutex_unlock(&octeon2_usb_clocks_mutex);
|
|
}
|
|
EXPORT_SYMBOL(octeon2_usb_clocks_stop);
|