mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 12:47:53 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
1850 lines
49 KiB
C
1850 lines
49 KiB
C
/*
|
|
* drivers/net/gianfar.c
|
|
*
|
|
* Gianfar Ethernet Driver
|
|
* Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
|
|
* Based on 8260_io/fcc_enet.c
|
|
*
|
|
* Author: Andy Fleming
|
|
* Maintainer: Kumar Gala (kumar.gala@freescale.com)
|
|
*
|
|
* Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* Gianfar: AKA Lambda Draconis, "Dragon"
|
|
* RA 11 31 24.2
|
|
* Dec +69 19 52
|
|
* V 3.84
|
|
* B-V +1.62
|
|
*
|
|
* Theory of operation
|
|
* This driver is designed for the Triple-speed Ethernet
|
|
* controllers on the Freescale 8540/8560 integrated processors,
|
|
* as well as the Fast Ethernet Controller on the 8540.
|
|
*
|
|
* The driver is initialized through platform_device. Structures which
|
|
* define the configuration needed by the board are defined in a
|
|
* board structure in arch/ppc/platforms (though I do not
|
|
* discount the possibility that other architectures could one
|
|
* day be supported. One assumption the driver currently makes
|
|
* is that the PHY is configured in such a way to advertise all
|
|
* capabilities. This is a sensible default, and on certain
|
|
* PHYs, changing this default encounters substantial errata
|
|
* issues. Future versions may remove this requirement, but for
|
|
* now, it is best for the firmware to ensure this is the case.
|
|
*
|
|
* The Gianfar Ethernet Controller uses a ring of buffer
|
|
* descriptors. The beginning is indicated by a register
|
|
* pointing to the physical address of the start of the ring.
|
|
* The end is determined by a "wrap" bit being set in the
|
|
* last descriptor of the ring.
|
|
*
|
|
* When a packet is received, the RXF bit in the
|
|
* IEVENT register is set, triggering an interrupt when the
|
|
* corresponding bit in the IMASK register is also set (if
|
|
* interrupt coalescing is active, then the interrupt may not
|
|
* happen immediately, but will wait until either a set number
|
|
* of frames or amount of time have passed.). In NAPI, the
|
|
* interrupt handler will signal there is work to be done, and
|
|
* exit. Without NAPI, the packet(s) will be handled
|
|
* immediately. Both methods will start at the last known empty
|
|
* descriptor, and process every subsequent descriptor until there
|
|
* are none left with data (NAPI will stop after a set number of
|
|
* packets to give time to other tasks, but will eventually
|
|
* process all the packets). The data arrives inside a
|
|
* pre-allocated skb, and so after the skb is passed up to the
|
|
* stack, a new skb must be allocated, and the address field in
|
|
* the buffer descriptor must be updated to indicate this new
|
|
* skb.
|
|
*
|
|
* When the kernel requests that a packet be transmitted, the
|
|
* driver starts where it left off last time, and points the
|
|
* descriptor at the buffer which was passed in. The driver
|
|
* then informs the DMA engine that there are packets ready to
|
|
* be transmitted. Once the controller is finished transmitting
|
|
* the packet, an interrupt may be triggered (under the same
|
|
* conditions as for reception, but depending on the TXF bit).
|
|
* The driver then cleans up the buffer.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/device.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/module.h>
|
|
#include <linux/version.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/crc32.h>
|
|
|
|
#include "gianfar.h"
|
|
#include "gianfar_phy.h"
|
|
|
|
#define TX_TIMEOUT (1*HZ)
|
|
#define SKB_ALLOC_TIMEOUT 1000000
|
|
#undef BRIEF_GFAR_ERRORS
|
|
#undef VERBOSE_GFAR_ERRORS
|
|
|
|
#ifdef CONFIG_GFAR_NAPI
|
|
#define RECEIVE(x) netif_receive_skb(x)
|
|
#else
|
|
#define RECEIVE(x) netif_rx(x)
|
|
#endif
|
|
|
|
const char gfar_driver_name[] = "Gianfar Ethernet";
|
|
const char gfar_driver_version[] = "1.1";
|
|
|
|
int startup_gfar(struct net_device *dev);
|
|
static int gfar_enet_open(struct net_device *dev);
|
|
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
|
|
static void gfar_timeout(struct net_device *dev);
|
|
static int gfar_close(struct net_device *dev);
|
|
struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
|
|
static struct net_device_stats *gfar_get_stats(struct net_device *dev);
|
|
static int gfar_set_mac_address(struct net_device *dev);
|
|
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
|
|
static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
|
|
static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
|
|
irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs);
|
|
static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
|
|
static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs);
|
|
static void gfar_phy_change(void *data);
|
|
static void gfar_phy_timer(unsigned long data);
|
|
static void adjust_link(struct net_device *dev);
|
|
static void init_registers(struct net_device *dev);
|
|
static int init_phy(struct net_device *dev);
|
|
static int gfar_probe(struct device *device);
|
|
static int gfar_remove(struct device *device);
|
|
void free_skb_resources(struct gfar_private *priv);
|
|
static void gfar_set_multi(struct net_device *dev);
|
|
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
|
|
#ifdef CONFIG_GFAR_NAPI
|
|
static int gfar_poll(struct net_device *dev, int *budget);
|
|
#endif
|
|
static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
|
|
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
|
|
static void gfar_phy_startup_timer(unsigned long data);
|
|
|
|
extern struct ethtool_ops gfar_ethtool_ops;
|
|
|
|
MODULE_AUTHOR("Freescale Semiconductor, Inc");
|
|
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int gfar_probe(struct device *device)
|
|
{
|
|
u32 tempval;
|
|
struct net_device *dev = NULL;
|
|
struct gfar_private *priv = NULL;
|
|
struct platform_device *pdev = to_platform_device(device);
|
|
struct gianfar_platform_data *einfo;
|
|
struct resource *r;
|
|
int idx;
|
|
int err = 0;
|
|
int dev_ethtool_ops = 0;
|
|
|
|
einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
|
|
|
|
if (einfo == NULL) {
|
|
printk(KERN_ERR "gfar %d: Missing additional data!\n",
|
|
pdev->id);
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Create an ethernet device instance */
|
|
dev = alloc_etherdev(sizeof (*priv));
|
|
|
|
if (dev == NULL)
|
|
return -ENOMEM;
|
|
|
|
priv = netdev_priv(dev);
|
|
|
|
/* Set the info in the priv to the current info */
|
|
priv->einfo = einfo;
|
|
|
|
/* fill out IRQ fields */
|
|
if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
|
|
priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
|
|
priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
|
|
priv->interruptError = platform_get_irq_byname(pdev, "error");
|
|
} else {
|
|
priv->interruptTransmit = platform_get_irq(pdev, 0);
|
|
}
|
|
|
|
/* get a pointer to the register memory */
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
priv->regs = (struct gfar *)
|
|
ioremap(r->start, sizeof (struct gfar));
|
|
|
|
if (priv->regs == NULL) {
|
|
err = -ENOMEM;
|
|
goto regs_fail;
|
|
}
|
|
|
|
/* Set the PHY base address */
|
|
priv->phyregs = (struct gfar *)
|
|
ioremap(einfo->phy_reg_addr, sizeof (struct gfar));
|
|
|
|
if (priv->phyregs == NULL) {
|
|
err = -ENOMEM;
|
|
goto phy_regs_fail;
|
|
}
|
|
|
|
spin_lock_init(&priv->lock);
|
|
|
|
dev_set_drvdata(device, dev);
|
|
|
|
/* Stop the DMA engine now, in case it was running before */
|
|
/* (The firmware could have used it, and left it running). */
|
|
/* To do this, we write Graceful Receive Stop and Graceful */
|
|
/* Transmit Stop, and then wait until the corresponding bits */
|
|
/* in IEVENT indicate the stops have completed. */
|
|
tempval = gfar_read(&priv->regs->dmactrl);
|
|
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
|
|
gfar_write(&priv->regs->dmactrl, tempval);
|
|
|
|
tempval = gfar_read(&priv->regs->dmactrl);
|
|
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
|
|
gfar_write(&priv->regs->dmactrl, tempval);
|
|
|
|
while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
|
|
cpu_relax();
|
|
|
|
/* Reset MAC layer */
|
|
gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
|
|
|
|
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
|
|
gfar_write(&priv->regs->maccfg1, tempval);
|
|
|
|
/* Initialize MACCFG2. */
|
|
gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
|
|
|
|
/* Initialize ECNTRL */
|
|
gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
|
|
|
|
/* Copy the station address into the dev structure, */
|
|
memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
|
|
|
|
/* Set the dev->base_addr to the gfar reg region */
|
|
dev->base_addr = (unsigned long) (priv->regs);
|
|
|
|
SET_MODULE_OWNER(dev);
|
|
SET_NETDEV_DEV(dev, device);
|
|
|
|
/* Fill in the dev structure */
|
|
dev->open = gfar_enet_open;
|
|
dev->hard_start_xmit = gfar_start_xmit;
|
|
dev->tx_timeout = gfar_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
#ifdef CONFIG_GFAR_NAPI
|
|
dev->poll = gfar_poll;
|
|
dev->weight = GFAR_DEV_WEIGHT;
|
|
#endif
|
|
dev->stop = gfar_close;
|
|
dev->get_stats = gfar_get_stats;
|
|
dev->change_mtu = gfar_change_mtu;
|
|
dev->mtu = 1500;
|
|
dev->set_multicast_list = gfar_set_multi;
|
|
|
|
/* Index into the array of possible ethtool
|
|
* ops to catch all 4 possibilities */
|
|
if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) == 0)
|
|
dev_ethtool_ops += 1;
|
|
|
|
if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE) == 0)
|
|
dev_ethtool_ops += 2;
|
|
|
|
dev->ethtool_ops = gfar_op_array[dev_ethtool_ops];
|
|
|
|
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
|
|
#ifdef CONFIG_GFAR_BUFSTASH
|
|
priv->rx_stash_size = STASH_LENGTH;
|
|
#endif
|
|
priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
|
|
priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
|
|
|
|
priv->txcoalescing = DEFAULT_TX_COALESCE;
|
|
priv->txcount = DEFAULT_TXCOUNT;
|
|
priv->txtime = DEFAULT_TXTIME;
|
|
priv->rxcoalescing = DEFAULT_RX_COALESCE;
|
|
priv->rxcount = DEFAULT_RXCOUNT;
|
|
priv->rxtime = DEFAULT_RXTIME;
|
|
|
|
err = register_netdev(dev);
|
|
|
|
if (err) {
|
|
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
|
|
dev->name);
|
|
goto register_fail;
|
|
}
|
|
|
|
/* Print out the device info */
|
|
printk(KERN_INFO DEVICE_NAME, dev->name);
|
|
for (idx = 0; idx < 6; idx++)
|
|
printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
|
|
printk("\n");
|
|
|
|
/* Even more device info helps when determining which kernel */
|
|
/* provided which set of benchmarks. Since this is global for all */
|
|
/* devices, we only print it once */
|
|
#ifdef CONFIG_GFAR_NAPI
|
|
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
|
|
#else
|
|
printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
|
|
#endif
|
|
printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
|
|
dev->name, priv->rx_ring_size, priv->tx_ring_size);
|
|
|
|
return 0;
|
|
|
|
register_fail:
|
|
iounmap((void *) priv->phyregs);
|
|
phy_regs_fail:
|
|
iounmap((void *) priv->regs);
|
|
regs_fail:
|
|
free_netdev(dev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int gfar_remove(struct device *device)
|
|
{
|
|
struct net_device *dev = dev_get_drvdata(device);
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
dev_set_drvdata(device, NULL);
|
|
|
|
iounmap((void *) priv->regs);
|
|
iounmap((void *) priv->phyregs);
|
|
free_netdev(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Configure the PHY for dev.
|
|
* returns 0 if success. -1 if failure
|
|
*/
|
|
static int init_phy(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct phy_info *curphy;
|
|
unsigned int timeout = PHY_INIT_TIMEOUT;
|
|
struct gfar *phyregs = priv->phyregs;
|
|
struct gfar_mii_info *mii_info;
|
|
int err;
|
|
|
|
priv->oldlink = 0;
|
|
priv->oldspeed = 0;
|
|
priv->oldduplex = -1;
|
|
|
|
mii_info = kmalloc(sizeof(struct gfar_mii_info),
|
|
GFP_KERNEL);
|
|
|
|
if(NULL == mii_info) {
|
|
printk(KERN_ERR "%s: Could not allocate mii_info\n",
|
|
dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mii_info->speed = SPEED_1000;
|
|
mii_info->duplex = DUPLEX_FULL;
|
|
mii_info->pause = 0;
|
|
mii_info->link = 1;
|
|
|
|
mii_info->advertising = (ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full |
|
|
ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full |
|
|
ADVERTISED_1000baseT_Full);
|
|
mii_info->autoneg = 1;
|
|
|
|
spin_lock_init(&mii_info->mdio_lock);
|
|
|
|
mii_info->mii_id = priv->einfo->phyid;
|
|
|
|
mii_info->dev = dev;
|
|
|
|
mii_info->mdio_read = &read_phy_reg;
|
|
mii_info->mdio_write = &write_phy_reg;
|
|
|
|
priv->mii_info = mii_info;
|
|
|
|
/* Reset the management interface */
|
|
gfar_write(&phyregs->miimcfg, MIIMCFG_RESET);
|
|
|
|
/* Setup the MII Mgmt clock speed */
|
|
gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE);
|
|
|
|
/* Wait until the bus is free */
|
|
while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) &&
|
|
timeout--)
|
|
cpu_relax();
|
|
|
|
if(timeout <= 0) {
|
|
printk(KERN_ERR "%s: The MII Bus is stuck!\n",
|
|
dev->name);
|
|
err = -1;
|
|
goto bus_fail;
|
|
}
|
|
|
|
/* get info for this PHY */
|
|
curphy = get_phy_info(priv->mii_info);
|
|
|
|
if (curphy == NULL) {
|
|
printk(KERN_ERR "%s: No PHY found\n", dev->name);
|
|
err = -1;
|
|
goto no_phy;
|
|
}
|
|
|
|
mii_info->phyinfo = curphy;
|
|
|
|
/* Run the commands which initialize the PHY */
|
|
if(curphy->init) {
|
|
err = curphy->init(priv->mii_info);
|
|
|
|
if (err)
|
|
goto phy_init_fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
phy_init_fail:
|
|
no_phy:
|
|
bus_fail:
|
|
kfree(mii_info);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void init_registers(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
/* Clear IEVENT */
|
|
gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
|
|
|
|
/* Initialize IMASK */
|
|
gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
|
|
|
|
/* Init hash registers to zero */
|
|
gfar_write(&priv->regs->iaddr0, 0);
|
|
gfar_write(&priv->regs->iaddr1, 0);
|
|
gfar_write(&priv->regs->iaddr2, 0);
|
|
gfar_write(&priv->regs->iaddr3, 0);
|
|
gfar_write(&priv->regs->iaddr4, 0);
|
|
gfar_write(&priv->regs->iaddr5, 0);
|
|
gfar_write(&priv->regs->iaddr6, 0);
|
|
gfar_write(&priv->regs->iaddr7, 0);
|
|
|
|
gfar_write(&priv->regs->gaddr0, 0);
|
|
gfar_write(&priv->regs->gaddr1, 0);
|
|
gfar_write(&priv->regs->gaddr2, 0);
|
|
gfar_write(&priv->regs->gaddr3, 0);
|
|
gfar_write(&priv->regs->gaddr4, 0);
|
|
gfar_write(&priv->regs->gaddr5, 0);
|
|
gfar_write(&priv->regs->gaddr6, 0);
|
|
gfar_write(&priv->regs->gaddr7, 0);
|
|
|
|
/* Zero out rctrl */
|
|
gfar_write(&priv->regs->rctrl, 0x00000000);
|
|
|
|
/* Zero out the rmon mib registers if it has them */
|
|
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
|
|
memset((void *) &(priv->regs->rmon), 0,
|
|
sizeof (struct rmon_mib));
|
|
|
|
/* Mask off the CAM interrupts */
|
|
gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
|
|
gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
|
|
}
|
|
|
|
/* Initialize the max receive buffer length */
|
|
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
|
|
|
|
#ifdef CONFIG_GFAR_BUFSTASH
|
|
/* If we are stashing buffers, we need to set the
|
|
* extraction length to the size of the buffer */
|
|
gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16);
|
|
#endif
|
|
|
|
/* Initialize the Minimum Frame Length Register */
|
|
gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
|
|
|
|
/* Setup Attributes so that snooping is on for rx */
|
|
gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS);
|
|
gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS);
|
|
|
|
/* Assign the TBI an address which won't conflict with the PHYs */
|
|
gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
|
|
}
|
|
|
|
void stop_gfar(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct gfar *regs = priv->regs;
|
|
unsigned long flags;
|
|
u32 tempval;
|
|
|
|
/* Lock it down */
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
|
|
/* Tell the kernel the link is down */
|
|
priv->mii_info->link = 0;
|
|
adjust_link(dev);
|
|
|
|
/* Mask all interrupts */
|
|
gfar_write(®s->imask, IMASK_INIT_CLEAR);
|
|
|
|
/* Clear all interrupts */
|
|
gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
|
|
|
|
/* Stop the DMA, and wait for it to stop */
|
|
tempval = gfar_read(&priv->regs->dmactrl);
|
|
if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
|
|
!= (DMACTRL_GRS | DMACTRL_GTS)) {
|
|
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
|
|
gfar_write(&priv->regs->dmactrl, tempval);
|
|
|
|
while (!(gfar_read(&priv->regs->ievent) &
|
|
(IEVENT_GRSC | IEVENT_GTSC)))
|
|
cpu_relax();
|
|
}
|
|
|
|
/* Disable Rx and Tx */
|
|
tempval = gfar_read(®s->maccfg1);
|
|
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
|
|
gfar_write(®s->maccfg1, tempval);
|
|
|
|
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
|
|
/* Clear any pending interrupts */
|
|
mii_clear_phy_interrupt(priv->mii_info);
|
|
|
|
/* Disable PHY Interrupts */
|
|
mii_configure_phy_interrupt(priv->mii_info,
|
|
MII_INTERRUPT_DISABLED);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
|
|
|
/* Free the IRQs */
|
|
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
|
|
free_irq(priv->interruptError, dev);
|
|
free_irq(priv->interruptTransmit, dev);
|
|
free_irq(priv->interruptReceive, dev);
|
|
} else {
|
|
free_irq(priv->interruptTransmit, dev);
|
|
}
|
|
|
|
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
|
|
free_irq(priv->einfo->interruptPHY, dev);
|
|
} else {
|
|
del_timer_sync(&priv->phy_info_timer);
|
|
}
|
|
|
|
free_skb_resources(priv);
|
|
|
|
dma_free_coherent(NULL,
|
|
sizeof(struct txbd8)*priv->tx_ring_size
|
|
+ sizeof(struct rxbd8)*priv->rx_ring_size,
|
|
priv->tx_bd_base,
|
|
gfar_read(®s->tbase));
|
|
}
|
|
|
|
/* If there are any tx skbs or rx skbs still around, free them.
|
|
* Then free tx_skbuff and rx_skbuff */
|
|
void free_skb_resources(struct gfar_private *priv)
|
|
{
|
|
struct rxbd8 *rxbdp;
|
|
struct txbd8 *txbdp;
|
|
int i;
|
|
|
|
/* Go through all the buffer descriptors and free their data buffers */
|
|
txbdp = priv->tx_bd_base;
|
|
|
|
for (i = 0; i < priv->tx_ring_size; i++) {
|
|
|
|
if (priv->tx_skbuff[i]) {
|
|
dma_unmap_single(NULL, txbdp->bufPtr,
|
|
txbdp->length,
|
|
DMA_TO_DEVICE);
|
|
dev_kfree_skb_any(priv->tx_skbuff[i]);
|
|
priv->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
kfree(priv->tx_skbuff);
|
|
|
|
rxbdp = priv->rx_bd_base;
|
|
|
|
/* rx_skbuff is not guaranteed to be allocated, so only
|
|
* free it and its contents if it is allocated */
|
|
if(priv->rx_skbuff != NULL) {
|
|
for (i = 0; i < priv->rx_ring_size; i++) {
|
|
if (priv->rx_skbuff[i]) {
|
|
dma_unmap_single(NULL, rxbdp->bufPtr,
|
|
priv->rx_buffer_size
|
|
+ RXBUF_ALIGNMENT,
|
|
DMA_FROM_DEVICE);
|
|
|
|
dev_kfree_skb_any(priv->rx_skbuff[i]);
|
|
priv->rx_skbuff[i] = NULL;
|
|
}
|
|
|
|
rxbdp->status = 0;
|
|
rxbdp->length = 0;
|
|
rxbdp->bufPtr = 0;
|
|
|
|
rxbdp++;
|
|
}
|
|
|
|
kfree(priv->rx_skbuff);
|
|
}
|
|
}
|
|
|
|
/* Bring the controller up and running */
|
|
int startup_gfar(struct net_device *dev)
|
|
{
|
|
struct txbd8 *txbdp;
|
|
struct rxbd8 *rxbdp;
|
|
dma_addr_t addr;
|
|
unsigned long vaddr;
|
|
int i;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct gfar *regs = priv->regs;
|
|
u32 tempval;
|
|
int err = 0;
|
|
|
|
gfar_write(®s->imask, IMASK_INIT_CLEAR);
|
|
|
|
/* Allocate memory for the buffer descriptors */
|
|
vaddr = (unsigned long) dma_alloc_coherent(NULL,
|
|
sizeof (struct txbd8) * priv->tx_ring_size +
|
|
sizeof (struct rxbd8) * priv->rx_ring_size,
|
|
&addr, GFP_KERNEL);
|
|
|
|
if (vaddr == 0) {
|
|
printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
|
|
dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
priv->tx_bd_base = (struct txbd8 *) vaddr;
|
|
|
|
/* enet DMA only understands physical addresses */
|
|
gfar_write(®s->tbase, addr);
|
|
|
|
/* Start the rx descriptor ring where the tx ring leaves off */
|
|
addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
|
|
vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
|
|
priv->rx_bd_base = (struct rxbd8 *) vaddr;
|
|
gfar_write(®s->rbase, addr);
|
|
|
|
/* Setup the skbuff rings */
|
|
priv->tx_skbuff =
|
|
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
|
|
priv->tx_ring_size, GFP_KERNEL);
|
|
|
|
if (priv->tx_skbuff == NULL) {
|
|
printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
|
|
dev->name);
|
|
err = -ENOMEM;
|
|
goto tx_skb_fail;
|
|
}
|
|
|
|
for (i = 0; i < priv->tx_ring_size; i++)
|
|
priv->tx_skbuff[i] = NULL;
|
|
|
|
priv->rx_skbuff =
|
|
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
|
|
priv->rx_ring_size, GFP_KERNEL);
|
|
|
|
if (priv->rx_skbuff == NULL) {
|
|
printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
|
|
dev->name);
|
|
err = -ENOMEM;
|
|
goto rx_skb_fail;
|
|
}
|
|
|
|
for (i = 0; i < priv->rx_ring_size; i++)
|
|
priv->rx_skbuff[i] = NULL;
|
|
|
|
/* Initialize some variables in our dev structure */
|
|
priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
|
|
priv->cur_rx = priv->rx_bd_base;
|
|
priv->skb_curtx = priv->skb_dirtytx = 0;
|
|
priv->skb_currx = 0;
|
|
|
|
/* Initialize Transmit Descriptor Ring */
|
|
txbdp = priv->tx_bd_base;
|
|
for (i = 0; i < priv->tx_ring_size; i++) {
|
|
txbdp->status = 0;
|
|
txbdp->length = 0;
|
|
txbdp->bufPtr = 0;
|
|
txbdp++;
|
|
}
|
|
|
|
/* Set the last descriptor in the ring to indicate wrap */
|
|
txbdp--;
|
|
txbdp->status |= TXBD_WRAP;
|
|
|
|
rxbdp = priv->rx_bd_base;
|
|
for (i = 0; i < priv->rx_ring_size; i++) {
|
|
struct sk_buff *skb = NULL;
|
|
|
|
rxbdp->status = 0;
|
|
|
|
skb = gfar_new_skb(dev, rxbdp);
|
|
|
|
priv->rx_skbuff[i] = skb;
|
|
|
|
rxbdp++;
|
|
}
|
|
|
|
/* Set the last descriptor in the ring to wrap */
|
|
rxbdp--;
|
|
rxbdp->status |= RXBD_WRAP;
|
|
|
|
/* If the device has multiple interrupts, register for
|
|
* them. Otherwise, only register for the one */
|
|
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
|
|
/* Install our interrupt handlers for Error,
|
|
* Transmit, and Receive */
|
|
if (request_irq(priv->interruptError, gfar_error,
|
|
0, "enet_error", dev) < 0) {
|
|
printk(KERN_ERR "%s: Can't get IRQ %d\n",
|
|
dev->name, priv->interruptError);
|
|
|
|
err = -1;
|
|
goto err_irq_fail;
|
|
}
|
|
|
|
if (request_irq(priv->interruptTransmit, gfar_transmit,
|
|
0, "enet_tx", dev) < 0) {
|
|
printk(KERN_ERR "%s: Can't get IRQ %d\n",
|
|
dev->name, priv->interruptTransmit);
|
|
|
|
err = -1;
|
|
|
|
goto tx_irq_fail;
|
|
}
|
|
|
|
if (request_irq(priv->interruptReceive, gfar_receive,
|
|
0, "enet_rx", dev) < 0) {
|
|
printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
|
|
dev->name, priv->interruptReceive);
|
|
|
|
err = -1;
|
|
goto rx_irq_fail;
|
|
}
|
|
} else {
|
|
if (request_irq(priv->interruptTransmit, gfar_interrupt,
|
|
0, "gfar_interrupt", dev) < 0) {
|
|
printk(KERN_ERR "%s: Can't get IRQ %d\n",
|
|
dev->name, priv->interruptError);
|
|
|
|
err = -1;
|
|
goto err_irq_fail;
|
|
}
|
|
}
|
|
|
|
/* Set up the PHY change work queue */
|
|
INIT_WORK(&priv->tq, gfar_phy_change, dev);
|
|
|
|
init_timer(&priv->phy_info_timer);
|
|
priv->phy_info_timer.function = &gfar_phy_startup_timer;
|
|
priv->phy_info_timer.data = (unsigned long) priv->mii_info;
|
|
mod_timer(&priv->phy_info_timer, jiffies + HZ);
|
|
|
|
/* Configure the coalescing support */
|
|
if (priv->txcoalescing)
|
|
gfar_write(®s->txic,
|
|
mk_ic_value(priv->txcount, priv->txtime));
|
|
else
|
|
gfar_write(®s->txic, 0);
|
|
|
|
if (priv->rxcoalescing)
|
|
gfar_write(®s->rxic,
|
|
mk_ic_value(priv->rxcount, priv->rxtime));
|
|
else
|
|
gfar_write(®s->rxic, 0);
|
|
|
|
init_waitqueue_head(&priv->rxcleanupq);
|
|
|
|
/* Enable Rx and Tx in MACCFG1 */
|
|
tempval = gfar_read(®s->maccfg1);
|
|
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
|
|
gfar_write(®s->maccfg1, tempval);
|
|
|
|
/* Initialize DMACTRL to have WWR and WOP */
|
|
tempval = gfar_read(&priv->regs->dmactrl);
|
|
tempval |= DMACTRL_INIT_SETTINGS;
|
|
gfar_write(&priv->regs->dmactrl, tempval);
|
|
|
|
/* Clear THLT, so that the DMA starts polling now */
|
|
gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
|
|
|
|
/* Make sure we aren't stopped */
|
|
tempval = gfar_read(&priv->regs->dmactrl);
|
|
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
|
|
gfar_write(&priv->regs->dmactrl, tempval);
|
|
|
|
/* Unmask the interrupts we look for */
|
|
gfar_write(®s->imask, IMASK_DEFAULT);
|
|
|
|
return 0;
|
|
|
|
rx_irq_fail:
|
|
free_irq(priv->interruptTransmit, dev);
|
|
tx_irq_fail:
|
|
free_irq(priv->interruptError, dev);
|
|
err_irq_fail:
|
|
rx_skb_fail:
|
|
free_skb_resources(priv);
|
|
tx_skb_fail:
|
|
dma_free_coherent(NULL,
|
|
sizeof(struct txbd8)*priv->tx_ring_size
|
|
+ sizeof(struct rxbd8)*priv->rx_ring_size,
|
|
priv->tx_bd_base,
|
|
gfar_read(®s->tbase));
|
|
|
|
if (priv->mii_info->phyinfo->close)
|
|
priv->mii_info->phyinfo->close(priv->mii_info);
|
|
|
|
kfree(priv->mii_info);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Called when something needs to use the ethernet device */
|
|
/* Returns 0 for success. */
|
|
static int gfar_enet_open(struct net_device *dev)
|
|
{
|
|
int err;
|
|
|
|
/* Initialize a bunch of registers */
|
|
init_registers(dev);
|
|
|
|
gfar_set_mac_address(dev);
|
|
|
|
err = init_phy(dev);
|
|
|
|
if(err)
|
|
return err;
|
|
|
|
err = startup_gfar(dev);
|
|
|
|
netif_start_queue(dev);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* This is called by the kernel when a frame is ready for transmission. */
|
|
/* It is pointed to by the dev->hard_start_xmit function pointer */
|
|
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct txbd8 *txbdp;
|
|
|
|
/* Update transmit stats */
|
|
priv->stats.tx_bytes += skb->len;
|
|
|
|
/* Lock priv now */
|
|
spin_lock_irq(&priv->lock);
|
|
|
|
/* Point at the first free tx descriptor */
|
|
txbdp = priv->cur_tx;
|
|
|
|
/* Clear all but the WRAP status flags */
|
|
txbdp->status &= TXBD_WRAP;
|
|
|
|
/* Set buffer length and pointer */
|
|
txbdp->length = skb->len;
|
|
txbdp->bufPtr = dma_map_single(NULL, skb->data,
|
|
skb->len, DMA_TO_DEVICE);
|
|
|
|
/* Save the skb pointer so we can free it later */
|
|
priv->tx_skbuff[priv->skb_curtx] = skb;
|
|
|
|
/* Update the current skb pointer (wrapping if this was the last) */
|
|
priv->skb_curtx =
|
|
(priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
|
|
|
|
/* Flag the BD as interrupt-causing */
|
|
txbdp->status |= TXBD_INTERRUPT;
|
|
|
|
/* Flag the BD as ready to go, last in frame, and */
|
|
/* in need of CRC */
|
|
txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
/* If this was the last BD in the ring, the next one */
|
|
/* is at the beginning of the ring */
|
|
if (txbdp->status & TXBD_WRAP)
|
|
txbdp = priv->tx_bd_base;
|
|
else
|
|
txbdp++;
|
|
|
|
/* If the next BD still needs to be cleaned up, then the bds
|
|
are full. We need to tell the kernel to stop sending us stuff. */
|
|
if (txbdp == priv->dirty_tx) {
|
|
netif_stop_queue(dev);
|
|
|
|
priv->stats.tx_fifo_errors++;
|
|
}
|
|
|
|
/* Update the current txbd to the next one */
|
|
priv->cur_tx = txbdp;
|
|
|
|
/* Tell the DMA to go go go */
|
|
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
|
|
|
|
/* Unlock priv */
|
|
spin_unlock_irq(&priv->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Stops the kernel queue, and halts the controller */
|
|
static int gfar_close(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
stop_gfar(dev);
|
|
|
|
/* Shutdown the PHY */
|
|
if (priv->mii_info->phyinfo->close)
|
|
priv->mii_info->phyinfo->close(priv->mii_info);
|
|
|
|
kfree(priv->mii_info);
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* returns a net_device_stats structure pointer */
|
|
static struct net_device_stats * gfar_get_stats(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
return &(priv->stats);
|
|
}
|
|
|
|
/* Changes the mac address if the controller is not running. */
|
|
int gfar_set_mac_address(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
int i;
|
|
char tmpbuf[MAC_ADDR_LEN];
|
|
u32 tempval;
|
|
|
|
/* Now copy it into the mac registers backwards, cuz */
|
|
/* little endian is silly */
|
|
for (i = 0; i < MAC_ADDR_LEN; i++)
|
|
tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i];
|
|
|
|
gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf)));
|
|
|
|
tempval = *((u32 *) (tmpbuf + 4));
|
|
|
|
gfar_write(&priv->regs->macstnaddr2, tempval);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
int tempsize, tempval;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
int oldsize = priv->rx_buffer_size;
|
|
int frame_size = new_mtu + 18;
|
|
|
|
if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
|
|
printk(KERN_ERR "%s: Invalid MTU setting\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
tempsize =
|
|
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
|
|
INCREMENTAL_BUFFER_SIZE;
|
|
|
|
/* Only stop and start the controller if it isn't already
|
|
* stopped */
|
|
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
|
|
stop_gfar(dev);
|
|
|
|
priv->rx_buffer_size = tempsize;
|
|
|
|
dev->mtu = new_mtu;
|
|
|
|
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
|
|
gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
|
|
|
|
/* If the mtu is larger than the max size for standard
|
|
* ethernet frames (ie, a jumbo frame), then set maccfg2
|
|
* to allow huge frames, and to check the length */
|
|
tempval = gfar_read(&priv->regs->maccfg2);
|
|
|
|
if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
|
|
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
|
|
else
|
|
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
|
|
|
|
gfar_write(&priv->regs->maccfg2, tempval);
|
|
|
|
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
|
|
startup_gfar(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* gfar_timeout gets called when a packet has not been
|
|
* transmitted after a set amount of time.
|
|
* For now, assume that clearing out all the structures, and
|
|
* starting over will fix the problem. */
|
|
static void gfar_timeout(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
priv->stats.tx_errors++;
|
|
|
|
if (dev->flags & IFF_UP) {
|
|
stop_gfar(dev);
|
|
startup_gfar(dev);
|
|
}
|
|
|
|
netif_schedule(dev);
|
|
}
|
|
|
|
/* Interrupt Handler for Transmit complete */
|
|
static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = (struct net_device *) dev_id;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct txbd8 *bdp;
|
|
|
|
/* Clear IEVENT */
|
|
gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
|
|
|
|
/* Lock priv */
|
|
spin_lock(&priv->lock);
|
|
bdp = priv->dirty_tx;
|
|
while ((bdp->status & TXBD_READY) == 0) {
|
|
/* If dirty_tx and cur_tx are the same, then either the */
|
|
/* ring is empty or full now (it could only be full in the beginning, */
|
|
/* obviously). If it is empty, we are done. */
|
|
if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
|
|
break;
|
|
|
|
priv->stats.tx_packets++;
|
|
|
|
/* Deferred means some collisions occurred during transmit, */
|
|
/* but we eventually sent the packet. */
|
|
if (bdp->status & TXBD_DEF)
|
|
priv->stats.collisions++;
|
|
|
|
/* Free the sk buffer associated with this TxBD */
|
|
dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
|
|
priv->tx_skbuff[priv->skb_dirtytx] = NULL;
|
|
priv->skb_dirtytx =
|
|
(priv->skb_dirtytx +
|
|
1) & TX_RING_MOD_MASK(priv->tx_ring_size);
|
|
|
|
/* update bdp to point at next bd in the ring (wrapping if necessary) */
|
|
if (bdp->status & TXBD_WRAP)
|
|
bdp = priv->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
/* Move dirty_tx to be the next bd */
|
|
priv->dirty_tx = bdp;
|
|
|
|
/* We freed a buffer, so now we can restart transmission */
|
|
if (netif_queue_stopped(dev))
|
|
netif_wake_queue(dev);
|
|
} /* while ((bdp->status & TXBD_READY) == 0) */
|
|
|
|
/* If we are coalescing the interrupts, reset the timer */
|
|
/* Otherwise, clear it */
|
|
if (priv->txcoalescing)
|
|
gfar_write(&priv->regs->txic,
|
|
mk_ic_value(priv->txcount, priv->txtime));
|
|
else
|
|
gfar_write(&priv->regs->txic, 0);
|
|
|
|
spin_unlock(&priv->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct sk_buff *skb = NULL;
|
|
unsigned int timeout = SKB_ALLOC_TIMEOUT;
|
|
|
|
/* We have to allocate the skb, so keep trying till we succeed */
|
|
while ((!skb) && timeout--)
|
|
skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
|
|
|
|
if (skb == NULL)
|
|
return NULL;
|
|
|
|
/* We need the data buffer to be aligned properly. We will reserve
|
|
* as many bytes as needed to align the data properly
|
|
*/
|
|
skb_reserve(skb,
|
|
RXBUF_ALIGNMENT -
|
|
(((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1)));
|
|
|
|
skb->dev = dev;
|
|
|
|
bdp->bufPtr = dma_map_single(NULL, skb->data,
|
|
priv->rx_buffer_size + RXBUF_ALIGNMENT,
|
|
DMA_FROM_DEVICE);
|
|
|
|
bdp->length = 0;
|
|
|
|
/* Mark the buffer empty */
|
|
bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static inline void count_errors(unsigned short status, struct gfar_private *priv)
|
|
{
|
|
struct net_device_stats *stats = &priv->stats;
|
|
struct gfar_extra_stats *estats = &priv->extra_stats;
|
|
|
|
/* If the packet was truncated, none of the other errors
|
|
* matter */
|
|
if (status & RXBD_TRUNCATED) {
|
|
stats->rx_length_errors++;
|
|
|
|
estats->rx_trunc++;
|
|
|
|
return;
|
|
}
|
|
/* Count the errors, if there were any */
|
|
if (status & (RXBD_LARGE | RXBD_SHORT)) {
|
|
stats->rx_length_errors++;
|
|
|
|
if (status & RXBD_LARGE)
|
|
estats->rx_large++;
|
|
else
|
|
estats->rx_short++;
|
|
}
|
|
if (status & RXBD_NONOCTET) {
|
|
stats->rx_frame_errors++;
|
|
estats->rx_nonoctet++;
|
|
}
|
|
if (status & RXBD_CRCERR) {
|
|
estats->rx_crcerr++;
|
|
stats->rx_crc_errors++;
|
|
}
|
|
if (status & RXBD_OVERRUN) {
|
|
estats->rx_overrun++;
|
|
stats->rx_crc_errors++;
|
|
}
|
|
}
|
|
|
|
irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = (struct net_device *) dev_id;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
#ifdef CONFIG_GFAR_NAPI
|
|
u32 tempval;
|
|
#endif
|
|
|
|
/* Clear IEVENT, so rx interrupt isn't called again
|
|
* because of this interrupt */
|
|
gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
|
|
|
|
/* support NAPI */
|
|
#ifdef CONFIG_GFAR_NAPI
|
|
if (netif_rx_schedule_prep(dev)) {
|
|
tempval = gfar_read(&priv->regs->imask);
|
|
tempval &= IMASK_RX_DISABLED;
|
|
gfar_write(&priv->regs->imask, tempval);
|
|
|
|
__netif_rx_schedule(dev);
|
|
} else {
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
|
|
dev->name, gfar_read(&priv->regs->ievent),
|
|
gfar_read(&priv->regs->imask));
|
|
#endif
|
|
}
|
|
#else
|
|
|
|
spin_lock(&priv->lock);
|
|
gfar_clean_rx_ring(dev, priv->rx_ring_size);
|
|
|
|
/* If we are coalescing interrupts, update the timer */
|
|
/* Otherwise, clear it */
|
|
if (priv->rxcoalescing)
|
|
gfar_write(&priv->regs->rxic,
|
|
mk_ic_value(priv->rxcount, priv->rxtime));
|
|
else
|
|
gfar_write(&priv->regs->rxic, 0);
|
|
|
|
/* Just in case we need to wake the ring param changer */
|
|
priv->rxclean = 1;
|
|
|
|
spin_unlock(&priv->lock);
|
|
#endif
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/* gfar_process_frame() -- handle one incoming packet if skb
|
|
* isn't NULL. */
|
|
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
|
|
int length)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
if (skb == NULL) {
|
|
#ifdef BRIEF_GFAR_ERRORS
|
|
printk(KERN_WARNING "%s: Missing skb!!.\n",
|
|
dev->name);
|
|
#endif
|
|
priv->stats.rx_dropped++;
|
|
priv->extra_stats.rx_skbmissing++;
|
|
} else {
|
|
/* Prep the skb for the packet */
|
|
skb_put(skb, length);
|
|
|
|
/* Tell the skb what kind of packet this is */
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
/* Send the packet up the stack */
|
|
if (RECEIVE(skb) == NET_RX_DROP) {
|
|
priv->extra_stats.kernel_dropped++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
|
|
* until the budget/quota has been reached. Returns the number
|
|
* of frames handled
|
|
*/
|
|
static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
|
|
{
|
|
struct rxbd8 *bdp;
|
|
struct sk_buff *skb;
|
|
u16 pkt_len;
|
|
int howmany = 0;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
/* Get the first full descriptor */
|
|
bdp = priv->cur_rx;
|
|
|
|
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
|
|
skb = priv->rx_skbuff[priv->skb_currx];
|
|
|
|
if (!(bdp->status &
|
|
(RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
|
|
| RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
|
|
/* Increment the number of packets */
|
|
priv->stats.rx_packets++;
|
|
howmany++;
|
|
|
|
/* Remove the FCS from the packet length */
|
|
pkt_len = bdp->length - 4;
|
|
|
|
gfar_process_frame(dev, skb, pkt_len);
|
|
|
|
priv->stats.rx_bytes += pkt_len;
|
|
} else {
|
|
count_errors(bdp->status, priv);
|
|
|
|
if (skb)
|
|
dev_kfree_skb_any(skb);
|
|
|
|
priv->rx_skbuff[priv->skb_currx] = NULL;
|
|
}
|
|
|
|
dev->last_rx = jiffies;
|
|
|
|
/* Clear the status flags for this buffer */
|
|
bdp->status &= ~RXBD_STATS;
|
|
|
|
/* Add another skb for the future */
|
|
skb = gfar_new_skb(dev, bdp);
|
|
priv->rx_skbuff[priv->skb_currx] = skb;
|
|
|
|
/* Update to the next pointer */
|
|
if (bdp->status & RXBD_WRAP)
|
|
bdp = priv->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
/* update to point at the next skb */
|
|
priv->skb_currx =
|
|
(priv->skb_currx +
|
|
1) & RX_RING_MOD_MASK(priv->rx_ring_size);
|
|
|
|
}
|
|
|
|
/* Update the current rxbd pointer to be the next one */
|
|
priv->cur_rx = bdp;
|
|
|
|
/* If no packets have arrived since the
|
|
* last one we processed, clear the IEVENT RX and
|
|
* BSY bits so that another interrupt won't be
|
|
* generated when we set IMASK */
|
|
if (bdp->status & RXBD_EMPTY)
|
|
gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
|
|
|
|
return howmany;
|
|
}
|
|
|
|
#ifdef CONFIG_GFAR_NAPI
|
|
static int gfar_poll(struct net_device *dev, int *budget)
|
|
{
|
|
int howmany;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
int rx_work_limit = *budget;
|
|
|
|
if (rx_work_limit > dev->quota)
|
|
rx_work_limit = dev->quota;
|
|
|
|
howmany = gfar_clean_rx_ring(dev, rx_work_limit);
|
|
|
|
dev->quota -= howmany;
|
|
rx_work_limit -= howmany;
|
|
*budget -= howmany;
|
|
|
|
if (rx_work_limit >= 0) {
|
|
netif_rx_complete(dev);
|
|
|
|
/* Clear the halt bit in RSTAT */
|
|
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
|
|
|
|
gfar_write(&priv->regs->imask, IMASK_DEFAULT);
|
|
|
|
/* If we are coalescing interrupts, update the timer */
|
|
/* Otherwise, clear it */
|
|
if (priv->rxcoalescing)
|
|
gfar_write(&priv->regs->rxic,
|
|
mk_ic_value(priv->rxcount, priv->rxtime));
|
|
else
|
|
gfar_write(&priv->regs->rxic, 0);
|
|
|
|
/* Signal to the ring size changer that it's safe to go */
|
|
priv->rxclean = 1;
|
|
}
|
|
|
|
return (rx_work_limit < 0) ? 1 : 0;
|
|
}
|
|
#endif
|
|
|
|
/* The interrupt handler for devices with one interrupt */
|
|
static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
/* Save ievent for future reference */
|
|
u32 events = gfar_read(&priv->regs->ievent);
|
|
|
|
/* Clear IEVENT */
|
|
gfar_write(&priv->regs->ievent, events);
|
|
|
|
/* Check for reception */
|
|
if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
|
|
gfar_receive(irq, dev_id, regs);
|
|
|
|
/* Check for transmit completion */
|
|
if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
|
|
gfar_transmit(irq, dev_id, regs);
|
|
|
|
/* Update error statistics */
|
|
if (events & IEVENT_TXE) {
|
|
priv->stats.tx_errors++;
|
|
|
|
if (events & IEVENT_LC)
|
|
priv->stats.tx_window_errors++;
|
|
if (events & IEVENT_CRL)
|
|
priv->stats.tx_aborted_errors++;
|
|
if (events & IEVENT_XFUN) {
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_WARNING "%s: tx underrun. dropped packet\n",
|
|
dev->name);
|
|
#endif
|
|
priv->stats.tx_dropped++;
|
|
priv->extra_stats.tx_underrun++;
|
|
|
|
/* Reactivate the Tx Queues */
|
|
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
|
|
}
|
|
}
|
|
if (events & IEVENT_BSY) {
|
|
priv->stats.rx_errors++;
|
|
priv->extra_stats.rx_bsy++;
|
|
|
|
gfar_receive(irq, dev_id, regs);
|
|
|
|
#ifndef CONFIG_GFAR_NAPI
|
|
/* Clear the halt bit in RSTAT */
|
|
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
|
|
#endif
|
|
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name,
|
|
gfar_read(&priv->regs->rstat));
|
|
#endif
|
|
}
|
|
if (events & IEVENT_BABR) {
|
|
priv->stats.rx_errors++;
|
|
priv->extra_stats.rx_babr++;
|
|
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: babbling error\n", dev->name);
|
|
#endif
|
|
}
|
|
if (events & IEVENT_EBERR) {
|
|
priv->extra_stats.eberr++;
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: EBERR\n", dev->name);
|
|
#endif
|
|
}
|
|
if (events & IEVENT_RXC) {
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: control frame\n", dev->name);
|
|
#endif
|
|
}
|
|
|
|
if (events & IEVENT_BABT) {
|
|
priv->extra_stats.tx_babt++;
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: babt error\n", dev->name);
|
|
#endif
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = (struct net_device *) dev_id;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
/* Clear the interrupt */
|
|
mii_clear_phy_interrupt(priv->mii_info);
|
|
|
|
/* Disable PHY interrupts */
|
|
mii_configure_phy_interrupt(priv->mii_info,
|
|
MII_INTERRUPT_DISABLED);
|
|
|
|
/* Schedule the phy change */
|
|
schedule_work(&priv->tq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Scheduled by the phy_interrupt/timer to handle PHY changes */
|
|
static void gfar_phy_change(void *data)
|
|
{
|
|
struct net_device *dev = (struct net_device *) data;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
int result = 0;
|
|
|
|
/* Delay to give the PHY a chance to change the
|
|
* register state */
|
|
msleep(1);
|
|
|
|
/* Update the link, speed, duplex */
|
|
result = priv->mii_info->phyinfo->read_status(priv->mii_info);
|
|
|
|
/* Adjust the known status as long as the link
|
|
* isn't still coming up */
|
|
if((0 == result) || (priv->mii_info->link == 0))
|
|
adjust_link(dev);
|
|
|
|
/* Reenable interrupts, if needed */
|
|
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR)
|
|
mii_configure_phy_interrupt(priv->mii_info,
|
|
MII_INTERRUPT_ENABLED);
|
|
}
|
|
|
|
/* Called every so often on systems that don't interrupt
|
|
* the core for PHY changes */
|
|
static void gfar_phy_timer(unsigned long data)
|
|
{
|
|
struct net_device *dev = (struct net_device *) data;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
schedule_work(&priv->tq);
|
|
|
|
mod_timer(&priv->phy_info_timer, jiffies +
|
|
GFAR_PHY_CHANGE_TIME * HZ);
|
|
}
|
|
|
|
/* Keep trying aneg for some time
|
|
* If, after GFAR_AN_TIMEOUT seconds, it has not
|
|
* finished, we switch to forced.
|
|
* Either way, once the process has completed, we either
|
|
* request the interrupt, or switch the timer over to
|
|
* using gfar_phy_timer to check status */
|
|
static void gfar_phy_startup_timer(unsigned long data)
|
|
{
|
|
int result;
|
|
static int secondary = GFAR_AN_TIMEOUT;
|
|
struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data;
|
|
struct gfar_private *priv = netdev_priv(mii_info->dev);
|
|
|
|
/* Configure the Auto-negotiation */
|
|
result = mii_info->phyinfo->config_aneg(mii_info);
|
|
|
|
/* If autonegotiation failed to start, and
|
|
* we haven't timed out, reset the timer, and return */
|
|
if (result && secondary--) {
|
|
mod_timer(&priv->phy_info_timer, jiffies + HZ);
|
|
return;
|
|
} else if (result) {
|
|
/* Couldn't start autonegotiation.
|
|
* Try switching to forced */
|
|
mii_info->autoneg = 0;
|
|
result = mii_info->phyinfo->config_aneg(mii_info);
|
|
|
|
/* Forcing failed! Give up */
|
|
if(result) {
|
|
printk(KERN_ERR "%s: Forcing failed!\n",
|
|
mii_info->dev->name);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Kill the timer so it can be restarted */
|
|
del_timer_sync(&priv->phy_info_timer);
|
|
|
|
/* Grab the PHY interrupt, if necessary/possible */
|
|
if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
|
|
if (request_irq(priv->einfo->interruptPHY,
|
|
phy_interrupt,
|
|
SA_SHIRQ,
|
|
"phy_interrupt",
|
|
mii_info->dev) < 0) {
|
|
printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n",
|
|
mii_info->dev->name,
|
|
priv->einfo->interruptPHY);
|
|
} else {
|
|
mii_configure_phy_interrupt(priv->mii_info,
|
|
MII_INTERRUPT_ENABLED);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Start the timer again, this time in order to
|
|
* handle a change in status */
|
|
init_timer(&priv->phy_info_timer);
|
|
priv->phy_info_timer.function = &gfar_phy_timer;
|
|
priv->phy_info_timer.data = (unsigned long) mii_info->dev;
|
|
mod_timer(&priv->phy_info_timer, jiffies +
|
|
GFAR_PHY_CHANGE_TIME * HZ);
|
|
}
|
|
|
|
/* Called every time the controller might need to be made
|
|
* aware of new link state. The PHY code conveys this
|
|
* information through variables in the priv structure, and this
|
|
* function converts those variables into the appropriate
|
|
* register values, and can bring down the device if needed.
|
|
*/
|
|
static void adjust_link(struct net_device *dev)
|
|
{
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct gfar *regs = priv->regs;
|
|
u32 tempval;
|
|
struct gfar_mii_info *mii_info = priv->mii_info;
|
|
|
|
if (mii_info->link) {
|
|
/* Now we make sure that we can be in full duplex mode.
|
|
* If not, we operate in half-duplex mode. */
|
|
if (mii_info->duplex != priv->oldduplex) {
|
|
if (!(mii_info->duplex)) {
|
|
tempval = gfar_read(®s->maccfg2);
|
|
tempval &= ~(MACCFG2_FULL_DUPLEX);
|
|
gfar_write(®s->maccfg2, tempval);
|
|
|
|
printk(KERN_INFO "%s: Half Duplex\n",
|
|
dev->name);
|
|
} else {
|
|
tempval = gfar_read(®s->maccfg2);
|
|
tempval |= MACCFG2_FULL_DUPLEX;
|
|
gfar_write(®s->maccfg2, tempval);
|
|
|
|
printk(KERN_INFO "%s: Full Duplex\n",
|
|
dev->name);
|
|
}
|
|
|
|
priv->oldduplex = mii_info->duplex;
|
|
}
|
|
|
|
if (mii_info->speed != priv->oldspeed) {
|
|
switch (mii_info->speed) {
|
|
case 1000:
|
|
tempval = gfar_read(®s->maccfg2);
|
|
tempval =
|
|
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
|
|
gfar_write(®s->maccfg2, tempval);
|
|
break;
|
|
case 100:
|
|
case 10:
|
|
tempval = gfar_read(®s->maccfg2);
|
|
tempval =
|
|
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
|
|
gfar_write(®s->maccfg2, tempval);
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING
|
|
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
|
|
dev->name, mii_info->speed);
|
|
break;
|
|
}
|
|
|
|
printk(KERN_INFO "%s: Speed %dBT\n", dev->name,
|
|
mii_info->speed);
|
|
|
|
priv->oldspeed = mii_info->speed;
|
|
}
|
|
|
|
if (!priv->oldlink) {
|
|
printk(KERN_INFO "%s: Link is up\n", dev->name);
|
|
priv->oldlink = 1;
|
|
netif_carrier_on(dev);
|
|
netif_schedule(dev);
|
|
}
|
|
} else {
|
|
if (priv->oldlink) {
|
|
printk(KERN_INFO "%s: Link is down\n", dev->name);
|
|
priv->oldlink = 0;
|
|
priv->oldspeed = 0;
|
|
priv->oldduplex = -1;
|
|
netif_carrier_off(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Update the hash table based on the current list of multicast
|
|
* addresses we subscribe to. Also, change the promiscuity of
|
|
* the device based on the flags (this function is called
|
|
* whenever dev->flags is changed */
|
|
static void gfar_set_multi(struct net_device *dev)
|
|
{
|
|
struct dev_mc_list *mc_ptr;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct gfar *regs = priv->regs;
|
|
u32 tempval;
|
|
|
|
if(dev->flags & IFF_PROMISC) {
|
|
printk(KERN_INFO "%s: Entering promiscuous mode.\n",
|
|
dev->name);
|
|
/* Set RCTRL to PROM */
|
|
tempval = gfar_read(®s->rctrl);
|
|
tempval |= RCTRL_PROM;
|
|
gfar_write(®s->rctrl, tempval);
|
|
} else {
|
|
/* Set RCTRL to not PROM */
|
|
tempval = gfar_read(®s->rctrl);
|
|
tempval &= ~(RCTRL_PROM);
|
|
gfar_write(®s->rctrl, tempval);
|
|
}
|
|
|
|
if(dev->flags & IFF_ALLMULTI) {
|
|
/* Set the hash to rx all multicast frames */
|
|
gfar_write(®s->gaddr0, 0xffffffff);
|
|
gfar_write(®s->gaddr1, 0xffffffff);
|
|
gfar_write(®s->gaddr2, 0xffffffff);
|
|
gfar_write(®s->gaddr3, 0xffffffff);
|
|
gfar_write(®s->gaddr4, 0xffffffff);
|
|
gfar_write(®s->gaddr5, 0xffffffff);
|
|
gfar_write(®s->gaddr6, 0xffffffff);
|
|
gfar_write(®s->gaddr7, 0xffffffff);
|
|
} else {
|
|
/* zero out the hash */
|
|
gfar_write(®s->gaddr0, 0x0);
|
|
gfar_write(®s->gaddr1, 0x0);
|
|
gfar_write(®s->gaddr2, 0x0);
|
|
gfar_write(®s->gaddr3, 0x0);
|
|
gfar_write(®s->gaddr4, 0x0);
|
|
gfar_write(®s->gaddr5, 0x0);
|
|
gfar_write(®s->gaddr6, 0x0);
|
|
gfar_write(®s->gaddr7, 0x0);
|
|
|
|
if(dev->mc_count == 0)
|
|
return;
|
|
|
|
/* Parse the list, and set the appropriate bits */
|
|
for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
|
|
gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Set the appropriate hash bit for the given addr */
|
|
/* The algorithm works like so:
|
|
* 1) Take the Destination Address (ie the multicast address), and
|
|
* do a CRC on it (little endian), and reverse the bits of the
|
|
* result.
|
|
* 2) Use the 8 most significant bits as a hash into a 256-entry
|
|
* table. The table is controlled through 8 32-bit registers:
|
|
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
|
|
* gaddr7. This means that the 3 most significant bits in the
|
|
* hash index which gaddr register to use, and the 5 other bits
|
|
* indicate which bit (assuming an IBM numbering scheme, which
|
|
* for PowerPC (tm) is usually the case) in the register holds
|
|
* the entry. */
|
|
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
|
|
{
|
|
u32 tempval;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
struct gfar *regs = priv->regs;
|
|
u32 *hash = ®s->gaddr0;
|
|
u32 result = ether_crc(MAC_ADDR_LEN, addr);
|
|
u8 whichreg = ((result >> 29) & 0x7);
|
|
u8 whichbit = ((result >> 24) & 0x1f);
|
|
u32 value = (1 << (31-whichbit));
|
|
|
|
tempval = gfar_read(&hash[whichreg]);
|
|
tempval |= value;
|
|
gfar_write(&hash[whichreg], tempval);
|
|
|
|
return;
|
|
}
|
|
|
|
/* GFAR error interrupt handler */
|
|
static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct gfar_private *priv = netdev_priv(dev);
|
|
|
|
/* Save ievent for future reference */
|
|
u32 events = gfar_read(&priv->regs->ievent);
|
|
|
|
/* Clear IEVENT */
|
|
gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
|
|
|
|
/* Hmm... */
|
|
#if defined (BRIEF_GFAR_ERRORS) || defined (VERBOSE_GFAR_ERRORS)
|
|
printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
|
|
dev->name, events, gfar_read(&priv->regs->imask));
|
|
#endif
|
|
|
|
/* Update the error counters */
|
|
if (events & IEVENT_TXE) {
|
|
priv->stats.tx_errors++;
|
|
|
|
if (events & IEVENT_LC)
|
|
priv->stats.tx_window_errors++;
|
|
if (events & IEVENT_CRL)
|
|
priv->stats.tx_aborted_errors++;
|
|
if (events & IEVENT_XFUN) {
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
|
|
dev->name);
|
|
#endif
|
|
priv->stats.tx_dropped++;
|
|
priv->extra_stats.tx_underrun++;
|
|
|
|
/* Reactivate the Tx Queues */
|
|
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
|
|
}
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
|
|
#endif
|
|
}
|
|
if (events & IEVENT_BSY) {
|
|
priv->stats.rx_errors++;
|
|
priv->extra_stats.rx_bsy++;
|
|
|
|
gfar_receive(irq, dev_id, regs);
|
|
|
|
#ifndef CONFIG_GFAR_NAPI
|
|
/* Clear the halt bit in RSTAT */
|
|
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
|
|
#endif
|
|
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name,
|
|
gfar_read(&priv->regs->rstat));
|
|
#endif
|
|
}
|
|
if (events & IEVENT_BABR) {
|
|
priv->stats.rx_errors++;
|
|
priv->extra_stats.rx_babr++;
|
|
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: babbling error\n", dev->name);
|
|
#endif
|
|
}
|
|
if (events & IEVENT_EBERR) {
|
|
priv->extra_stats.eberr++;
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: EBERR\n", dev->name);
|
|
#endif
|
|
}
|
|
if (events & IEVENT_RXC)
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: control frame\n", dev->name);
|
|
#endif
|
|
|
|
if (events & IEVENT_BABT) {
|
|
priv->extra_stats.tx_babt++;
|
|
#ifdef VERBOSE_GFAR_ERRORS
|
|
printk(KERN_DEBUG "%s: babt error\n", dev->name);
|
|
#endif
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Structure for a device driver */
|
|
static struct device_driver gfar_driver = {
|
|
.name = "fsl-gianfar",
|
|
.bus = &platform_bus_type,
|
|
.probe = gfar_probe,
|
|
.remove = gfar_remove,
|
|
};
|
|
|
|
static int __init gfar_init(void)
|
|
{
|
|
return driver_register(&gfar_driver);
|
|
}
|
|
|
|
static void __exit gfar_exit(void)
|
|
{
|
|
driver_unregister(&gfar_driver);
|
|
}
|
|
|
|
module_init(gfar_init);
|
|
module_exit(gfar_exit);
|
|
|