mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-06 09:29:41 +00:00
68b4449d79
This update contains: o A new sparse on-disk inode record format to allow small extents to be used for inode allocation when free space is fragmented. o DAX support. This includes minor changes to the DAX core code to fix problems with lock ordering and bufferhead mapping abuse. o transaction commit interface cleanup o removal of various unnecessary XFS specific type definitions o cleanup and optimisation of freelist preparation before allocation o various minor cleanups o bug fixes for - transaction reservation leaks - incorrect inode logging in unwritten extent conversion - mmap lock vs freeze ordering - remote symlink mishandling - attribute fork removal issues. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQIcBAABAgAGBQJVkhI0AAoJEK3oKUf0dfod45MQAJCOEkNduBdlfPvTCMPjj/7z vzcfDdzgKwhpPTMXSDRvw4zDPt3C2FLMBJqxtPpC4sKGKG/8G0kFvw8bDtBag1m9 ru5nI5LaQ6LC5RcU40zxBx1s/L8qYvyfUlxeoOT5lSwN9c6ENGOCQ3bUk4pSKaee pWDplag9LbfQomW2GHtxd8agMUZEYx0R1vgfv88V8xgPka8CvQo81XUgkb4PcDZV ugR+wDUsvwMS01aLYBmRFkMXuExNuCJVwtvdTJS+ZWGHzyTpulFoANUW6QT24gAM eP4yRXN4bv9vXrXpg8JkF25DHsfw4HBwNEL17ZvoB8t3oJp1/NYaH8ce1jS0+I8i NCtaO+qUqDSTGQZKgmeDPwCciQp54ra9LEdmIJFxpZxiBof9g/tIYEFgRklyFLwR GZU6Io6VpBa1oTGlC4D1cmG6bdcnhMB9MGVVCbqnB5mRRDKCmVgCyJwusd1pi7Re G4O6KkFt21O7+fP13VsjP57KoaJzsIgZ/+H3Ff/fJOJ33AKYTRCmwi8+IMi2n5JI zz+V0AIBQZAx9dlVyENnxufh9eJYcnwta0lUSLCCo91fZKxbo3ktK1kVHNZP5EGs IMFM1Ka6hibY20rWlR3GH0dfyP5/yNcvNgTMYPKjj9SVjTar1aSfF2rGpkqYXYyH D4FICbtDgtOc2ClfpI2k =3x+W -----END PGP SIGNATURE----- Merge tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs Pul xfs updates from Dave Chinner: "There's a couple of small API changes to the core DAX code which required small changes to the ext2 and ext4 code bases, but otherwise everything is within the XFS codebase. This update contains: - A new sparse on-disk inode record format to allow small extents to be used for inode allocation when free space is fragmented. - DAX support. This includes minor changes to the DAX core code to fix problems with lock ordering and bufferhead mapping abuse. - transaction commit interface cleanup - removal of various unnecessary XFS specific type definitions - cleanup and optimisation of freelist preparation before allocation - various minor cleanups - bug fixes for - transaction reservation leaks - incorrect inode logging in unwritten extent conversion - mmap lock vs freeze ordering - remote symlink mishandling - attribute fork removal issues" * tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits) xfs: don't truncate attribute extents if no extents exist xfs: clean up XFS_MIN_FREELIST macros xfs: sanitise error handling in xfs_alloc_fix_freelist xfs: factor out free space extent length check xfs: xfs_alloc_fix_freelist() can use incore perag structures xfs: remove xfs_caddr_t xfs: use void pointers in log validation helpers xfs: return a void pointer from xfs_buf_offset xfs: remove inst_t xfs: remove __psint_t and __psunsigned_t xfs: fix remote symlinks on V5/CRC filesystems xfs: fix xfs_log_done interface xfs: saner xfs_trans_commit interface xfs: remove the flags argument to xfs_trans_cancel xfs: pass a boolean flag to xfs_trans_free_items xfs: switch remaining xfs_trans_dup users to xfs_trans_roll xfs: check min blks for random debug mode sparse allocations xfs: fix sparse inodes 32-bit compile failure xfs: add initial DAX support xfs: add DAX IO path support ...
2007 lines
54 KiB
C
2007 lines
54 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include <linux/gfp.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/writeback.h>
|
|
|
|
void
|
|
xfs_count_page_state(
|
|
struct page *page,
|
|
int *delalloc,
|
|
int *unwritten)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
|
|
*delalloc = *unwritten = 0;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_unwritten(bh))
|
|
(*unwritten) = 1;
|
|
else if (buffer_delay(bh))
|
|
(*delalloc) = 1;
|
|
} while ((bh = bh->b_this_page) != head);
|
|
}
|
|
|
|
STATIC struct block_device *
|
|
xfs_find_bdev_for_inode(
|
|
struct inode *inode)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
return mp->m_rtdev_targp->bt_bdev;
|
|
else
|
|
return mp->m_ddev_targp->bt_bdev;
|
|
}
|
|
|
|
/*
|
|
* We're now finished for good with this ioend structure.
|
|
* Update the page state via the associated buffer_heads,
|
|
* release holds on the inode and bio, and finally free
|
|
* up memory. Do not use the ioend after this.
|
|
*/
|
|
STATIC void
|
|
xfs_destroy_ioend(
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
struct buffer_head *bh, *next;
|
|
|
|
for (bh = ioend->io_buffer_head; bh; bh = next) {
|
|
next = bh->b_private;
|
|
bh->b_end_io(bh, !ioend->io_error);
|
|
}
|
|
|
|
mempool_free(ioend, xfs_ioend_pool);
|
|
}
|
|
|
|
/*
|
|
* Fast and loose check if this write could update the on-disk inode size.
|
|
*/
|
|
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
|
|
{
|
|
return ioend->io_offset + ioend->io_size >
|
|
XFS_I(ioend->io_inode)->i_d.di_size;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_setfilesize_trans_alloc(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
|
|
|
|
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
|
|
if (error) {
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
ioend->io_append_trans = tp;
|
|
|
|
/*
|
|
* We may pass freeze protection with a transaction. So tell lockdep
|
|
* we released it.
|
|
*/
|
|
rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
|
|
1, _THIS_IP_);
|
|
/*
|
|
* We hand off the transaction to the completion thread now, so
|
|
* clear the flag here.
|
|
*/
|
|
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update on-disk file size now that data has been written to disk.
|
|
*/
|
|
STATIC int
|
|
xfs_setfilesize(
|
|
struct xfs_inode *ip,
|
|
struct xfs_trans *tp,
|
|
xfs_off_t offset,
|
|
size_t size)
|
|
{
|
|
xfs_fsize_t isize;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
isize = xfs_new_eof(ip, offset + size);
|
|
if (!isize) {
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_cancel(tp);
|
|
return 0;
|
|
}
|
|
|
|
trace_xfs_setfilesize(ip, offset, size);
|
|
|
|
ip->i_d.di_size = isize;
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_setfilesize_ioend(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
struct xfs_trans *tp = ioend->io_append_trans;
|
|
|
|
/*
|
|
* The transaction may have been allocated in the I/O submission thread,
|
|
* thus we need to mark ourselves as being in a transaction manually.
|
|
* Similarly for freeze protection.
|
|
*/
|
|
current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
|
|
0, 1, _THIS_IP_);
|
|
|
|
return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
|
|
}
|
|
|
|
/*
|
|
* Schedule IO completion handling on the final put of an ioend.
|
|
*
|
|
* If there is no work to do we might as well call it a day and free the
|
|
* ioend right now.
|
|
*/
|
|
STATIC void
|
|
xfs_finish_ioend(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
if (atomic_dec_and_test(&ioend->io_remaining)) {
|
|
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
|
|
|
|
if (ioend->io_type == XFS_IO_UNWRITTEN)
|
|
queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
|
|
else if (ioend->io_append_trans)
|
|
queue_work(mp->m_data_workqueue, &ioend->io_work);
|
|
else
|
|
xfs_destroy_ioend(ioend);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* IO write completion.
|
|
*/
|
|
STATIC void
|
|
xfs_end_io(
|
|
struct work_struct *work)
|
|
{
|
|
xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
int error = 0;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
ioend->io_error = -EIO;
|
|
goto done;
|
|
}
|
|
if (ioend->io_error)
|
|
goto done;
|
|
|
|
/*
|
|
* For unwritten extents we need to issue transactions to convert a
|
|
* range to normal written extens after the data I/O has finished.
|
|
*/
|
|
if (ioend->io_type == XFS_IO_UNWRITTEN) {
|
|
error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
|
|
ioend->io_size);
|
|
} else if (ioend->io_append_trans) {
|
|
error = xfs_setfilesize_ioend(ioend);
|
|
} else {
|
|
ASSERT(!xfs_ioend_is_append(ioend));
|
|
}
|
|
|
|
done:
|
|
if (error)
|
|
ioend->io_error = error;
|
|
xfs_destroy_ioend(ioend);
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialise an IO completion structure.
|
|
* We need to track unwritten extent write completion here initially.
|
|
* We'll need to extend this for updating the ondisk inode size later
|
|
* (vs. incore size).
|
|
*/
|
|
STATIC xfs_ioend_t *
|
|
xfs_alloc_ioend(
|
|
struct inode *inode,
|
|
unsigned int type)
|
|
{
|
|
xfs_ioend_t *ioend;
|
|
|
|
ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
|
|
|
|
/*
|
|
* Set the count to 1 initially, which will prevent an I/O
|
|
* completion callback from happening before we have started
|
|
* all the I/O from calling the completion routine too early.
|
|
*/
|
|
atomic_set(&ioend->io_remaining, 1);
|
|
ioend->io_error = 0;
|
|
ioend->io_list = NULL;
|
|
ioend->io_type = type;
|
|
ioend->io_inode = inode;
|
|
ioend->io_buffer_head = NULL;
|
|
ioend->io_buffer_tail = NULL;
|
|
ioend->io_offset = 0;
|
|
ioend->io_size = 0;
|
|
ioend->io_append_trans = NULL;
|
|
|
|
INIT_WORK(&ioend->io_work, xfs_end_io);
|
|
return ioend;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_map_blocks(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
struct xfs_bmbt_irec *imap,
|
|
int type,
|
|
int nonblocking)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
ssize_t count = 1 << inode->i_blkbits;
|
|
xfs_fileoff_t offset_fsb, end_fsb;
|
|
int error = 0;
|
|
int bmapi_flags = XFS_BMAPI_ENTIRE;
|
|
int nimaps = 1;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
if (type == XFS_IO_UNWRITTEN)
|
|
bmapi_flags |= XFS_BMAPI_IGSTATE;
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
|
|
if (nonblocking)
|
|
return -EAGAIN;
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
}
|
|
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
|
(ip->i_df.if_flags & XFS_IFEXTENTS));
|
|
ASSERT(offset <= mp->m_super->s_maxbytes);
|
|
|
|
if (offset + count > mp->m_super->s_maxbytes)
|
|
count = mp->m_super->s_maxbytes - offset;
|
|
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
|
imap, &nimaps, bmapi_flags);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (type == XFS_IO_DELALLOC &&
|
|
(!nimaps || isnullstartblock(imap->br_startblock))) {
|
|
error = xfs_iomap_write_allocate(ip, offset, imap);
|
|
if (!error)
|
|
trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
|
|
return error;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (type == XFS_IO_UNWRITTEN) {
|
|
ASSERT(nimaps);
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
}
|
|
#endif
|
|
if (nimaps)
|
|
trace_xfs_map_blocks_found(ip, offset, count, type, imap);
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_imap_valid(
|
|
struct inode *inode,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
offset >>= inode->i_blkbits;
|
|
|
|
return offset >= imap->br_startoff &&
|
|
offset < imap->br_startoff + imap->br_blockcount;
|
|
}
|
|
|
|
/*
|
|
* BIO completion handler for buffered IO.
|
|
*/
|
|
STATIC void
|
|
xfs_end_bio(
|
|
struct bio *bio,
|
|
int error)
|
|
{
|
|
xfs_ioend_t *ioend = bio->bi_private;
|
|
|
|
ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
|
|
|
|
/* Toss bio and pass work off to an xfsdatad thread */
|
|
bio->bi_private = NULL;
|
|
bio->bi_end_io = NULL;
|
|
bio_put(bio);
|
|
|
|
xfs_finish_ioend(ioend);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_submit_ioend_bio(
|
|
struct writeback_control *wbc,
|
|
xfs_ioend_t *ioend,
|
|
struct bio *bio)
|
|
{
|
|
atomic_inc(&ioend->io_remaining);
|
|
bio->bi_private = ioend;
|
|
bio->bi_end_io = xfs_end_bio;
|
|
submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
|
|
}
|
|
|
|
STATIC struct bio *
|
|
xfs_alloc_ioend_bio(
|
|
struct buffer_head *bh)
|
|
{
|
|
int nvecs = bio_get_nr_vecs(bh->b_bdev);
|
|
struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
|
|
|
|
ASSERT(bio->bi_private == NULL);
|
|
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
|
|
bio->bi_bdev = bh->b_bdev;
|
|
return bio;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_start_buffer_writeback(
|
|
struct buffer_head *bh)
|
|
{
|
|
ASSERT(buffer_mapped(bh));
|
|
ASSERT(buffer_locked(bh));
|
|
ASSERT(!buffer_delay(bh));
|
|
ASSERT(!buffer_unwritten(bh));
|
|
|
|
mark_buffer_async_write(bh);
|
|
set_buffer_uptodate(bh);
|
|
clear_buffer_dirty(bh);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_start_page_writeback(
|
|
struct page *page,
|
|
int clear_dirty,
|
|
int buffers)
|
|
{
|
|
ASSERT(PageLocked(page));
|
|
ASSERT(!PageWriteback(page));
|
|
|
|
/*
|
|
* if the page was not fully cleaned, we need to ensure that the higher
|
|
* layers come back to it correctly. That means we need to keep the page
|
|
* dirty, and for WB_SYNC_ALL writeback we need to ensure the
|
|
* PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
|
|
* write this page in this writeback sweep will be made.
|
|
*/
|
|
if (clear_dirty) {
|
|
clear_page_dirty_for_io(page);
|
|
set_page_writeback(page);
|
|
} else
|
|
set_page_writeback_keepwrite(page);
|
|
|
|
unlock_page(page);
|
|
|
|
/* If no buffers on the page are to be written, finish it here */
|
|
if (!buffers)
|
|
end_page_writeback(page);
|
|
}
|
|
|
|
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
|
|
{
|
|
return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
|
|
}
|
|
|
|
/*
|
|
* Submit all of the bios for all of the ioends we have saved up, covering the
|
|
* initial writepage page and also any probed pages.
|
|
*
|
|
* Because we may have multiple ioends spanning a page, we need to start
|
|
* writeback on all the buffers before we submit them for I/O. If we mark the
|
|
* buffers as we got, then we can end up with a page that only has buffers
|
|
* marked async write and I/O complete on can occur before we mark the other
|
|
* buffers async write.
|
|
*
|
|
* The end result of this is that we trip a bug in end_page_writeback() because
|
|
* we call it twice for the one page as the code in end_buffer_async_write()
|
|
* assumes that all buffers on the page are started at the same time.
|
|
*
|
|
* The fix is two passes across the ioend list - one to start writeback on the
|
|
* buffer_heads, and then submit them for I/O on the second pass.
|
|
*
|
|
* If @fail is non-zero, it means that we have a situation where some part of
|
|
* the submission process has failed after we have marked paged for writeback
|
|
* and unlocked them. In this situation, we need to fail the ioend chain rather
|
|
* than submit it to IO. This typically only happens on a filesystem shutdown.
|
|
*/
|
|
STATIC void
|
|
xfs_submit_ioend(
|
|
struct writeback_control *wbc,
|
|
xfs_ioend_t *ioend,
|
|
int fail)
|
|
{
|
|
xfs_ioend_t *head = ioend;
|
|
xfs_ioend_t *next;
|
|
struct buffer_head *bh;
|
|
struct bio *bio;
|
|
sector_t lastblock = 0;
|
|
|
|
/* Pass 1 - start writeback */
|
|
do {
|
|
next = ioend->io_list;
|
|
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
|
|
xfs_start_buffer_writeback(bh);
|
|
} while ((ioend = next) != NULL);
|
|
|
|
/* Pass 2 - submit I/O */
|
|
ioend = head;
|
|
do {
|
|
next = ioend->io_list;
|
|
bio = NULL;
|
|
|
|
/*
|
|
* If we are failing the IO now, just mark the ioend with an
|
|
* error and finish it. This will run IO completion immediately
|
|
* as there is only one reference to the ioend at this point in
|
|
* time.
|
|
*/
|
|
if (fail) {
|
|
ioend->io_error = fail;
|
|
xfs_finish_ioend(ioend);
|
|
continue;
|
|
}
|
|
|
|
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
|
|
|
|
if (!bio) {
|
|
retry:
|
|
bio = xfs_alloc_ioend_bio(bh);
|
|
} else if (bh->b_blocknr != lastblock + 1) {
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
goto retry;
|
|
}
|
|
|
|
if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
goto retry;
|
|
}
|
|
|
|
lastblock = bh->b_blocknr;
|
|
}
|
|
if (bio)
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
xfs_finish_ioend(ioend);
|
|
} while ((ioend = next) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Cancel submission of all buffer_heads so far in this endio.
|
|
* Toss the endio too. Only ever called for the initial page
|
|
* in a writepage request, so only ever one page.
|
|
*/
|
|
STATIC void
|
|
xfs_cancel_ioend(
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
xfs_ioend_t *next;
|
|
struct buffer_head *bh, *next_bh;
|
|
|
|
do {
|
|
next = ioend->io_list;
|
|
bh = ioend->io_buffer_head;
|
|
do {
|
|
next_bh = bh->b_private;
|
|
clear_buffer_async_write(bh);
|
|
/*
|
|
* The unwritten flag is cleared when added to the
|
|
* ioend. We're not submitting for I/O so mark the
|
|
* buffer unwritten again for next time around.
|
|
*/
|
|
if (ioend->io_type == XFS_IO_UNWRITTEN)
|
|
set_buffer_unwritten(bh);
|
|
unlock_buffer(bh);
|
|
} while ((bh = next_bh) != NULL);
|
|
|
|
mempool_free(ioend, xfs_ioend_pool);
|
|
} while ((ioend = next) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Test to see if we've been building up a completion structure for
|
|
* earlier buffers -- if so, we try to append to this ioend if we
|
|
* can, otherwise we finish off any current ioend and start another.
|
|
* Return true if we've finished the given ioend.
|
|
*/
|
|
STATIC void
|
|
xfs_add_to_ioend(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
xfs_off_t offset,
|
|
unsigned int type,
|
|
xfs_ioend_t **result,
|
|
int need_ioend)
|
|
{
|
|
xfs_ioend_t *ioend = *result;
|
|
|
|
if (!ioend || need_ioend || type != ioend->io_type) {
|
|
xfs_ioend_t *previous = *result;
|
|
|
|
ioend = xfs_alloc_ioend(inode, type);
|
|
ioend->io_offset = offset;
|
|
ioend->io_buffer_head = bh;
|
|
ioend->io_buffer_tail = bh;
|
|
if (previous)
|
|
previous->io_list = ioend;
|
|
*result = ioend;
|
|
} else {
|
|
ioend->io_buffer_tail->b_private = bh;
|
|
ioend->io_buffer_tail = bh;
|
|
}
|
|
|
|
bh->b_private = NULL;
|
|
ioend->io_size += bh->b_size;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_map_buffer(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
sector_t bn;
|
|
struct xfs_mount *m = XFS_I(inode)->i_mount;
|
|
xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
|
|
xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
|
|
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
|
|
bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
|
|
((offset - iomap_offset) >> inode->i_blkbits);
|
|
|
|
ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
|
|
|
|
bh->b_blocknr = bn;
|
|
set_buffer_mapped(bh);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_map_at_offset(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
|
|
xfs_map_buffer(inode, bh, imap, offset);
|
|
set_buffer_mapped(bh);
|
|
clear_buffer_delay(bh);
|
|
clear_buffer_unwritten(bh);
|
|
}
|
|
|
|
/*
|
|
* Test if a given page contains at least one buffer of a given @type.
|
|
* If @check_all_buffers is true, then we walk all the buffers in the page to
|
|
* try to find one of the type passed in. If it is not set, then the caller only
|
|
* needs to check the first buffer on the page for a match.
|
|
*/
|
|
STATIC bool
|
|
xfs_check_page_type(
|
|
struct page *page,
|
|
unsigned int type,
|
|
bool check_all_buffers)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct buffer_head *head;
|
|
|
|
if (PageWriteback(page))
|
|
return false;
|
|
if (!page->mapping)
|
|
return false;
|
|
if (!page_has_buffers(page))
|
|
return false;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_unwritten(bh)) {
|
|
if (type == XFS_IO_UNWRITTEN)
|
|
return true;
|
|
} else if (buffer_delay(bh)) {
|
|
if (type == XFS_IO_DELALLOC)
|
|
return true;
|
|
} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
|
|
if (type == XFS_IO_OVERWRITE)
|
|
return true;
|
|
}
|
|
|
|
/* If we are only checking the first buffer, we are done now. */
|
|
if (!check_all_buffers)
|
|
break;
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Allocate & map buffers for page given the extent map. Write it out.
|
|
* except for the original page of a writepage, this is called on
|
|
* delalloc/unwritten pages only, for the original page it is possible
|
|
* that the page has no mapping at all.
|
|
*/
|
|
STATIC int
|
|
xfs_convert_page(
|
|
struct inode *inode,
|
|
struct page *page,
|
|
loff_t tindex,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_ioend_t **ioendp,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
xfs_off_t end_offset;
|
|
unsigned long p_offset;
|
|
unsigned int type;
|
|
int len, page_dirty;
|
|
int count = 0, done = 0, uptodate = 1;
|
|
xfs_off_t offset = page_offset(page);
|
|
|
|
if (page->index != tindex)
|
|
goto fail;
|
|
if (!trylock_page(page))
|
|
goto fail;
|
|
if (PageWriteback(page))
|
|
goto fail_unlock_page;
|
|
if (page->mapping != inode->i_mapping)
|
|
goto fail_unlock_page;
|
|
if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
|
|
goto fail_unlock_page;
|
|
|
|
/*
|
|
* page_dirty is initially a count of buffers on the page before
|
|
* EOF and is decremented as we move each into a cleanable state.
|
|
*
|
|
* Derivation:
|
|
*
|
|
* End offset is the highest offset that this page should represent.
|
|
* If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
|
|
* will evaluate non-zero and be less than PAGE_CACHE_SIZE and
|
|
* hence give us the correct page_dirty count. On any other page,
|
|
* it will be zero and in that case we need page_dirty to be the
|
|
* count of buffers on the page.
|
|
*/
|
|
end_offset = min_t(unsigned long long,
|
|
(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
|
|
i_size_read(inode));
|
|
|
|
/*
|
|
* If the current map does not span the entire page we are about to try
|
|
* to write, then give up. The only way we can write a page that spans
|
|
* multiple mappings in a single writeback iteration is via the
|
|
* xfs_vm_writepage() function. Data integrity writeback requires the
|
|
* entire page to be written in a single attempt, otherwise the part of
|
|
* the page we don't write here doesn't get written as part of the data
|
|
* integrity sync.
|
|
*
|
|
* For normal writeback, we also don't attempt to write partial pages
|
|
* here as it simply means that write_cache_pages() will see it under
|
|
* writeback and ignore the page until some point in the future, at
|
|
* which time this will be the only page in the file that needs
|
|
* writeback. Hence for more optimal IO patterns, we should always
|
|
* avoid partial page writeback due to multiple mappings on a page here.
|
|
*/
|
|
if (!xfs_imap_valid(inode, imap, end_offset))
|
|
goto fail_unlock_page;
|
|
|
|
len = 1 << inode->i_blkbits;
|
|
p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
|
|
PAGE_CACHE_SIZE);
|
|
p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
|
|
page_dirty = p_offset / len;
|
|
|
|
/*
|
|
* The moment we find a buffer that doesn't match our current type
|
|
* specification or can't be written, abort the loop and start
|
|
* writeback. As per the above xfs_imap_valid() check, only
|
|
* xfs_vm_writepage() can handle partial page writeback fully - we are
|
|
* limited here to the buffers that are contiguous with the current
|
|
* ioend, and hence a buffer we can't write breaks that contiguity and
|
|
* we have to defer the rest of the IO to xfs_vm_writepage().
|
|
*/
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (offset >= end_offset)
|
|
break;
|
|
if (!buffer_uptodate(bh))
|
|
uptodate = 0;
|
|
if (!(PageUptodate(page) || buffer_uptodate(bh))) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
if (buffer_unwritten(bh) || buffer_delay(bh) ||
|
|
buffer_mapped(bh)) {
|
|
if (buffer_unwritten(bh))
|
|
type = XFS_IO_UNWRITTEN;
|
|
else if (buffer_delay(bh))
|
|
type = XFS_IO_DELALLOC;
|
|
else
|
|
type = XFS_IO_OVERWRITE;
|
|
|
|
/*
|
|
* imap should always be valid because of the above
|
|
* partial page end_offset check on the imap.
|
|
*/
|
|
ASSERT(xfs_imap_valid(inode, imap, offset));
|
|
|
|
lock_buffer(bh);
|
|
if (type != XFS_IO_OVERWRITE)
|
|
xfs_map_at_offset(inode, bh, imap, offset);
|
|
xfs_add_to_ioend(inode, bh, offset, type,
|
|
ioendp, done);
|
|
|
|
page_dirty--;
|
|
count++;
|
|
} else {
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while (offset += len, (bh = bh->b_this_page) != head);
|
|
|
|
if (uptodate && bh == head)
|
|
SetPageUptodate(page);
|
|
|
|
if (count) {
|
|
if (--wbc->nr_to_write <= 0 &&
|
|
wbc->sync_mode == WB_SYNC_NONE)
|
|
done = 1;
|
|
}
|
|
xfs_start_page_writeback(page, !page_dirty, count);
|
|
|
|
return done;
|
|
fail_unlock_page:
|
|
unlock_page(page);
|
|
fail:
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Convert & write out a cluster of pages in the same extent as defined
|
|
* by mp and following the start page.
|
|
*/
|
|
STATIC void
|
|
xfs_cluster_write(
|
|
struct inode *inode,
|
|
pgoff_t tindex,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_ioend_t **ioendp,
|
|
struct writeback_control *wbc,
|
|
pgoff_t tlast)
|
|
{
|
|
struct pagevec pvec;
|
|
int done = 0, i;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
while (!done && tindex <= tlast) {
|
|
unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
|
|
|
|
if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
|
|
break;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
done = xfs_convert_page(inode, pvec.pages[i], tindex++,
|
|
imap, ioendp, wbc);
|
|
if (done)
|
|
break;
|
|
}
|
|
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_invalidatepage(
|
|
struct page *page,
|
|
unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
trace_xfs_invalidatepage(page->mapping->host, page, offset,
|
|
length);
|
|
block_invalidatepage(page, offset, length);
|
|
}
|
|
|
|
/*
|
|
* If the page has delalloc buffers on it, we need to punch them out before we
|
|
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
|
|
* inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
|
|
* is done on that same region - the delalloc extent is returned when none is
|
|
* supposed to be there.
|
|
*
|
|
* We prevent this by truncating away the delalloc regions on the page before
|
|
* invalidating it. Because they are delalloc, we can do this without needing a
|
|
* transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
|
|
* truncation without a transaction as there is no space left for block
|
|
* reservation (typically why we see a ENOSPC in writeback).
|
|
*
|
|
* This is not a performance critical path, so for now just do the punching a
|
|
* buffer head at a time.
|
|
*/
|
|
STATIC void
|
|
xfs_aops_discard_page(
|
|
struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct buffer_head *bh, *head;
|
|
loff_t offset = page_offset(page);
|
|
|
|
if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
|
|
goto out_invalidate;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
goto out_invalidate;
|
|
|
|
xfs_alert(ip->i_mount,
|
|
"page discard on page %p, inode 0x%llx, offset %llu.",
|
|
page, ip->i_ino, offset);
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
int error;
|
|
xfs_fileoff_t start_fsb;
|
|
|
|
if (!buffer_delay(bh))
|
|
goto next_buffer;
|
|
|
|
start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
|
|
if (error) {
|
|
/* something screwed, just bail */
|
|
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_alert(ip->i_mount,
|
|
"page discard unable to remove delalloc mapping.");
|
|
}
|
|
break;
|
|
}
|
|
next_buffer:
|
|
offset += 1 << inode->i_blkbits;
|
|
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
out_invalidate:
|
|
xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write out a dirty page.
|
|
*
|
|
* For delalloc space on the page we need to allocate space and flush it.
|
|
* For unwritten space on the page we need to start the conversion to
|
|
* regular allocated space.
|
|
* For any other dirty buffer heads on the page we should flush them.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_writepage(
|
|
struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct buffer_head *bh, *head;
|
|
struct xfs_bmbt_irec imap;
|
|
xfs_ioend_t *ioend = NULL, *iohead = NULL;
|
|
loff_t offset;
|
|
unsigned int type;
|
|
__uint64_t end_offset;
|
|
pgoff_t end_index, last_index;
|
|
ssize_t len;
|
|
int err, imap_valid = 0, uptodate = 1;
|
|
int count = 0;
|
|
int nonblocking = 0;
|
|
|
|
trace_xfs_writepage(inode, page, 0, 0);
|
|
|
|
ASSERT(page_has_buffers(page));
|
|
|
|
/*
|
|
* Refuse to write the page out if we are called from reclaim context.
|
|
*
|
|
* This avoids stack overflows when called from deeply used stacks in
|
|
* random callers for direct reclaim or memcg reclaim. We explicitly
|
|
* allow reclaim from kswapd as the stack usage there is relatively low.
|
|
*
|
|
* This should never happen except in the case of a VM regression so
|
|
* warn about it.
|
|
*/
|
|
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
|
|
PF_MEMALLOC))
|
|
goto redirty;
|
|
|
|
/*
|
|
* Given that we do not allow direct reclaim to call us, we should
|
|
* never be called while in a filesystem transaction.
|
|
*/
|
|
if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
|
|
goto redirty;
|
|
|
|
/* Is this page beyond the end of the file? */
|
|
offset = i_size_read(inode);
|
|
end_index = offset >> PAGE_CACHE_SHIFT;
|
|
last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
/*
|
|
* The page index is less than the end_index, adjust the end_offset
|
|
* to the highest offset that this page should represent.
|
|
* -----------------------------------------------------
|
|
* | file mapping | <EOF> |
|
|
* -----------------------------------------------------
|
|
* | Page ... | Page N-2 | Page N-1 | Page N | |
|
|
* ^--------------------------------^----------|--------
|
|
* | desired writeback range | see else |
|
|
* ---------------------------------^------------------|
|
|
*/
|
|
if (page->index < end_index)
|
|
end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
|
|
else {
|
|
/*
|
|
* Check whether the page to write out is beyond or straddles
|
|
* i_size or not.
|
|
* -------------------------------------------------------
|
|
* | file mapping | <EOF> |
|
|
* -------------------------------------------------------
|
|
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
|
|
* ^--------------------------------^-----------|---------
|
|
* | | Straddles |
|
|
* ---------------------------------^-----------|--------|
|
|
*/
|
|
unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
|
|
|
|
/*
|
|
* Skip the page if it is fully outside i_size, e.g. due to a
|
|
* truncate operation that is in progress. We must redirty the
|
|
* page so that reclaim stops reclaiming it. Otherwise
|
|
* xfs_vm_releasepage() is called on it and gets confused.
|
|
*
|
|
* Note that the end_index is unsigned long, it would overflow
|
|
* if the given offset is greater than 16TB on 32-bit system
|
|
* and if we do check the page is fully outside i_size or not
|
|
* via "if (page->index >= end_index + 1)" as "end_index + 1"
|
|
* will be evaluated to 0. Hence this page will be redirtied
|
|
* and be written out repeatedly which would result in an
|
|
* infinite loop, the user program that perform this operation
|
|
* will hang. Instead, we can verify this situation by checking
|
|
* if the page to write is totally beyond the i_size or if it's
|
|
* offset is just equal to the EOF.
|
|
*/
|
|
if (page->index > end_index ||
|
|
(page->index == end_index && offset_into_page == 0))
|
|
goto redirty;
|
|
|
|
/*
|
|
* The page straddles i_size. It must be zeroed out on each
|
|
* and every writepage invocation because it may be mmapped.
|
|
* "A file is mapped in multiples of the page size. For a file
|
|
* that is not a multiple of the page size, the remaining
|
|
* memory is zeroed when mapped, and writes to that region are
|
|
* not written out to the file."
|
|
*/
|
|
zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
|
|
|
|
/* Adjust the end_offset to the end of file */
|
|
end_offset = offset;
|
|
}
|
|
|
|
len = 1 << inode->i_blkbits;
|
|
|
|
bh = head = page_buffers(page);
|
|
offset = page_offset(page);
|
|
type = XFS_IO_OVERWRITE;
|
|
|
|
if (wbc->sync_mode == WB_SYNC_NONE)
|
|
nonblocking = 1;
|
|
|
|
do {
|
|
int new_ioend = 0;
|
|
|
|
if (offset >= end_offset)
|
|
break;
|
|
if (!buffer_uptodate(bh))
|
|
uptodate = 0;
|
|
|
|
/*
|
|
* set_page_dirty dirties all buffers in a page, independent
|
|
* of their state. The dirty state however is entirely
|
|
* meaningless for holes (!mapped && uptodate), so skip
|
|
* buffers covering holes here.
|
|
*/
|
|
if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
|
|
imap_valid = 0;
|
|
continue;
|
|
}
|
|
|
|
if (buffer_unwritten(bh)) {
|
|
if (type != XFS_IO_UNWRITTEN) {
|
|
type = XFS_IO_UNWRITTEN;
|
|
imap_valid = 0;
|
|
}
|
|
} else if (buffer_delay(bh)) {
|
|
if (type != XFS_IO_DELALLOC) {
|
|
type = XFS_IO_DELALLOC;
|
|
imap_valid = 0;
|
|
}
|
|
} else if (buffer_uptodate(bh)) {
|
|
if (type != XFS_IO_OVERWRITE) {
|
|
type = XFS_IO_OVERWRITE;
|
|
imap_valid = 0;
|
|
}
|
|
} else {
|
|
if (PageUptodate(page))
|
|
ASSERT(buffer_mapped(bh));
|
|
/*
|
|
* This buffer is not uptodate and will not be
|
|
* written to disk. Ensure that we will put any
|
|
* subsequent writeable buffers into a new
|
|
* ioend.
|
|
*/
|
|
imap_valid = 0;
|
|
continue;
|
|
}
|
|
|
|
if (imap_valid)
|
|
imap_valid = xfs_imap_valid(inode, &imap, offset);
|
|
if (!imap_valid) {
|
|
/*
|
|
* If we didn't have a valid mapping then we need to
|
|
* put the new mapping into a separate ioend structure.
|
|
* This ensures non-contiguous extents always have
|
|
* separate ioends, which is particularly important
|
|
* for unwritten extent conversion at I/O completion
|
|
* time.
|
|
*/
|
|
new_ioend = 1;
|
|
err = xfs_map_blocks(inode, offset, &imap, type,
|
|
nonblocking);
|
|
if (err)
|
|
goto error;
|
|
imap_valid = xfs_imap_valid(inode, &imap, offset);
|
|
}
|
|
if (imap_valid) {
|
|
lock_buffer(bh);
|
|
if (type != XFS_IO_OVERWRITE)
|
|
xfs_map_at_offset(inode, bh, &imap, offset);
|
|
xfs_add_to_ioend(inode, bh, offset, type, &ioend,
|
|
new_ioend);
|
|
count++;
|
|
}
|
|
|
|
if (!iohead)
|
|
iohead = ioend;
|
|
|
|
} while (offset += len, ((bh = bh->b_this_page) != head));
|
|
|
|
if (uptodate && bh == head)
|
|
SetPageUptodate(page);
|
|
|
|
xfs_start_page_writeback(page, 1, count);
|
|
|
|
/* if there is no IO to be submitted for this page, we are done */
|
|
if (!ioend)
|
|
return 0;
|
|
|
|
ASSERT(iohead);
|
|
|
|
/*
|
|
* Any errors from this point onwards need tobe reported through the IO
|
|
* completion path as we have marked the initial page as under writeback
|
|
* and unlocked it.
|
|
*/
|
|
if (imap_valid) {
|
|
xfs_off_t end_index;
|
|
|
|
end_index = imap.br_startoff + imap.br_blockcount;
|
|
|
|
/* to bytes */
|
|
end_index <<= inode->i_blkbits;
|
|
|
|
/* to pages */
|
|
end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
/* check against file size */
|
|
if (end_index > last_index)
|
|
end_index = last_index;
|
|
|
|
xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
|
|
wbc, end_index);
|
|
}
|
|
|
|
|
|
/*
|
|
* Reserve log space if we might write beyond the on-disk inode size.
|
|
*/
|
|
err = 0;
|
|
if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
|
|
err = xfs_setfilesize_trans_alloc(ioend);
|
|
|
|
xfs_submit_ioend(wbc, iohead, err);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (iohead)
|
|
xfs_cancel_ioend(iohead);
|
|
|
|
if (err == -EAGAIN)
|
|
goto redirty;
|
|
|
|
xfs_aops_discard_page(page);
|
|
ClearPageUptodate(page);
|
|
unlock_page(page);
|
|
return err;
|
|
|
|
redirty:
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_writepages(
|
|
struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
|
|
return generic_writepages(mapping, wbc);
|
|
}
|
|
|
|
/*
|
|
* Called to move a page into cleanable state - and from there
|
|
* to be released. The page should already be clean. We always
|
|
* have buffer heads in this call.
|
|
*
|
|
* Returns 1 if the page is ok to release, 0 otherwise.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_releasepage(
|
|
struct page *page,
|
|
gfp_t gfp_mask)
|
|
{
|
|
int delalloc, unwritten;
|
|
|
|
trace_xfs_releasepage(page->mapping->host, page, 0, 0);
|
|
|
|
xfs_count_page_state(page, &delalloc, &unwritten);
|
|
|
|
if (WARN_ON_ONCE(delalloc))
|
|
return 0;
|
|
if (WARN_ON_ONCE(unwritten))
|
|
return 0;
|
|
|
|
return try_to_free_buffers(page);
|
|
}
|
|
|
|
/*
|
|
* When we map a DIO buffer, we may need to attach an ioend that describes the
|
|
* type of write IO we are doing. This passes to the completion function the
|
|
* operations it needs to perform. If the mapping is for an overwrite wholly
|
|
* within the EOF then we don't need an ioend and so we don't allocate one.
|
|
* This avoids the unnecessary overhead of allocating and freeing ioends for
|
|
* workloads that don't require transactions on IO completion.
|
|
*
|
|
* If we get multiple mappings in a single IO, we might be mapping different
|
|
* types. But because the direct IO can only have a single private pointer, we
|
|
* need to ensure that:
|
|
*
|
|
* a) i) the ioend spans the entire region of unwritten mappings; or
|
|
* ii) the ioend spans all the mappings that cross or are beyond EOF; and
|
|
* b) if it contains unwritten extents, it is *permanently* marked as such
|
|
*
|
|
* We could do this by chaining ioends like buffered IO does, but we only
|
|
* actually get one IO completion callback from the direct IO, and that spans
|
|
* the entire IO regardless of how many mappings and IOs are needed to complete
|
|
* the DIO. There is only going to be one reference to the ioend and its life
|
|
* cycle is constrained by the DIO completion code. hence we don't need
|
|
* reference counting here.
|
|
*/
|
|
static void
|
|
xfs_map_direct(
|
|
struct inode *inode,
|
|
struct buffer_head *bh_result,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
struct xfs_ioend *ioend;
|
|
xfs_off_t size = bh_result->b_size;
|
|
int type;
|
|
|
|
if (ISUNWRITTEN(imap))
|
|
type = XFS_IO_UNWRITTEN;
|
|
else
|
|
type = XFS_IO_OVERWRITE;
|
|
|
|
trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
|
|
|
|
if (bh_result->b_private) {
|
|
ioend = bh_result->b_private;
|
|
ASSERT(ioend->io_size > 0);
|
|
ASSERT(offset >= ioend->io_offset);
|
|
if (offset + size > ioend->io_offset + ioend->io_size)
|
|
ioend->io_size = offset - ioend->io_offset + size;
|
|
|
|
if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
|
|
ioend->io_type = XFS_IO_UNWRITTEN;
|
|
|
|
trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
|
|
ioend->io_size, ioend->io_type,
|
|
imap);
|
|
} else if (type == XFS_IO_UNWRITTEN ||
|
|
offset + size > i_size_read(inode)) {
|
|
ioend = xfs_alloc_ioend(inode, type);
|
|
ioend->io_offset = offset;
|
|
ioend->io_size = size;
|
|
|
|
bh_result->b_private = ioend;
|
|
set_buffer_defer_completion(bh_result);
|
|
|
|
trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
|
|
imap);
|
|
} else {
|
|
trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
|
|
imap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is O_DIRECT or the mpage code calling tell them how large the mapping
|
|
* is, so that we can avoid repeated get_blocks calls.
|
|
*
|
|
* If the mapping spans EOF, then we have to break the mapping up as the mapping
|
|
* for blocks beyond EOF must be marked new so that sub block regions can be
|
|
* correctly zeroed. We can't do this for mappings within EOF unless the mapping
|
|
* was just allocated or is unwritten, otherwise the callers would overwrite
|
|
* existing data with zeros. Hence we have to split the mapping into a range up
|
|
* to and including EOF, and a second mapping for beyond EOF.
|
|
*/
|
|
static void
|
|
xfs_map_trim_size(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset,
|
|
ssize_t size)
|
|
{
|
|
xfs_off_t mapping_size;
|
|
|
|
mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
|
|
mapping_size <<= inode->i_blkbits;
|
|
|
|
ASSERT(mapping_size > 0);
|
|
if (mapping_size > size)
|
|
mapping_size = size;
|
|
if (offset < i_size_read(inode) &&
|
|
offset + mapping_size >= i_size_read(inode)) {
|
|
/* limit mapping to block that spans EOF */
|
|
mapping_size = roundup_64(i_size_read(inode) - offset,
|
|
1 << inode->i_blkbits);
|
|
}
|
|
if (mapping_size > LONG_MAX)
|
|
mapping_size = LONG_MAX;
|
|
|
|
bh_result->b_size = mapping_size;
|
|
}
|
|
|
|
STATIC int
|
|
__xfs_get_blocks(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create,
|
|
bool direct)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb, end_fsb;
|
|
int error = 0;
|
|
int lockmode = 0;
|
|
struct xfs_bmbt_irec imap;
|
|
int nimaps = 1;
|
|
xfs_off_t offset;
|
|
ssize_t size;
|
|
int new = 0;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
offset = (xfs_off_t)iblock << inode->i_blkbits;
|
|
ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
|
|
size = bh_result->b_size;
|
|
|
|
if (!create && direct && offset >= i_size_read(inode))
|
|
return 0;
|
|
|
|
/*
|
|
* Direct I/O is usually done on preallocated files, so try getting
|
|
* a block mapping without an exclusive lock first. For buffered
|
|
* writes we already have the exclusive iolock anyway, so avoiding
|
|
* a lock roundtrip here by taking the ilock exclusive from the
|
|
* beginning is a useful micro optimization.
|
|
*/
|
|
if (create && !direct) {
|
|
lockmode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lockmode);
|
|
} else {
|
|
lockmode = xfs_ilock_data_map_shared(ip);
|
|
}
|
|
|
|
ASSERT(offset <= mp->m_super->s_maxbytes);
|
|
if (offset + size > mp->m_super->s_maxbytes)
|
|
size = mp->m_super->s_maxbytes - offset;
|
|
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
|
&imap, &nimaps, XFS_BMAPI_ENTIRE);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
if (create &&
|
|
(!nimaps ||
|
|
(imap.br_startblock == HOLESTARTBLOCK ||
|
|
imap.br_startblock == DELAYSTARTBLOCK))) {
|
|
if (direct || xfs_get_extsz_hint(ip)) {
|
|
/*
|
|
* Drop the ilock in preparation for starting the block
|
|
* allocation transaction. It will be retaken
|
|
* exclusively inside xfs_iomap_write_direct for the
|
|
* actual allocation.
|
|
*/
|
|
xfs_iunlock(ip, lockmode);
|
|
error = xfs_iomap_write_direct(ip, offset, size,
|
|
&imap, nimaps);
|
|
if (error)
|
|
return error;
|
|
new = 1;
|
|
|
|
} else {
|
|
/*
|
|
* Delalloc reservations do not require a transaction,
|
|
* we can go on without dropping the lock here. If we
|
|
* are allocating a new delalloc block, make sure that
|
|
* we set the new flag so that we mark the buffer new so
|
|
* that we know that it is newly allocated if the write
|
|
* fails.
|
|
*/
|
|
if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
|
|
new = 1;
|
|
error = xfs_iomap_write_delay(ip, offset, size, &imap);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
xfs_iunlock(ip, lockmode);
|
|
}
|
|
trace_xfs_get_blocks_alloc(ip, offset, size,
|
|
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
|
: XFS_IO_DELALLOC, &imap);
|
|
} else if (nimaps) {
|
|
trace_xfs_get_blocks_found(ip, offset, size,
|
|
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
|
: XFS_IO_OVERWRITE, &imap);
|
|
xfs_iunlock(ip, lockmode);
|
|
} else {
|
|
trace_xfs_get_blocks_notfound(ip, offset, size);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* trim mapping down to size requested */
|
|
if (direct || size > (1 << inode->i_blkbits))
|
|
xfs_map_trim_size(inode, iblock, bh_result,
|
|
&imap, offset, size);
|
|
|
|
/*
|
|
* For unwritten extents do not report a disk address in the buffered
|
|
* read case (treat as if we're reading into a hole).
|
|
*/
|
|
if (imap.br_startblock != HOLESTARTBLOCK &&
|
|
imap.br_startblock != DELAYSTARTBLOCK &&
|
|
(create || !ISUNWRITTEN(&imap))) {
|
|
xfs_map_buffer(inode, bh_result, &imap, offset);
|
|
if (ISUNWRITTEN(&imap))
|
|
set_buffer_unwritten(bh_result);
|
|
/* direct IO needs special help */
|
|
if (create && direct)
|
|
xfs_map_direct(inode, bh_result, &imap, offset);
|
|
}
|
|
|
|
/*
|
|
* If this is a realtime file, data may be on a different device.
|
|
* to that pointed to from the buffer_head b_bdev currently.
|
|
*/
|
|
bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
|
|
|
|
/*
|
|
* If we previously allocated a block out beyond eof and we are now
|
|
* coming back to use it then we will need to flag it as new even if it
|
|
* has a disk address.
|
|
*
|
|
* With sub-block writes into unwritten extents we also need to mark
|
|
* the buffer as new so that the unwritten parts of the buffer gets
|
|
* correctly zeroed.
|
|
*/
|
|
if (create &&
|
|
((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
|
|
(offset >= i_size_read(inode)) ||
|
|
(new || ISUNWRITTEN(&imap))))
|
|
set_buffer_new(bh_result);
|
|
|
|
if (imap.br_startblock == DELAYSTARTBLOCK) {
|
|
BUG_ON(direct);
|
|
if (create) {
|
|
set_buffer_uptodate(bh_result);
|
|
set_buffer_mapped(bh_result);
|
|
set_buffer_delay(bh_result);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_get_blocks(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create)
|
|
{
|
|
return __xfs_get_blocks(inode, iblock, bh_result, create, false);
|
|
}
|
|
|
|
int
|
|
xfs_get_blocks_direct(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create)
|
|
{
|
|
return __xfs_get_blocks(inode, iblock, bh_result, create, true);
|
|
}
|
|
|
|
static void
|
|
__xfs_end_io_direct_write(
|
|
struct inode *inode,
|
|
struct xfs_ioend *ioend,
|
|
loff_t offset,
|
|
ssize_t size)
|
|
{
|
|
struct xfs_mount *mp = XFS_I(inode)->i_mount;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
|
|
goto out_end_io;
|
|
|
|
/*
|
|
* dio completion end_io functions are only called on writes if more
|
|
* than 0 bytes was written.
|
|
*/
|
|
ASSERT(size > 0);
|
|
|
|
/*
|
|
* The ioend only maps whole blocks, while the IO may be sector aligned.
|
|
* Hence the ioend offset/size may not match the IO offset/size exactly.
|
|
* Because we don't map overwrites within EOF into the ioend, the offset
|
|
* may not match, but only if the endio spans EOF. Either way, write
|
|
* the IO sizes into the ioend so that completion processing does the
|
|
* right thing.
|
|
*/
|
|
ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
|
|
ioend->io_size = size;
|
|
ioend->io_offset = offset;
|
|
|
|
/*
|
|
* The ioend tells us whether we are doing unwritten extent conversion
|
|
* or an append transaction that updates the on-disk file size. These
|
|
* cases are the only cases where we should *potentially* be needing
|
|
* to update the VFS inode size.
|
|
*
|
|
* We need to update the in-core inode size here so that we don't end up
|
|
* with the on-disk inode size being outside the in-core inode size. We
|
|
* have no other method of updating EOF for AIO, so always do it here
|
|
* if necessary.
|
|
*
|
|
* We need to lock the test/set EOF update as we can be racing with
|
|
* other IO completions here to update the EOF. Failing to serialise
|
|
* here can result in EOF moving backwards and Bad Things Happen when
|
|
* that occurs.
|
|
*/
|
|
spin_lock(&XFS_I(inode)->i_flags_lock);
|
|
if (offset + size > i_size_read(inode))
|
|
i_size_write(inode, offset + size);
|
|
spin_unlock(&XFS_I(inode)->i_flags_lock);
|
|
|
|
/*
|
|
* If we are doing an append IO that needs to update the EOF on disk,
|
|
* do the transaction reserve now so we can use common end io
|
|
* processing. Stashing the error (if there is one) in the ioend will
|
|
* result in the ioend processing passing on the error if it is
|
|
* possible as we can't return it from here.
|
|
*/
|
|
if (ioend->io_type == XFS_IO_OVERWRITE)
|
|
ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
|
|
|
|
out_end_io:
|
|
xfs_end_io(&ioend->io_work);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Complete a direct I/O write request.
|
|
*
|
|
* The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
|
|
* If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
|
|
* wholly within the EOF and so there is nothing for us to do. Note that in this
|
|
* case the completion can be called in interrupt context, whereas if we have an
|
|
* ioend we will always be called in task context (i.e. from a workqueue).
|
|
*/
|
|
STATIC void
|
|
xfs_end_io_direct_write(
|
|
struct kiocb *iocb,
|
|
loff_t offset,
|
|
ssize_t size,
|
|
void *private)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct xfs_ioend *ioend = private;
|
|
|
|
trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
|
|
ioend ? ioend->io_type : 0, NULL);
|
|
|
|
if (!ioend) {
|
|
ASSERT(offset + size <= i_size_read(inode));
|
|
return;
|
|
}
|
|
|
|
__xfs_end_io_direct_write(inode, ioend, offset, size);
|
|
}
|
|
|
|
/*
|
|
* For DAX we need a mapping buffer callback for unwritten extent conversion
|
|
* when page faults allocate blocks and then zero them. Note that in this
|
|
* case the mapping indicated by the ioend may extend beyond EOF. We most
|
|
* definitely do not want to extend EOF here, so we trim back the ioend size to
|
|
* EOF.
|
|
*/
|
|
#ifdef CONFIG_FS_DAX
|
|
void
|
|
xfs_end_io_dax_write(
|
|
struct buffer_head *bh,
|
|
int uptodate)
|
|
{
|
|
struct xfs_ioend *ioend = bh->b_private;
|
|
struct inode *inode = ioend->io_inode;
|
|
ssize_t size = ioend->io_size;
|
|
|
|
ASSERT(IS_DAX(ioend->io_inode));
|
|
|
|
/* if there was an error zeroing, then don't convert it */
|
|
if (!uptodate)
|
|
ioend->io_error = -EIO;
|
|
|
|
/*
|
|
* Trim update to EOF, so we don't extend EOF during unwritten extent
|
|
* conversion of partial EOF blocks.
|
|
*/
|
|
spin_lock(&XFS_I(inode)->i_flags_lock);
|
|
if (ioend->io_offset + size > i_size_read(inode))
|
|
size = i_size_read(inode) - ioend->io_offset;
|
|
spin_unlock(&XFS_I(inode)->i_flags_lock);
|
|
|
|
__xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
|
|
|
|
}
|
|
#else
|
|
void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
|
|
#endif
|
|
|
|
static inline ssize_t
|
|
xfs_vm_do_dio(
|
|
struct inode *inode,
|
|
struct kiocb *iocb,
|
|
struct iov_iter *iter,
|
|
loff_t offset,
|
|
void (*endio)(struct kiocb *iocb,
|
|
loff_t offset,
|
|
ssize_t size,
|
|
void *private),
|
|
int flags)
|
|
{
|
|
struct block_device *bdev;
|
|
|
|
if (IS_DAX(inode))
|
|
return dax_do_io(iocb, inode, iter, offset,
|
|
xfs_get_blocks_direct, endio, 0);
|
|
|
|
bdev = xfs_find_bdev_for_inode(inode);
|
|
return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
|
|
xfs_get_blocks_direct, endio, NULL, flags);
|
|
}
|
|
|
|
STATIC ssize_t
|
|
xfs_vm_direct_IO(
|
|
struct kiocb *iocb,
|
|
struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
struct inode *inode = iocb->ki_filp->f_mapping->host;
|
|
|
|
if (iov_iter_rw(iter) == WRITE)
|
|
return xfs_vm_do_dio(inode, iocb, iter, offset,
|
|
xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
|
|
return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Punch out the delalloc blocks we have already allocated.
|
|
*
|
|
* Don't bother with xfs_setattr given that nothing can have made it to disk yet
|
|
* as the page is still locked at this point.
|
|
*/
|
|
STATIC void
|
|
xfs_vm_kill_delalloc_range(
|
|
struct inode *inode,
|
|
loff_t start,
|
|
loff_t end)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
xfs_fileoff_t start_fsb;
|
|
xfs_fileoff_t end_fsb;
|
|
int error;
|
|
|
|
start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
|
|
end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
|
|
if (end_fsb <= start_fsb)
|
|
return;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
|
|
end_fsb - start_fsb);
|
|
if (error) {
|
|
/* something screwed, just bail */
|
|
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_alert(ip->i_mount,
|
|
"xfs_vm_write_failed: unable to clean up ino %lld",
|
|
ip->i_ino);
|
|
}
|
|
}
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_write_failed(
|
|
struct inode *inode,
|
|
struct page *page,
|
|
loff_t pos,
|
|
unsigned len)
|
|
{
|
|
loff_t block_offset;
|
|
loff_t block_start;
|
|
loff_t block_end;
|
|
loff_t from = pos & (PAGE_CACHE_SIZE - 1);
|
|
loff_t to = from + len;
|
|
struct buffer_head *bh, *head;
|
|
|
|
/*
|
|
* The request pos offset might be 32 or 64 bit, this is all fine
|
|
* on 64-bit platform. However, for 64-bit pos request on 32-bit
|
|
* platform, the high 32-bit will be masked off if we evaluate the
|
|
* block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
|
|
* 0xfffff000 as an unsigned long, hence the result is incorrect
|
|
* which could cause the following ASSERT failed in most cases.
|
|
* In order to avoid this, we can evaluate the block_offset of the
|
|
* start of the page by using shifts rather than masks the mismatch
|
|
* problem.
|
|
*/
|
|
block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
|
|
|
|
ASSERT(block_offset + from == pos);
|
|
|
|
head = page_buffers(page);
|
|
block_start = 0;
|
|
for (bh = head; bh != head || !block_start;
|
|
bh = bh->b_this_page, block_start = block_end,
|
|
block_offset += bh->b_size) {
|
|
block_end = block_start + bh->b_size;
|
|
|
|
/* skip buffers before the write */
|
|
if (block_end <= from)
|
|
continue;
|
|
|
|
/* if the buffer is after the write, we're done */
|
|
if (block_start >= to)
|
|
break;
|
|
|
|
if (!buffer_delay(bh))
|
|
continue;
|
|
|
|
if (!buffer_new(bh) && block_offset < i_size_read(inode))
|
|
continue;
|
|
|
|
xfs_vm_kill_delalloc_range(inode, block_offset,
|
|
block_offset + bh->b_size);
|
|
|
|
/*
|
|
* This buffer does not contain data anymore. make sure anyone
|
|
* who finds it knows that for certain.
|
|
*/
|
|
clear_buffer_delay(bh);
|
|
clear_buffer_uptodate(bh);
|
|
clear_buffer_mapped(bh);
|
|
clear_buffer_new(bh);
|
|
clear_buffer_dirty(bh);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* This used to call block_write_begin(), but it unlocks and releases the page
|
|
* on error, and we need that page to be able to punch stale delalloc blocks out
|
|
* on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
|
|
* the appropriate point.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_write_begin(
|
|
struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos,
|
|
unsigned len,
|
|
unsigned flags,
|
|
struct page **pagep,
|
|
void **fsdata)
|
|
{
|
|
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
|
|
struct page *page;
|
|
int status;
|
|
|
|
ASSERT(len <= PAGE_CACHE_SIZE);
|
|
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
status = __block_write_begin(page, pos, len, xfs_get_blocks);
|
|
if (unlikely(status)) {
|
|
struct inode *inode = mapping->host;
|
|
size_t isize = i_size_read(inode);
|
|
|
|
xfs_vm_write_failed(inode, page, pos, len);
|
|
unlock_page(page);
|
|
|
|
/*
|
|
* If the write is beyond EOF, we only want to kill blocks
|
|
* allocated in this write, not blocks that were previously
|
|
* written successfully.
|
|
*/
|
|
if (pos + len > isize) {
|
|
ssize_t start = max_t(ssize_t, pos, isize);
|
|
|
|
truncate_pagecache_range(inode, start, pos + len);
|
|
}
|
|
|
|
page_cache_release(page);
|
|
page = NULL;
|
|
}
|
|
|
|
*pagep = page;
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* On failure, we only need to kill delalloc blocks beyond EOF in the range of
|
|
* this specific write because they will never be written. Previous writes
|
|
* beyond EOF where block allocation succeeded do not need to be trashed, so
|
|
* only new blocks from this write should be trashed. For blocks within
|
|
* EOF, generic_write_end() zeros them so they are safe to leave alone and be
|
|
* written with all the other valid data.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_write_end(
|
|
struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos,
|
|
unsigned len,
|
|
unsigned copied,
|
|
struct page *page,
|
|
void *fsdata)
|
|
{
|
|
int ret;
|
|
|
|
ASSERT(len <= PAGE_CACHE_SIZE);
|
|
|
|
ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
|
|
if (unlikely(ret < len)) {
|
|
struct inode *inode = mapping->host;
|
|
size_t isize = i_size_read(inode);
|
|
loff_t to = pos + len;
|
|
|
|
if (to > isize) {
|
|
/* only kill blocks in this write beyond EOF */
|
|
if (pos > isize)
|
|
isize = pos;
|
|
xfs_vm_kill_delalloc_range(inode, isize, to);
|
|
truncate_pagecache_range(inode, isize, to);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
STATIC sector_t
|
|
xfs_vm_bmap(
|
|
struct address_space *mapping,
|
|
sector_t block)
|
|
{
|
|
struct inode *inode = (struct inode *)mapping->host;
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
trace_xfs_vm_bmap(XFS_I(inode));
|
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
|
filemap_write_and_wait(mapping);
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
return generic_block_bmap(mapping, block, xfs_get_blocks);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_readpage(
|
|
struct file *unused,
|
|
struct page *page)
|
|
{
|
|
return mpage_readpage(page, xfs_get_blocks);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_readpages(
|
|
struct file *unused,
|
|
struct address_space *mapping,
|
|
struct list_head *pages,
|
|
unsigned nr_pages)
|
|
{
|
|
return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
|
|
}
|
|
|
|
/*
|
|
* This is basically a copy of __set_page_dirty_buffers() with one
|
|
* small tweak: buffers beyond EOF do not get marked dirty. If we mark them
|
|
* dirty, we'll never be able to clean them because we don't write buffers
|
|
* beyond EOF, and that means we can't invalidate pages that span EOF
|
|
* that have been marked dirty. Further, the dirty state can leak into
|
|
* the file interior if the file is extended, resulting in all sorts of
|
|
* bad things happening as the state does not match the underlying data.
|
|
*
|
|
* XXX: this really indicates that bufferheads in XFS need to die. Warts like
|
|
* this only exist because of bufferheads and how the generic code manages them.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_set_page_dirty(
|
|
struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode = mapping->host;
|
|
loff_t end_offset;
|
|
loff_t offset;
|
|
int newly_dirty;
|
|
struct mem_cgroup *memcg;
|
|
|
|
if (unlikely(!mapping))
|
|
return !TestSetPageDirty(page);
|
|
|
|
end_offset = i_size_read(inode);
|
|
offset = page_offset(page);
|
|
|
|
spin_lock(&mapping->private_lock);
|
|
if (page_has_buffers(page)) {
|
|
struct buffer_head *head = page_buffers(page);
|
|
struct buffer_head *bh = head;
|
|
|
|
do {
|
|
if (offset < end_offset)
|
|
set_buffer_dirty(bh);
|
|
bh = bh->b_this_page;
|
|
offset += 1 << inode->i_blkbits;
|
|
} while (bh != head);
|
|
}
|
|
/*
|
|
* Use mem_group_begin_page_stat() to keep PageDirty synchronized with
|
|
* per-memcg dirty page counters.
|
|
*/
|
|
memcg = mem_cgroup_begin_page_stat(page);
|
|
newly_dirty = !TestSetPageDirty(page);
|
|
spin_unlock(&mapping->private_lock);
|
|
|
|
if (newly_dirty) {
|
|
/* sigh - __set_page_dirty() is static, so copy it here, too */
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
if (page->mapping) { /* Race with truncate? */
|
|
WARN_ON_ONCE(!PageUptodate(page));
|
|
account_page_dirtied(page, mapping, memcg);
|
|
radix_tree_tag_set(&mapping->page_tree,
|
|
page_index(page), PAGECACHE_TAG_DIRTY);
|
|
}
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
}
|
|
mem_cgroup_end_page_stat(memcg);
|
|
if (newly_dirty)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
return newly_dirty;
|
|
}
|
|
|
|
const struct address_space_operations xfs_address_space_operations = {
|
|
.readpage = xfs_vm_readpage,
|
|
.readpages = xfs_vm_readpages,
|
|
.writepage = xfs_vm_writepage,
|
|
.writepages = xfs_vm_writepages,
|
|
.set_page_dirty = xfs_vm_set_page_dirty,
|
|
.releasepage = xfs_vm_releasepage,
|
|
.invalidatepage = xfs_vm_invalidatepage,
|
|
.write_begin = xfs_vm_write_begin,
|
|
.write_end = xfs_vm_write_end,
|
|
.bmap = xfs_vm_bmap,
|
|
.direct_IO = xfs_vm_direct_IO,
|
|
.migratepage = buffer_migrate_page,
|
|
.is_partially_uptodate = block_is_partially_uptodate,
|
|
.error_remove_page = generic_error_remove_page,
|
|
};
|