mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-29 13:00:35 +00:00
70bddfefbd
In the case where the host kernel is using a 64kB base page size and the guest uses a 4k HPTE (hashed page table entry) to map an emulated MMIO device, we were calculating the guest physical address wrongly. We were calculating a gfn as the guest physical address shifted right 16 bits (PAGE_SHIFT) but then only adding back in 12 bits from the effective address, since the HPTE had a 4k page size. Thus the gpa reported to userspace was missing 4 bits. Instead, we now compute the guest physical address from the HPTE without reference to the host page size, and then compute the gfn by shifting the gpa right PAGE_SHIFT bits. Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
1148 lines
29 KiB
C
1148 lines
29 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/srcu.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/mmu-hash64.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/synch.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/cputable.h>
|
|
|
|
/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
|
|
#define MAX_LPID_970 63
|
|
|
|
/* Power architecture requires HPT is at least 256kB */
|
|
#define PPC_MIN_HPT_ORDER 18
|
|
|
|
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
|
|
{
|
|
unsigned long hpt;
|
|
struct revmap_entry *rev;
|
|
struct kvmppc_linear_info *li;
|
|
long order = kvm_hpt_order;
|
|
|
|
if (htab_orderp) {
|
|
order = *htab_orderp;
|
|
if (order < PPC_MIN_HPT_ORDER)
|
|
order = PPC_MIN_HPT_ORDER;
|
|
}
|
|
|
|
/*
|
|
* If the user wants a different size from default,
|
|
* try first to allocate it from the kernel page allocator.
|
|
*/
|
|
hpt = 0;
|
|
if (order != kvm_hpt_order) {
|
|
hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
|
|
__GFP_NOWARN, order - PAGE_SHIFT);
|
|
if (!hpt)
|
|
--order;
|
|
}
|
|
|
|
/* Next try to allocate from the preallocated pool */
|
|
if (!hpt) {
|
|
li = kvm_alloc_hpt();
|
|
if (li) {
|
|
hpt = (ulong)li->base_virt;
|
|
kvm->arch.hpt_li = li;
|
|
order = kvm_hpt_order;
|
|
}
|
|
}
|
|
|
|
/* Lastly try successively smaller sizes from the page allocator */
|
|
while (!hpt && order > PPC_MIN_HPT_ORDER) {
|
|
hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
|
|
__GFP_NOWARN, order - PAGE_SHIFT);
|
|
if (!hpt)
|
|
--order;
|
|
}
|
|
|
|
if (!hpt)
|
|
return -ENOMEM;
|
|
|
|
kvm->arch.hpt_virt = hpt;
|
|
kvm->arch.hpt_order = order;
|
|
/* HPTEs are 2**4 bytes long */
|
|
kvm->arch.hpt_npte = 1ul << (order - 4);
|
|
/* 128 (2**7) bytes in each HPTEG */
|
|
kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
|
|
|
|
/* Allocate reverse map array */
|
|
rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
|
|
if (!rev) {
|
|
pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
|
|
goto out_freehpt;
|
|
}
|
|
kvm->arch.revmap = rev;
|
|
kvm->arch.sdr1 = __pa(hpt) | (order - 18);
|
|
|
|
pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
|
|
hpt, order, kvm->arch.lpid);
|
|
|
|
if (htab_orderp)
|
|
*htab_orderp = order;
|
|
return 0;
|
|
|
|
out_freehpt:
|
|
if (kvm->arch.hpt_li)
|
|
kvm_release_hpt(kvm->arch.hpt_li);
|
|
else
|
|
free_pages(hpt, order - PAGE_SHIFT);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
|
|
{
|
|
long err = -EBUSY;
|
|
long order;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (kvm->arch.rma_setup_done) {
|
|
kvm->arch.rma_setup_done = 0;
|
|
/* order rma_setup_done vs. vcpus_running */
|
|
smp_mb();
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
|
kvm->arch.rma_setup_done = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
if (kvm->arch.hpt_virt) {
|
|
order = kvm->arch.hpt_order;
|
|
/* Set the entire HPT to 0, i.e. invalid HPTEs */
|
|
memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
|
|
/*
|
|
* Set the whole last_vcpu array to an invalid vcpu number.
|
|
* This ensures that each vcpu will flush its TLB on next entry.
|
|
*/
|
|
memset(kvm->arch.last_vcpu, 0xff, sizeof(kvm->arch.last_vcpu));
|
|
*htab_orderp = order;
|
|
err = 0;
|
|
} else {
|
|
err = kvmppc_alloc_hpt(kvm, htab_orderp);
|
|
order = *htab_orderp;
|
|
}
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return err;
|
|
}
|
|
|
|
void kvmppc_free_hpt(struct kvm *kvm)
|
|
{
|
|
kvmppc_free_lpid(kvm->arch.lpid);
|
|
vfree(kvm->arch.revmap);
|
|
if (kvm->arch.hpt_li)
|
|
kvm_release_hpt(kvm->arch.hpt_li);
|
|
else
|
|
free_pages(kvm->arch.hpt_virt,
|
|
kvm->arch.hpt_order - PAGE_SHIFT);
|
|
}
|
|
|
|
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
|
|
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
|
|
{
|
|
return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
|
|
}
|
|
|
|
/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
|
|
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
|
|
{
|
|
return (pgsize == 0x10000) ? 0x1000 : 0;
|
|
}
|
|
|
|
void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
|
|
unsigned long porder)
|
|
{
|
|
unsigned long i;
|
|
unsigned long npages;
|
|
unsigned long hp_v, hp_r;
|
|
unsigned long addr, hash;
|
|
unsigned long psize;
|
|
unsigned long hp0, hp1;
|
|
long ret;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
psize = 1ul << porder;
|
|
npages = memslot->npages >> (porder - PAGE_SHIFT);
|
|
|
|
/* VRMA can't be > 1TB */
|
|
if (npages > 1ul << (40 - porder))
|
|
npages = 1ul << (40 - porder);
|
|
/* Can't use more than 1 HPTE per HPTEG */
|
|
if (npages > kvm->arch.hpt_mask + 1)
|
|
npages = kvm->arch.hpt_mask + 1;
|
|
|
|
hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
|
|
HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
|
|
hp1 = hpte1_pgsize_encoding(psize) |
|
|
HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
addr = i << porder;
|
|
/* can't use hpt_hash since va > 64 bits */
|
|
hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
|
|
/*
|
|
* We assume that the hash table is empty and no
|
|
* vcpus are using it at this stage. Since we create
|
|
* at most one HPTE per HPTEG, we just assume entry 7
|
|
* is available and use it.
|
|
*/
|
|
hash = (hash << 3) + 7;
|
|
hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
|
|
hp_r = hp1 | addr;
|
|
ret = kvmppc_virtmode_h_enter(vcpu, H_EXACT, hash, hp_v, hp_r);
|
|
if (ret != H_SUCCESS) {
|
|
pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
|
|
addr, ret);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvmppc_mmu_hv_init(void)
|
|
{
|
|
unsigned long host_lpid, rsvd_lpid;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE))
|
|
return -EINVAL;
|
|
|
|
/* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
|
|
host_lpid = mfspr(SPRN_LPID); /* POWER7 */
|
|
rsvd_lpid = LPID_RSVD;
|
|
} else {
|
|
host_lpid = 0; /* PPC970 */
|
|
rsvd_lpid = MAX_LPID_970;
|
|
}
|
|
|
|
kvmppc_init_lpid(rsvd_lpid + 1);
|
|
|
|
kvmppc_claim_lpid(host_lpid);
|
|
/* rsvd_lpid is reserved for use in partition switching */
|
|
kvmppc_claim_lpid(rsvd_lpid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
|
|
}
|
|
|
|
/*
|
|
* This is called to get a reference to a guest page if there isn't
|
|
* one already in the memslot->arch.slot_phys[] array.
|
|
*/
|
|
static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
|
|
struct kvm_memory_slot *memslot,
|
|
unsigned long psize)
|
|
{
|
|
unsigned long start;
|
|
long np, err;
|
|
struct page *page, *hpage, *pages[1];
|
|
unsigned long s, pgsize;
|
|
unsigned long *physp;
|
|
unsigned int is_io, got, pgorder;
|
|
struct vm_area_struct *vma;
|
|
unsigned long pfn, i, npages;
|
|
|
|
physp = memslot->arch.slot_phys;
|
|
if (!physp)
|
|
return -EINVAL;
|
|
if (physp[gfn - memslot->base_gfn])
|
|
return 0;
|
|
|
|
is_io = 0;
|
|
got = 0;
|
|
page = NULL;
|
|
pgsize = psize;
|
|
err = -EINVAL;
|
|
start = gfn_to_hva_memslot(memslot, gfn);
|
|
|
|
/* Instantiate and get the page we want access to */
|
|
np = get_user_pages_fast(start, 1, 1, pages);
|
|
if (np != 1) {
|
|
/* Look up the vma for the page */
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma(current->mm, start);
|
|
if (!vma || vma->vm_start > start ||
|
|
start + psize > vma->vm_end ||
|
|
!(vma->vm_flags & VM_PFNMAP))
|
|
goto up_err;
|
|
is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
|
|
pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
|
|
/* check alignment of pfn vs. requested page size */
|
|
if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
|
|
goto up_err;
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
} else {
|
|
page = pages[0];
|
|
got = KVMPPC_GOT_PAGE;
|
|
|
|
/* See if this is a large page */
|
|
s = PAGE_SIZE;
|
|
if (PageHuge(page)) {
|
|
hpage = compound_head(page);
|
|
s <<= compound_order(hpage);
|
|
/* Get the whole large page if slot alignment is ok */
|
|
if (s > psize && slot_is_aligned(memslot, s) &&
|
|
!(memslot->userspace_addr & (s - 1))) {
|
|
start &= ~(s - 1);
|
|
pgsize = s;
|
|
get_page(hpage);
|
|
put_page(page);
|
|
page = hpage;
|
|
}
|
|
}
|
|
if (s < psize)
|
|
goto out;
|
|
pfn = page_to_pfn(page);
|
|
}
|
|
|
|
npages = pgsize >> PAGE_SHIFT;
|
|
pgorder = __ilog2(npages);
|
|
physp += (gfn - memslot->base_gfn) & ~(npages - 1);
|
|
spin_lock(&kvm->arch.slot_phys_lock);
|
|
for (i = 0; i < npages; ++i) {
|
|
if (!physp[i]) {
|
|
physp[i] = ((pfn + i) << PAGE_SHIFT) +
|
|
got + is_io + pgorder;
|
|
got = 0;
|
|
}
|
|
}
|
|
spin_unlock(&kvm->arch.slot_phys_lock);
|
|
err = 0;
|
|
|
|
out:
|
|
if (got)
|
|
put_page(page);
|
|
return err;
|
|
|
|
up_err:
|
|
up_read(¤t->mm->mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* We come here on a H_ENTER call from the guest when we are not
|
|
* using mmu notifiers and we don't have the requested page pinned
|
|
* already.
|
|
*/
|
|
long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
|
|
long pte_index, unsigned long pteh, unsigned long ptel)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long psize, gpa, gfn;
|
|
struct kvm_memory_slot *memslot;
|
|
long ret;
|
|
|
|
if (kvm->arch.using_mmu_notifiers)
|
|
goto do_insert;
|
|
|
|
psize = hpte_page_size(pteh, ptel);
|
|
if (!psize)
|
|
return H_PARAMETER;
|
|
|
|
pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
|
|
|
|
/* Find the memslot (if any) for this address */
|
|
gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
|
|
if (!slot_is_aligned(memslot, psize))
|
|
return H_PARAMETER;
|
|
if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
do_insert:
|
|
/* Protect linux PTE lookup from page table destruction */
|
|
rcu_read_lock_sched(); /* this disables preemption too */
|
|
vcpu->arch.pgdir = current->mm->pgd;
|
|
ret = kvmppc_h_enter(vcpu, flags, pte_index, pteh, ptel);
|
|
rcu_read_unlock_sched();
|
|
if (ret == H_TOO_HARD) {
|
|
/* this can't happen */
|
|
pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
|
|
ret = H_RESOURCE; /* or something */
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
|
|
gva_t eaddr)
|
|
{
|
|
u64 mask;
|
|
int i;
|
|
|
|
for (i = 0; i < vcpu->arch.slb_nr; i++) {
|
|
if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
|
|
continue;
|
|
|
|
if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
|
|
mask = ESID_MASK_1T;
|
|
else
|
|
mask = ESID_MASK;
|
|
|
|
if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
|
|
return &vcpu->arch.slb[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
|
|
unsigned long ea)
|
|
{
|
|
unsigned long ra_mask;
|
|
|
|
ra_mask = hpte_page_size(v, r) - 1;
|
|
return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
|
|
}
|
|
|
|
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
struct kvmppc_pte *gpte, bool data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvmppc_slb *slbe;
|
|
unsigned long slb_v;
|
|
unsigned long pp, key;
|
|
unsigned long v, gr;
|
|
unsigned long *hptep;
|
|
int index;
|
|
int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
|
|
|
|
/* Get SLB entry */
|
|
if (virtmode) {
|
|
slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
|
|
if (!slbe)
|
|
return -EINVAL;
|
|
slb_v = slbe->origv;
|
|
} else {
|
|
/* real mode access */
|
|
slb_v = vcpu->kvm->arch.vrma_slb_v;
|
|
}
|
|
|
|
/* Find the HPTE in the hash table */
|
|
index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
|
|
HPTE_V_VALID | HPTE_V_ABSENT);
|
|
if (index < 0)
|
|
return -ENOENT;
|
|
hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
|
|
v = hptep[0] & ~HPTE_V_HVLOCK;
|
|
gr = kvm->arch.revmap[index].guest_rpte;
|
|
|
|
/* Unlock the HPTE */
|
|
asm volatile("lwsync" : : : "memory");
|
|
hptep[0] = v;
|
|
|
|
gpte->eaddr = eaddr;
|
|
gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
|
|
|
|
/* Get PP bits and key for permission check */
|
|
pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
|
|
key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
|
|
key &= slb_v;
|
|
|
|
/* Calculate permissions */
|
|
gpte->may_read = hpte_read_permission(pp, key);
|
|
gpte->may_write = hpte_write_permission(pp, key);
|
|
gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
|
|
|
|
/* Storage key permission check for POWER7 */
|
|
if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
|
|
int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
|
|
if (amrfield & 1)
|
|
gpte->may_read = 0;
|
|
if (amrfield & 2)
|
|
gpte->may_write = 0;
|
|
}
|
|
|
|
/* Get the guest physical address */
|
|
gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Quick test for whether an instruction is a load or a store.
|
|
* If the instruction is a load or a store, then this will indicate
|
|
* which it is, at least on server processors. (Embedded processors
|
|
* have some external PID instructions that don't follow the rule
|
|
* embodied here.) If the instruction isn't a load or store, then
|
|
* this doesn't return anything useful.
|
|
*/
|
|
static int instruction_is_store(unsigned int instr)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = 0x10000000;
|
|
if ((instr & 0xfc000000) == 0x7c000000)
|
|
mask = 0x100; /* major opcode 31 */
|
|
return (instr & mask) != 0;
|
|
}
|
|
|
|
static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned long gpa, gva_t ea, int is_store)
|
|
{
|
|
int ret;
|
|
u32 last_inst;
|
|
unsigned long srr0 = kvmppc_get_pc(vcpu);
|
|
|
|
/* We try to load the last instruction. We don't let
|
|
* emulate_instruction do it as it doesn't check what
|
|
* kvmppc_ld returns.
|
|
* If we fail, we just return to the guest and try executing it again.
|
|
*/
|
|
if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
|
|
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
|
|
if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
|
|
return RESUME_GUEST;
|
|
vcpu->arch.last_inst = last_inst;
|
|
}
|
|
|
|
/*
|
|
* WARNING: We do not know for sure whether the instruction we just
|
|
* read from memory is the same that caused the fault in the first
|
|
* place. If the instruction we read is neither an load or a store,
|
|
* then it can't access memory, so we don't need to worry about
|
|
* enforcing access permissions. So, assuming it is a load or
|
|
* store, we just check that its direction (load or store) is
|
|
* consistent with the original fault, since that's what we
|
|
* checked the access permissions against. If there is a mismatch
|
|
* we just return and retry the instruction.
|
|
*/
|
|
|
|
if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
|
|
return RESUME_GUEST;
|
|
|
|
/*
|
|
* Emulated accesses are emulated by looking at the hash for
|
|
* translation once, then performing the access later. The
|
|
* translation could be invalidated in the meantime in which
|
|
* point performing the subsequent memory access on the old
|
|
* physical address could possibly be a security hole for the
|
|
* guest (but not the host).
|
|
*
|
|
* This is less of an issue for MMIO stores since they aren't
|
|
* globally visible. It could be an issue for MMIO loads to
|
|
* a certain extent but we'll ignore it for now.
|
|
*/
|
|
|
|
vcpu->arch.paddr_accessed = gpa;
|
|
vcpu->arch.vaddr_accessed = ea;
|
|
return kvmppc_emulate_mmio(run, vcpu);
|
|
}
|
|
|
|
int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned long ea, unsigned long dsisr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long *hptep, hpte[3], r;
|
|
unsigned long mmu_seq, psize, pte_size;
|
|
unsigned long gpa, gfn, hva, pfn;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long *rmap;
|
|
struct revmap_entry *rev;
|
|
struct page *page, *pages[1];
|
|
long index, ret, npages;
|
|
unsigned long is_io;
|
|
unsigned int writing, write_ok;
|
|
struct vm_area_struct *vma;
|
|
unsigned long rcbits;
|
|
|
|
/*
|
|
* Real-mode code has already searched the HPT and found the
|
|
* entry we're interested in. Lock the entry and check that
|
|
* it hasn't changed. If it has, just return and re-execute the
|
|
* instruction.
|
|
*/
|
|
if (ea != vcpu->arch.pgfault_addr)
|
|
return RESUME_GUEST;
|
|
index = vcpu->arch.pgfault_index;
|
|
hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
|
|
rev = &kvm->arch.revmap[index];
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
|
|
hpte[1] = hptep[1];
|
|
hpte[2] = r = rev->guest_rpte;
|
|
asm volatile("lwsync" : : : "memory");
|
|
hptep[0] = hpte[0];
|
|
preempt_enable();
|
|
|
|
if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
|
|
hpte[1] != vcpu->arch.pgfault_hpte[1])
|
|
return RESUME_GUEST;
|
|
|
|
/* Translate the logical address and get the page */
|
|
psize = hpte_page_size(hpte[0], r);
|
|
gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
/* No memslot means it's an emulated MMIO region */
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
|
|
dsisr & DSISR_ISSTORE);
|
|
|
|
if (!kvm->arch.using_mmu_notifiers)
|
|
return -EFAULT; /* should never get here */
|
|
|
|
/* used to check for invalidations in progress */
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
is_io = 0;
|
|
pfn = 0;
|
|
page = NULL;
|
|
pte_size = PAGE_SIZE;
|
|
writing = (dsisr & DSISR_ISSTORE) != 0;
|
|
/* If writing != 0, then the HPTE must allow writing, if we get here */
|
|
write_ok = writing;
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
npages = get_user_pages_fast(hva, 1, writing, pages);
|
|
if (npages < 1) {
|
|
/* Check if it's an I/O mapping */
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma(current->mm, hva);
|
|
if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
|
|
(vma->vm_flags & VM_PFNMAP)) {
|
|
pfn = vma->vm_pgoff +
|
|
((hva - vma->vm_start) >> PAGE_SHIFT);
|
|
pte_size = psize;
|
|
is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
|
|
write_ok = vma->vm_flags & VM_WRITE;
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
if (!pfn)
|
|
return -EFAULT;
|
|
} else {
|
|
page = pages[0];
|
|
if (PageHuge(page)) {
|
|
page = compound_head(page);
|
|
pte_size <<= compound_order(page);
|
|
}
|
|
/* if the guest wants write access, see if that is OK */
|
|
if (!writing && hpte_is_writable(r)) {
|
|
pte_t *ptep, pte;
|
|
|
|
/*
|
|
* We need to protect against page table destruction
|
|
* while looking up and updating the pte.
|
|
*/
|
|
rcu_read_lock_sched();
|
|
ptep = find_linux_pte_or_hugepte(current->mm->pgd,
|
|
hva, NULL);
|
|
if (ptep && pte_present(*ptep)) {
|
|
pte = kvmppc_read_update_linux_pte(ptep, 1);
|
|
if (pte_write(pte))
|
|
write_ok = 1;
|
|
}
|
|
rcu_read_unlock_sched();
|
|
}
|
|
pfn = page_to_pfn(page);
|
|
}
|
|
|
|
ret = -EFAULT;
|
|
if (psize > pte_size)
|
|
goto out_put;
|
|
|
|
/* Check WIMG vs. the actual page we're accessing */
|
|
if (!hpte_cache_flags_ok(r, is_io)) {
|
|
if (is_io)
|
|
return -EFAULT;
|
|
/*
|
|
* Allow guest to map emulated device memory as
|
|
* uncacheable, but actually make it cacheable.
|
|
*/
|
|
r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
|
|
}
|
|
|
|
/* Set the HPTE to point to pfn */
|
|
r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
|
|
if (hpte_is_writable(r) && !write_ok)
|
|
r = hpte_make_readonly(r);
|
|
ret = RESUME_GUEST;
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
|
|
rev->guest_rpte != hpte[2])
|
|
/* HPTE has been changed under us; let the guest retry */
|
|
goto out_unlock;
|
|
hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
|
|
|
|
rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
lock_rmap(rmap);
|
|
|
|
/* Check if we might have been invalidated; let the guest retry if so */
|
|
ret = RESUME_GUEST;
|
|
if (mmu_notifier_retry(vcpu, mmu_seq)) {
|
|
unlock_rmap(rmap);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
|
|
rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
|
|
r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
|
|
|
|
if (hptep[0] & HPTE_V_VALID) {
|
|
/* HPTE was previously valid, so we need to invalidate it */
|
|
unlock_rmap(rmap);
|
|
hptep[0] |= HPTE_V_ABSENT;
|
|
kvmppc_invalidate_hpte(kvm, hptep, index);
|
|
/* don't lose previous R and C bits */
|
|
r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
|
|
} else {
|
|
kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
|
|
}
|
|
|
|
hptep[1] = r;
|
|
eieio();
|
|
hptep[0] = hpte[0];
|
|
asm volatile("ptesync" : : : "memory");
|
|
preempt_enable();
|
|
if (page && hpte_is_writable(r))
|
|
SetPageDirty(page);
|
|
|
|
out_put:
|
|
if (page) {
|
|
/*
|
|
* We drop pages[0] here, not page because page might
|
|
* have been set to the head page of a compound, but
|
|
* we have to drop the reference on the correct tail
|
|
* page to match the get inside gup()
|
|
*/
|
|
put_page(pages[0]);
|
|
}
|
|
return ret;
|
|
|
|
out_unlock:
|
|
hptep[0] &= ~HPTE_V_HVLOCK;
|
|
preempt_enable();
|
|
goto out_put;
|
|
}
|
|
|
|
static int kvm_handle_hva_range(struct kvm *kvm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
int (*handler)(struct kvm *kvm,
|
|
unsigned long *rmapp,
|
|
unsigned long gfn))
|
|
{
|
|
int ret;
|
|
int retval = 0;
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn, gfn+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
|
|
for (; gfn < gfn_end; ++gfn) {
|
|
gfn_t gfn_offset = gfn - memslot->base_gfn;
|
|
|
|
ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
|
|
retval |= ret;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
|
|
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn))
|
|
{
|
|
return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
|
|
}
|
|
|
|
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long h, i, j;
|
|
unsigned long *hptep;
|
|
unsigned long ptel, psize, rcbits;
|
|
|
|
for (;;) {
|
|
lock_rmap(rmapp);
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* To avoid an ABBA deadlock with the HPTE lock bit,
|
|
* we can't spin on the HPTE lock while holding the
|
|
* rmap chain lock.
|
|
*/
|
|
i = *rmapp & KVMPPC_RMAP_INDEX;
|
|
hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (hptep[0] & HPTE_V_HVLOCK)
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
j = rev[i].forw;
|
|
if (j == i) {
|
|
/* chain is now empty */
|
|
*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
|
|
} else {
|
|
/* remove i from chain */
|
|
h = rev[i].back;
|
|
rev[h].forw = j;
|
|
rev[j].back = h;
|
|
rev[i].forw = rev[i].back = i;
|
|
*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
ptel = rev[i].guest_rpte;
|
|
psize = hpte_page_size(hptep[0], ptel);
|
|
if ((hptep[0] & HPTE_V_VALID) &&
|
|
hpte_rpn(ptel, psize) == gfn) {
|
|
if (kvm->arch.using_mmu_notifiers)
|
|
hptep[0] |= HPTE_V_ABSENT;
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
|
/* Harvest R and C */
|
|
rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
|
|
*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
|
|
rev[i].guest_rpte = ptel | rcbits;
|
|
}
|
|
unlock_rmap(rmapp);
|
|
hptep[0] &= ~HPTE_V_HVLOCK;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
if (kvm->arch.using_mmu_notifiers)
|
|
kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
if (kvm->arch.using_mmu_notifiers)
|
|
kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long *rmapp;
|
|
unsigned long gfn;
|
|
unsigned long n;
|
|
|
|
rmapp = memslot->arch.rmap;
|
|
gfn = memslot->base_gfn;
|
|
for (n = memslot->npages; n; --n) {
|
|
/*
|
|
* Testing the present bit without locking is OK because
|
|
* the memslot has been marked invalid already, and hence
|
|
* no new HPTEs referencing this page can be created,
|
|
* thus the present bit can't go from 0 to 1.
|
|
*/
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT)
|
|
kvm_unmap_rmapp(kvm, rmapp, gfn);
|
|
++rmapp;
|
|
++gfn;
|
|
}
|
|
}
|
|
|
|
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long head, i, j;
|
|
unsigned long *hptep;
|
|
int ret = 0;
|
|
|
|
retry:
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED) {
|
|
*rmapp &= ~KVMPPC_RMAP_REFERENCED;
|
|
ret = 1;
|
|
}
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
|
|
j = rev[i].forw;
|
|
|
|
/* If this HPTE isn't referenced, ignore it */
|
|
if (!(hptep[1] & HPTE_R_R))
|
|
continue;
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (hptep[0] & HPTE_V_HVLOCK)
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
|
|
kvmppc_clear_ref_hpte(kvm, hptep, i);
|
|
rev[i].guest_rpte |= HPTE_R_R;
|
|
ret = 1;
|
|
}
|
|
hptep[0] &= ~HPTE_V_HVLOCK;
|
|
} while ((i = j) != head);
|
|
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
if (!kvm->arch.using_mmu_notifiers)
|
|
return 0;
|
|
return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
|
|
}
|
|
|
|
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long head, i, j;
|
|
unsigned long *hp;
|
|
int ret = 1;
|
|
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
return 1;
|
|
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
goto out;
|
|
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT) {
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
|
|
j = rev[i].forw;
|
|
if (hp[1] & HPTE_R_R)
|
|
goto out;
|
|
} while ((i = j) != head);
|
|
}
|
|
ret = 0;
|
|
|
|
out:
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
if (!kvm->arch.using_mmu_notifiers)
|
|
return 0;
|
|
return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
|
|
}
|
|
|
|
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
if (!kvm->arch.using_mmu_notifiers)
|
|
return;
|
|
kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
|
|
}
|
|
|
|
static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long head, i, j;
|
|
unsigned long *hptep;
|
|
int ret = 0;
|
|
|
|
retry:
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_CHANGED) {
|
|
*rmapp &= ~KVMPPC_RMAP_CHANGED;
|
|
ret = 1;
|
|
}
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
|
|
j = rev[i].forw;
|
|
|
|
if (!(hptep[1] & HPTE_R_C))
|
|
continue;
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (hptep[0] & HPTE_V_HVLOCK)
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
|
|
/* need to make it temporarily absent to clear C */
|
|
hptep[0] |= HPTE_V_ABSENT;
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
|
hptep[1] &= ~HPTE_R_C;
|
|
eieio();
|
|
hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
|
|
rev[i].guest_rpte |= HPTE_R_C;
|
|
ret = 1;
|
|
}
|
|
hptep[0] &= ~HPTE_V_HVLOCK;
|
|
} while ((i = j) != head);
|
|
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long *map)
|
|
{
|
|
unsigned long i;
|
|
unsigned long *rmapp;
|
|
|
|
preempt_disable();
|
|
rmapp = memslot->arch.rmap;
|
|
for (i = 0; i < memslot->npages; ++i) {
|
|
if (kvm_test_clear_dirty(kvm, rmapp) && map)
|
|
__set_bit_le(i, map);
|
|
++rmapp;
|
|
}
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
|
|
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long *nb_ret)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn = gpa >> PAGE_SHIFT;
|
|
struct page *page, *pages[1];
|
|
int npages;
|
|
unsigned long hva, psize, offset;
|
|
unsigned long pa;
|
|
unsigned long *physp;
|
|
int srcu_idx;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
goto err;
|
|
if (!kvm->arch.using_mmu_notifiers) {
|
|
physp = memslot->arch.slot_phys;
|
|
if (!physp)
|
|
goto err;
|
|
physp += gfn - memslot->base_gfn;
|
|
pa = *physp;
|
|
if (!pa) {
|
|
if (kvmppc_get_guest_page(kvm, gfn, memslot,
|
|
PAGE_SIZE) < 0)
|
|
goto err;
|
|
pa = *physp;
|
|
}
|
|
page = pfn_to_page(pa >> PAGE_SHIFT);
|
|
get_page(page);
|
|
} else {
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
npages = get_user_pages_fast(hva, 1, 1, pages);
|
|
if (npages < 1)
|
|
goto err;
|
|
page = pages[0];
|
|
}
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
psize = PAGE_SIZE;
|
|
if (PageHuge(page)) {
|
|
page = compound_head(page);
|
|
psize <<= compound_order(page);
|
|
}
|
|
offset = gpa & (psize - 1);
|
|
if (nb_ret)
|
|
*nb_ret = psize - offset;
|
|
return page_address(page) + offset;
|
|
|
|
err:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return NULL;
|
|
}
|
|
|
|
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
|
|
{
|
|
struct page *page = virt_to_page(va);
|
|
|
|
put_page(page);
|
|
}
|
|
|
|
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_206))
|
|
vcpu->arch.slb_nr = 32; /* POWER7 */
|
|
else
|
|
vcpu->arch.slb_nr = 64;
|
|
|
|
mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
|
|
mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
|
|
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
|
|
}
|