mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-22 01:58:42 +00:00
5b0e508415
Otherwise, enabling (or better, subsequent disabling) of single stepping would cause a kernel oops on CPUs not having this MSR. The patch could have been added a conditional to the MSR write in user_disable_single_step(), but centralizing the updates seems safer and (looking forward) better manageable. Signed-off-by: Jan Beulich <jbeulich@novell.com> Cc: Markus Metzger <markus.t.metzger@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
207 lines
4.8 KiB
C
207 lines
4.8 KiB
C
/*
|
|
* x86 single-step support code, common to 32-bit and 64-bit.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/ptrace.h>
|
|
|
|
unsigned long convert_ip_to_linear(struct task_struct *child, struct pt_regs *regs)
|
|
{
|
|
unsigned long addr, seg;
|
|
|
|
addr = regs->ip;
|
|
seg = regs->cs & 0xffff;
|
|
if (v8086_mode(regs)) {
|
|
addr = (addr & 0xffff) + (seg << 4);
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* We'll assume that the code segments in the GDT
|
|
* are all zero-based. That is largely true: the
|
|
* TLS segments are used for data, and the PNPBIOS
|
|
* and APM bios ones we just ignore here.
|
|
*/
|
|
if ((seg & SEGMENT_TI_MASK) == SEGMENT_LDT) {
|
|
u32 *desc;
|
|
unsigned long base;
|
|
|
|
seg &= ~7UL;
|
|
|
|
mutex_lock(&child->mm->context.lock);
|
|
if (unlikely((seg >> 3) >= child->mm->context.size))
|
|
addr = -1L; /* bogus selector, access would fault */
|
|
else {
|
|
desc = child->mm->context.ldt + seg;
|
|
base = ((desc[0] >> 16) |
|
|
((desc[1] & 0xff) << 16) |
|
|
(desc[1] & 0xff000000));
|
|
|
|
/* 16-bit code segment? */
|
|
if (!((desc[1] >> 22) & 1))
|
|
addr &= 0xffff;
|
|
addr += base;
|
|
}
|
|
mutex_unlock(&child->mm->context.lock);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int is_setting_trap_flag(struct task_struct *child, struct pt_regs *regs)
|
|
{
|
|
int i, copied;
|
|
unsigned char opcode[15];
|
|
unsigned long addr = convert_ip_to_linear(child, regs);
|
|
|
|
copied = access_process_vm(child, addr, opcode, sizeof(opcode), 0);
|
|
for (i = 0; i < copied; i++) {
|
|
switch (opcode[i]) {
|
|
/* popf and iret */
|
|
case 0x9d: case 0xcf:
|
|
return 1;
|
|
|
|
/* CHECKME: 64 65 */
|
|
|
|
/* opcode and address size prefixes */
|
|
case 0x66: case 0x67:
|
|
continue;
|
|
/* irrelevant prefixes (segment overrides and repeats) */
|
|
case 0x26: case 0x2e:
|
|
case 0x36: case 0x3e:
|
|
case 0x64: case 0x65:
|
|
case 0xf0: case 0xf2: case 0xf3:
|
|
continue;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
case 0x40 ... 0x4f:
|
|
if (regs->cs != __USER_CS)
|
|
/* 32-bit mode: register increment */
|
|
return 0;
|
|
/* 64-bit mode: REX prefix */
|
|
continue;
|
|
#endif
|
|
|
|
/* CHECKME: f2, f3 */
|
|
|
|
/*
|
|
* pushf: NOTE! We should probably not let
|
|
* the user see the TF bit being set. But
|
|
* it's more pain than it's worth to avoid
|
|
* it, and a debugger could emulate this
|
|
* all in user space if it _really_ cares.
|
|
*/
|
|
case 0x9c:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable single-stepping. Return nonzero if user mode is not using TF itself.
|
|
*/
|
|
static int enable_single_step(struct task_struct *child)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(child);
|
|
|
|
/*
|
|
* Always set TIF_SINGLESTEP - this guarantees that
|
|
* we single-step system calls etc.. This will also
|
|
* cause us to set TF when returning to user mode.
|
|
*/
|
|
set_tsk_thread_flag(child, TIF_SINGLESTEP);
|
|
|
|
/*
|
|
* If TF was already set, don't do anything else
|
|
*/
|
|
if (regs->flags & X86_EFLAGS_TF)
|
|
return 0;
|
|
|
|
/* Set TF on the kernel stack.. */
|
|
regs->flags |= X86_EFLAGS_TF;
|
|
|
|
/*
|
|
* ..but if TF is changed by the instruction we will trace,
|
|
* don't mark it as being "us" that set it, so that we
|
|
* won't clear it by hand later.
|
|
*/
|
|
if (is_setting_trap_flag(child, regs))
|
|
return 0;
|
|
|
|
set_tsk_thread_flag(child, TIF_FORCED_TF);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Install this value in MSR_IA32_DEBUGCTLMSR whenever child is running.
|
|
*/
|
|
static void write_debugctlmsr(struct task_struct *child, unsigned long val)
|
|
{
|
|
if (child->thread.debugctlmsr == val)
|
|
return;
|
|
|
|
child->thread.debugctlmsr = val;
|
|
|
|
if (child != current)
|
|
return;
|
|
|
|
update_debugctlmsr(val);
|
|
}
|
|
|
|
/*
|
|
* Enable single or block step.
|
|
*/
|
|
static void enable_step(struct task_struct *child, bool block)
|
|
{
|
|
/*
|
|
* Make sure block stepping (BTF) is not enabled unless it should be.
|
|
* Note that we don't try to worry about any is_setting_trap_flag()
|
|
* instructions after the first when using block stepping.
|
|
* So noone should try to use debugger block stepping in a program
|
|
* that uses user-mode single stepping itself.
|
|
*/
|
|
if (enable_single_step(child) && block) {
|
|
set_tsk_thread_flag(child, TIF_DEBUGCTLMSR);
|
|
write_debugctlmsr(child,
|
|
child->thread.debugctlmsr | DEBUGCTLMSR_BTF);
|
|
} else {
|
|
write_debugctlmsr(child,
|
|
child->thread.debugctlmsr & ~DEBUGCTLMSR_BTF);
|
|
|
|
if (!child->thread.debugctlmsr)
|
|
clear_tsk_thread_flag(child, TIF_DEBUGCTLMSR);
|
|
}
|
|
}
|
|
|
|
void user_enable_single_step(struct task_struct *child)
|
|
{
|
|
enable_step(child, 0);
|
|
}
|
|
|
|
void user_enable_block_step(struct task_struct *child)
|
|
{
|
|
enable_step(child, 1);
|
|
}
|
|
|
|
void user_disable_single_step(struct task_struct *child)
|
|
{
|
|
/*
|
|
* Make sure block stepping (BTF) is disabled.
|
|
*/
|
|
write_debugctlmsr(child,
|
|
child->thread.debugctlmsr & ~DEBUGCTLMSR_BTF);
|
|
|
|
if (!child->thread.debugctlmsr)
|
|
clear_tsk_thread_flag(child, TIF_DEBUGCTLMSR);
|
|
|
|
/* Always clear TIF_SINGLESTEP... */
|
|
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
|
|
|
|
/* But touch TF only if it was set by us.. */
|
|
if (test_and_clear_tsk_thread_flag(child, TIF_FORCED_TF))
|
|
task_pt_regs(child)->flags &= ~X86_EFLAGS_TF;
|
|
}
|