Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

439 lines
12 KiB
C

/*
* linux/arch/mips/txx9/pci.c
*
* Based on linux/arch/mips/txx9/rbtx4927/setup.c,
* linux/arch/mips/txx9/rbtx4938/setup.c,
* and RBTX49xx patch from CELF patch archive.
*
* Copyright 2001-2005 MontaVista Software Inc.
* Copyright (C) 1996, 97, 2001, 04 Ralf Baechle (ralf@linux-mips.org)
* (C) Copyright TOSHIBA CORPORATION 2000-2001, 2004-2007
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/io.h>
#include <asm/txx9/generic.h>
#include <asm/txx9/pci.h>
#ifdef CONFIG_TOSHIBA_FPCIB0
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <asm/i8259.h>
#include <asm/txx9/smsc_fdc37m81x.h>
#endif
static int __init
early_read_config_word(struct pci_controller *hose,
int top_bus, int bus, int devfn, int offset, u16 *value)
{
struct pci_dev fake_dev;
struct pci_bus fake_bus;
fake_dev.bus = &fake_bus;
fake_dev.sysdata = hose;
fake_dev.devfn = devfn;
fake_bus.number = bus;
fake_bus.sysdata = hose;
fake_bus.ops = hose->pci_ops;
if (bus != top_bus)
/* Fake a parent bus structure. */
fake_bus.parent = &fake_bus;
else
fake_bus.parent = NULL;
return pci_read_config_word(&fake_dev, offset, value);
}
int __init txx9_pci66_check(struct pci_controller *hose, int top_bus,
int current_bus)
{
u32 pci_devfn;
unsigned short vid;
int cap66 = -1;
u16 stat;
/* It seems SLC90E66 needs some time after PCI reset... */
mdelay(80);
printk(KERN_INFO "PCI: Checking 66MHz capabilities...\n");
for (pci_devfn = 0; pci_devfn < 0xff; pci_devfn++) {
if (PCI_FUNC(pci_devfn))
continue;
if (early_read_config_word(hose, top_bus, current_bus,
pci_devfn, PCI_VENDOR_ID, &vid) !=
PCIBIOS_SUCCESSFUL)
continue;
if (vid == 0xffff)
continue;
/* check 66MHz capability */
if (cap66 < 0)
cap66 = 1;
if (cap66) {
early_read_config_word(hose, top_bus, current_bus,
pci_devfn, PCI_STATUS, &stat);
if (!(stat & PCI_STATUS_66MHZ)) {
printk(KERN_DEBUG
"PCI: %02x:%02x not 66MHz capable.\n",
current_bus, pci_devfn);
cap66 = 0;
break;
}
}
}
return cap66 > 0;
}
static struct resource primary_pci_mem_res[2] = {
{ .name = "PCI MEM" },
{ .name = "PCI MMIO" },
};
static struct resource primary_pci_io_res = { .name = "PCI IO" };
struct pci_controller txx9_primary_pcic = {
.mem_resource = &primary_pci_mem_res[0],
.io_resource = &primary_pci_io_res,
};
#ifdef CONFIG_64BIT
int txx9_pci_mem_high __initdata = 1;
#else
int txx9_pci_mem_high __initdata;
#endif
/*
* allocate pci_controller and resources.
* mem_base, io_base: physical addresss. 0 for auto assignment.
* mem_size and io_size means max size on auto assignment.
* pcic must be &txx9_primary_pcic or NULL.
*/
struct pci_controller *__init
txx9_alloc_pci_controller(struct pci_controller *pcic,
unsigned long mem_base, unsigned long mem_size,
unsigned long io_base, unsigned long io_size)
{
struct pcic {
struct pci_controller c;
struct resource r_mem[2];
struct resource r_io;
} *new = NULL;
int min_size = 0x10000;
if (!pcic) {
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
new->r_mem[0].name = "PCI mem";
new->r_mem[1].name = "PCI mmio";
new->r_io.name = "PCI io";
new->c.mem_resource = new->r_mem;
new->c.io_resource = &new->r_io;
pcic = &new->c;
} else
BUG_ON(pcic != &txx9_primary_pcic);
pcic->io_resource->flags = IORESOURCE_IO;
/*
* for auto assignment, first search a (big) region for PCI
* MEM, then search a region for PCI IO.
*/
if (mem_base) {
pcic->mem_resource[0].start = mem_base;
pcic->mem_resource[0].end = mem_base + mem_size - 1;
if (request_resource(&iomem_resource, &pcic->mem_resource[0]))
goto free_and_exit;
} else {
unsigned long min = 0, max = 0x20000000; /* low 512MB */
if (!mem_size) {
/* default size for auto assignment */
if (txx9_pci_mem_high)
mem_size = 0x20000000; /* mem:512M(max) */
else
mem_size = 0x08000000; /* mem:128M(max) */
}
if (txx9_pci_mem_high) {
min = 0x20000000;
max = 0xe0000000;
}
/* search free region for PCI MEM */
for (; mem_size >= min_size; mem_size /= 2) {
if (allocate_resource(&iomem_resource,
&pcic->mem_resource[0],
mem_size, min, max,
mem_size, NULL, NULL) == 0)
break;
}
if (mem_size < min_size)
goto free_and_exit;
}
pcic->mem_resource[1].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
if (io_base) {
pcic->mem_resource[1].start = io_base;
pcic->mem_resource[1].end = io_base + io_size - 1;
if (request_resource(&iomem_resource, &pcic->mem_resource[1]))
goto release_and_exit;
} else {
if (!io_size)
/* default size for auto assignment */
io_size = 0x01000000; /* io:16M(max) */
/* search free region for PCI IO in low 512MB */
for (; io_size >= min_size; io_size /= 2) {
if (allocate_resource(&iomem_resource,
&pcic->mem_resource[1],
io_size, 0, 0x20000000,
io_size, NULL, NULL) == 0)
break;
}
if (io_size < min_size)
goto release_and_exit;
io_base = pcic->mem_resource[1].start;
}
pcic->mem_resource[0].flags = IORESOURCE_MEM;
if (pcic == &txx9_primary_pcic &&
mips_io_port_base == (unsigned long)-1) {
/* map ioport 0 to PCI I/O space address 0 */
set_io_port_base(IO_BASE + pcic->mem_resource[1].start);
pcic->io_resource->start = 0;
pcic->io_offset = 0; /* busaddr == ioaddr */
pcic->io_map_base = IO_BASE + pcic->mem_resource[1].start;
} else {
/* physaddr to ioaddr */
pcic->io_resource->start =
io_base - (mips_io_port_base - IO_BASE);
pcic->io_offset = io_base - (mips_io_port_base - IO_BASE);
pcic->io_map_base = mips_io_port_base;
}
pcic->io_resource->end = pcic->io_resource->start + io_size - 1;
pcic->mem_offset = 0; /* busaddr == physaddr */
printk(KERN_INFO "PCI: IO 0x%08llx-0x%08llx MEM 0x%08llx-0x%08llx\n",
(unsigned long long)pcic->mem_resource[1].start,
(unsigned long long)pcic->mem_resource[1].end,
(unsigned long long)pcic->mem_resource[0].start,
(unsigned long long)pcic->mem_resource[0].end);
/* register_pci_controller() will request MEM resource */
release_resource(&pcic->mem_resource[0]);
return pcic;
release_and_exit:
release_resource(&pcic->mem_resource[0]);
free_and_exit:
kfree(new);
printk(KERN_ERR "PCI: Failed to allocate resources.\n");
return NULL;
}
static int __init
txx9_arch_pci_init(void)
{
PCIBIOS_MIN_IO = 0x8000; /* reseve legacy I/O space */
return 0;
}
arch_initcall(txx9_arch_pci_init);
/* IRQ/IDSEL mapping */
int txx9_pci_option =
#ifdef CONFIG_PICMG_PCI_BACKPLANE_DEFAULT
TXX9_PCI_OPT_PICMG |
#endif
TXX9_PCI_OPT_CLK_AUTO;
enum txx9_pci_err_action txx9_pci_err_action = TXX9_PCI_ERR_REPORT;
#ifdef CONFIG_TOSHIBA_FPCIB0
static irqreturn_t i8259_interrupt(int irq, void *dev_id)
{
int isairq;
isairq = i8259_irq();
if (unlikely(isairq <= I8259A_IRQ_BASE))
return IRQ_NONE;
generic_handle_irq(isairq);
return IRQ_HANDLED;
}
static int __init
txx9_i8259_irq_setup(int irq)
{
int err;
init_i8259_irqs();
err = request_irq(irq, &i8259_interrupt, IRQF_DISABLED|IRQF_SHARED,
"cascade(i8259)", (void *)(long)irq);
if (!err)
printk(KERN_INFO "PCI-ISA bridge PIC (irq %d)\n", irq);
return err;
}
static void __init quirk_slc90e66_bridge(struct pci_dev *dev)
{
int irq; /* PCI/ISA Bridge interrupt */
u8 reg_64;
u32 reg_b0;
u8 reg_e1;
irq = pcibios_map_irq(dev, PCI_SLOT(dev->devfn), 1); /* INTA */
if (!irq)
return;
txx9_i8259_irq_setup(irq);
pci_read_config_byte(dev, 0x64, &reg_64);
pci_read_config_dword(dev, 0xb0, &reg_b0);
pci_read_config_byte(dev, 0xe1, &reg_e1);
/* serial irq control */
reg_64 = 0xd0;
/* serial irq pin */
reg_b0 |= 0x00010000;
/* ide irq on isa14 */
reg_e1 &= 0xf0;
reg_e1 |= 0x0d;
pci_write_config_byte(dev, 0x64, reg_64);
pci_write_config_dword(dev, 0xb0, reg_b0);
pci_write_config_byte(dev, 0xe1, reg_e1);
smsc_fdc37m81x_init(0x3f0);
smsc_fdc37m81x_config_beg();
smsc_fdc37m81x_config_set(SMSC_FDC37M81X_DNUM,
SMSC_FDC37M81X_KBD);
smsc_fdc37m81x_config_set(SMSC_FDC37M81X_INT, 1);
smsc_fdc37m81x_config_set(SMSC_FDC37M81X_INT2, 12);
smsc_fdc37m81x_config_set(SMSC_FDC37M81X_ACTIVE,
1);
smsc_fdc37m81x_config_end();
}
static void quirk_slc90e66_ide(struct pci_dev *dev)
{
unsigned char dat;
int regs[2] = {0x41, 0x43};
int i;
/* SMSC SLC90E66 IDE uses irq 14, 15 (default) */
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, 14);
pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &dat);
printk(KERN_INFO "PCI: %s: IRQ %02x", pci_name(dev), dat);
/* enable SMSC SLC90E66 IDE */
for (i = 0; i < ARRAY_SIZE(regs); i++) {
pci_read_config_byte(dev, regs[i], &dat);
pci_write_config_byte(dev, regs[i], dat | 0x80);
pci_read_config_byte(dev, regs[i], &dat);
printk(KERN_CONT " IDETIM%d %02x", i, dat);
}
pci_read_config_byte(dev, 0x5c, &dat);
/*
* !!! DO NOT REMOVE THIS COMMENT IT IS REQUIRED BY SMSC !!!
*
* This line of code is intended to provide the user with a work
* around solution to the anomalies cited in SMSC's anomaly sheet
* entitled, "SLC90E66 Functional Rev.J_0.1 Anomalies"".
*
* !!! DO NOT REMOVE THIS COMMENT IT IS REQUIRED BY SMSC !!!
*/
dat |= 0x01;
pci_write_config_byte(dev, regs[i], dat);
pci_read_config_byte(dev, 0x5c, &dat);
printk(KERN_CONT " REG5C %02x", dat);
printk(KERN_CONT "\n");
}
#endif /* CONFIG_TOSHIBA_FPCIB0 */
static void tc35815_fixup(struct pci_dev *dev)
{
/* This device may have PM registers but not they are not suported. */
if (dev->pm_cap) {
dev_info(&dev->dev, "PM disabled\n");
dev->pm_cap = 0;
}
}
static void final_fixup(struct pci_dev *dev)
{
unsigned char bist;
/* Do build-in self test */
if (pci_read_config_byte(dev, PCI_BIST, &bist) == PCIBIOS_SUCCESSFUL &&
(bist & PCI_BIST_CAPABLE)) {
unsigned long timeout;
pci_set_power_state(dev, PCI_D0);
printk(KERN_INFO "PCI: %s BIST...", pci_name(dev));
pci_write_config_byte(dev, PCI_BIST, PCI_BIST_START);
timeout = jiffies + HZ * 2; /* timeout after 2 sec */
do {
pci_read_config_byte(dev, PCI_BIST, &bist);
if (time_after(jiffies, timeout))
break;
} while (bist & PCI_BIST_START);
if (bist & (PCI_BIST_CODE_MASK | PCI_BIST_START))
printk(KERN_CONT "failed. (0x%x)\n", bist);
else
printk(KERN_CONT "OK.\n");
}
}
#ifdef CONFIG_TOSHIBA_FPCIB0
#define PCI_DEVICE_ID_EFAR_SLC90E66_0 0x9460
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_EFAR, PCI_DEVICE_ID_EFAR_SLC90E66_0,
quirk_slc90e66_bridge);
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_EFAR, PCI_DEVICE_ID_EFAR_SLC90E66_1,
quirk_slc90e66_ide);
DECLARE_PCI_FIXUP_RESUME(PCI_VENDOR_ID_EFAR, PCI_DEVICE_ID_EFAR_SLC90E66_1,
quirk_slc90e66_ide);
#endif
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_TOSHIBA_2,
PCI_DEVICE_ID_TOSHIBA_TC35815_NWU, tc35815_fixup);
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_TOSHIBA_2,
PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939, tc35815_fixup);
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, final_fixup);
DECLARE_PCI_FIXUP_RESUME(PCI_ANY_ID, PCI_ANY_ID, final_fixup);
int pcibios_plat_dev_init(struct pci_dev *dev)
{
return 0;
}
int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
return txx9_board_vec->pci_map_irq(dev, slot, pin);
}
char * (*txx9_board_pcibios_setup)(char *str) __devinitdata;
char *__devinit txx9_pcibios_setup(char *str)
{
if (txx9_board_pcibios_setup && !txx9_board_pcibios_setup(str))
return NULL;
if (!strcmp(str, "picmg")) {
/* PICMG compliant backplane (TOSHIBA JMB-PICMG-ATX
(5V or 3.3V), JMB-PICMG-L2 (5V only), etc.) */
txx9_pci_option |= TXX9_PCI_OPT_PICMG;
return NULL;
} else if (!strcmp(str, "nopicmg")) {
/* non-PICMG compliant backplane (TOSHIBA
RBHBK4100,RBHBK4200, Interface PCM-PCM05, etc.) */
txx9_pci_option &= ~TXX9_PCI_OPT_PICMG;
return NULL;
} else if (!strncmp(str, "clk=", 4)) {
char *val = str + 4;
txx9_pci_option &= ~TXX9_PCI_OPT_CLK_MASK;
if (strcmp(val, "33") == 0)
txx9_pci_option |= TXX9_PCI_OPT_CLK_33;
else if (strcmp(val, "66") == 0)
txx9_pci_option |= TXX9_PCI_OPT_CLK_66;
else /* "auto" */
txx9_pci_option |= TXX9_PCI_OPT_CLK_AUTO;
return NULL;
} else if (!strncmp(str, "err=", 4)) {
if (!strcmp(str + 4, "panic"))
txx9_pci_err_action = TXX9_PCI_ERR_PANIC;
else if (!strcmp(str + 4, "ignore"))
txx9_pci_err_action = TXX9_PCI_ERR_IGNORE;
return NULL;
}
return str;
}