linux/arch/arm26/nwfpe/fpa11_cpdo.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

118 lines
3.5 KiB
C

/*
NetWinder Floating Point Emulator
(c) Rebel.COM, 1998,1999
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "fpa11.h"
#include "fpopcode.h"
unsigned int SingleCPDO(const unsigned int opcode);
unsigned int DoubleCPDO(const unsigned int opcode);
unsigned int ExtendedCPDO(const unsigned int opcode);
unsigned int EmulateCPDO(const unsigned int opcode)
{
FPA11 *fpa11 = GET_FPA11();
unsigned int Fd, nType, nDest, nRc = 1;
//printk("EmulateCPDO(0x%08x)\n",opcode);
/* Get the destination size. If not valid let Linux perform
an invalid instruction trap. */
nDest = getDestinationSize(opcode);
if (typeNone == nDest) return 0;
SetRoundingMode(opcode);
/* Compare the size of the operands in Fn and Fm.
Choose the largest size and perform operations in that size,
in order to make use of all the precision of the operands.
If Fm is a constant, we just grab a constant of a size
matching the size of the operand in Fn. */
if (MONADIC_INSTRUCTION(opcode))
nType = nDest;
else
nType = fpa11->fType[getFn(opcode)];
if (!CONSTANT_FM(opcode))
{
register unsigned int Fm = getFm(opcode);
if (nType < fpa11->fType[Fm])
{
nType = fpa11->fType[Fm];
}
}
switch (nType)
{
case typeSingle : nRc = SingleCPDO(opcode); break;
case typeDouble : nRc = DoubleCPDO(opcode); break;
case typeExtended : nRc = ExtendedCPDO(opcode); break;
default : nRc = 0;
}
/* If the operation succeeded, check to see if the result in the
destination register is the correct size. If not force it
to be. */
Fd = getFd(opcode);
nType = fpa11->fType[Fd];
if ((0 != nRc) && (nDest != nType))
{
switch (nDest)
{
case typeSingle:
{
if (typeDouble == nType)
fpa11->fpreg[Fd].fSingle =
float64_to_float32(fpa11->fpreg[Fd].fDouble);
else
fpa11->fpreg[Fd].fSingle =
floatx80_to_float32(fpa11->fpreg[Fd].fExtended);
}
break;
case typeDouble:
{
if (typeSingle == nType)
fpa11->fpreg[Fd].fDouble =
float32_to_float64(fpa11->fpreg[Fd].fSingle);
else
fpa11->fpreg[Fd].fDouble =
floatx80_to_float64(fpa11->fpreg[Fd].fExtended);
}
break;
case typeExtended:
{
if (typeSingle == nType)
fpa11->fpreg[Fd].fExtended =
float32_to_floatx80(fpa11->fpreg[Fd].fSingle);
else
fpa11->fpreg[Fd].fExtended =
float64_to_floatx80(fpa11->fpreg[Fd].fDouble);
}
break;
}
fpa11->fType[Fd] = nDest;
}
return nRc;
}