mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-13 12:53:27 +00:00
0d9ea75443
Instead of using the variable mmu_huge_psize to keep track of the huge page size we use an array of MMU_PAGE_* values. For each supported huge page size we need to know the hugepte_shift value and have a pgtable_cache. The hstate or an mmu_huge_psizes index is passed to functions so that they know which huge page size they should use. The hugepage sizes 16M and 64K are setup(if available on the hardware) so that they don't have to be set on the boot cmd line in order to use them. The number of 16G pages have to be specified at boot-time though (e.g. hugepagesz=16G hugepages=5). Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
167 lines
4.2 KiB
C
167 lines
4.2 KiB
C
#ifndef _ASM_POWERPC_PGALLOC_64_H
|
|
#define _ASM_POWERPC_PGALLOC_64_H
|
|
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/percpu.h>
|
|
|
|
#ifndef CONFIG_PPC_SUBPAGE_PROT
|
|
static inline void subpage_prot_free(pgd_t *pgd) {}
|
|
#endif
|
|
|
|
extern struct kmem_cache *pgtable_cache[];
|
|
|
|
#define PGD_CACHE_NUM 0
|
|
#define PUD_CACHE_NUM 1
|
|
#define PMD_CACHE_NUM 1
|
|
#define HUGEPTE_CACHE_NUM 2
|
|
#define PTE_NONCACHE_NUM 7 /* from GFP rather than kmem_cache */
|
|
|
|
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
return kmem_cache_alloc(pgtable_cache[PGD_CACHE_NUM], GFP_KERNEL);
|
|
}
|
|
|
|
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
subpage_prot_free(pgd);
|
|
kmem_cache_free(pgtable_cache[PGD_CACHE_NUM], pgd);
|
|
}
|
|
|
|
#ifndef CONFIG_PPC_64K_PAGES
|
|
|
|
#define pgd_populate(MM, PGD, PUD) pgd_set(PGD, PUD)
|
|
|
|
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return kmem_cache_alloc(pgtable_cache[PUD_CACHE_NUM],
|
|
GFP_KERNEL|__GFP_REPEAT);
|
|
}
|
|
|
|
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
|
|
{
|
|
kmem_cache_free(pgtable_cache[PUD_CACHE_NUM], pud);
|
|
}
|
|
|
|
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
|
|
{
|
|
pud_set(pud, (unsigned long)pmd);
|
|
}
|
|
|
|
#define pmd_populate(mm, pmd, pte_page) \
|
|
pmd_populate_kernel(mm, pmd, page_address(pte_page))
|
|
#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte))
|
|
#define pmd_pgtable(pmd) pmd_page(pmd)
|
|
|
|
|
|
#else /* CONFIG_PPC_64K_PAGES */
|
|
|
|
#define pud_populate(mm, pud, pmd) pud_set(pud, (unsigned long)pmd)
|
|
|
|
static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
|
|
pte_t *pte)
|
|
{
|
|
pmd_set(pmd, (unsigned long)pte);
|
|
}
|
|
|
|
#define pmd_populate(mm, pmd, pte_page) \
|
|
pmd_populate_kernel(mm, pmd, page_address(pte_page))
|
|
#define pmd_pgtable(pmd) pmd_page(pmd)
|
|
|
|
#endif /* CONFIG_PPC_64K_PAGES */
|
|
|
|
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return kmem_cache_alloc(pgtable_cache[PMD_CACHE_NUM],
|
|
GFP_KERNEL|__GFP_REPEAT);
|
|
}
|
|
|
|
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
kmem_cache_free(pgtable_cache[PMD_CACHE_NUM], pmd);
|
|
}
|
|
|
|
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
|
|
}
|
|
|
|
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct page *page;
|
|
pte_t *pte;
|
|
|
|
pte = pte_alloc_one_kernel(mm, address);
|
|
if (!pte)
|
|
return NULL;
|
|
page = virt_to_page(pte);
|
|
pgtable_page_ctor(page);
|
|
return page;
|
|
}
|
|
|
|
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
|
|
{
|
|
free_page((unsigned long)pte);
|
|
}
|
|
|
|
static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
|
|
{
|
|
pgtable_page_dtor(ptepage);
|
|
__free_page(ptepage);
|
|
}
|
|
|
|
#define PGF_CACHENUM_MASK 0x7
|
|
|
|
typedef struct pgtable_free {
|
|
unsigned long val;
|
|
} pgtable_free_t;
|
|
|
|
static inline pgtable_free_t pgtable_free_cache(void *p, int cachenum,
|
|
unsigned long mask)
|
|
{
|
|
BUG_ON(cachenum > PGF_CACHENUM_MASK);
|
|
|
|
return (pgtable_free_t){.val = ((unsigned long) p & ~mask) | cachenum};
|
|
}
|
|
|
|
static inline void pgtable_free(pgtable_free_t pgf)
|
|
{
|
|
void *p = (void *)(pgf.val & ~PGF_CACHENUM_MASK);
|
|
int cachenum = pgf.val & PGF_CACHENUM_MASK;
|
|
|
|
if (cachenum == PTE_NONCACHE_NUM)
|
|
free_page((unsigned long)p);
|
|
else
|
|
kmem_cache_free(pgtable_cache[cachenum], p);
|
|
}
|
|
|
|
extern void pgtable_free_tlb(struct mmu_gather *tlb, pgtable_free_t pgf);
|
|
|
|
#define __pte_free_tlb(tlb,ptepage) \
|
|
do { \
|
|
pgtable_page_dtor(ptepage); \
|
|
pgtable_free_tlb(tlb, pgtable_free_cache(page_address(ptepage), \
|
|
PTE_NONCACHE_NUM, PTE_TABLE_SIZE-1)); \
|
|
} while (0)
|
|
#define __pmd_free_tlb(tlb, pmd) \
|
|
pgtable_free_tlb(tlb, pgtable_free_cache(pmd, \
|
|
PMD_CACHE_NUM, PMD_TABLE_SIZE-1))
|
|
#ifndef CONFIG_PPC_64K_PAGES
|
|
#define __pud_free_tlb(tlb, pud) \
|
|
pgtable_free_tlb(tlb, pgtable_free_cache(pud, \
|
|
PUD_CACHE_NUM, PUD_TABLE_SIZE-1))
|
|
#endif /* CONFIG_PPC_64K_PAGES */
|
|
|
|
#define check_pgt_cache() do { } while (0)
|
|
|
|
#endif /* _ASM_POWERPC_PGALLOC_64_H */
|