mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-15 21:30:43 +00:00
e0c8e42f8f
Various simplifiactions. printk format corrections. Convert more code to use the new debug functions. Signed-off-by: Artem B. Bityutskiy <dedekind@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
928 lines
30 KiB
C
928 lines
30 KiB
C
/*
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
|
*
|
|
* Copyright (C) 2001-2003 Red Hat, Inc.
|
|
*
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
|
*
|
|
* $Id: scan.c,v 1.121 2005/07/20 15:32:28 dedekind Exp $
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/compiler.h>
|
|
#include "nodelist.h"
|
|
|
|
#define DEFAULT_EMPTY_SCAN_SIZE 1024
|
|
|
|
#define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
|
|
c->free_size -= _x; c->dirty_size += _x; \
|
|
jeb->free_size -= _x ; jeb->dirty_size += _x; \
|
|
}while(0)
|
|
#define USED_SPACE(x) do { typeof(x) _x = (x); \
|
|
c->free_size -= _x; c->used_size += _x; \
|
|
jeb->free_size -= _x ; jeb->used_size += _x; \
|
|
}while(0)
|
|
#define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
|
|
c->free_size -= _x; c->unchecked_size += _x; \
|
|
jeb->free_size -= _x ; jeb->unchecked_size += _x; \
|
|
}while(0)
|
|
|
|
#define noisy_printk(noise, args...) do { \
|
|
if (*(noise)) { \
|
|
printk(KERN_NOTICE args); \
|
|
(*(noise))--; \
|
|
if (!(*(noise))) { \
|
|
printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
static uint32_t pseudo_random;
|
|
|
|
static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
unsigned char *buf, uint32_t buf_size);
|
|
|
|
/* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
|
|
* Returning an error will abort the mount - bad checksums etc. should just mark the space
|
|
* as dirty.
|
|
*/
|
|
static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_raw_inode *ri, uint32_t ofs);
|
|
static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_raw_dirent *rd, uint32_t ofs);
|
|
|
|
#define BLK_STATE_ALLFF 0
|
|
#define BLK_STATE_CLEAN 1
|
|
#define BLK_STATE_PARTDIRTY 2
|
|
#define BLK_STATE_CLEANMARKER 3
|
|
#define BLK_STATE_ALLDIRTY 4
|
|
#define BLK_STATE_BADBLOCK 5
|
|
|
|
static inline int min_free(struct jffs2_sb_info *c)
|
|
{
|
|
uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
|
|
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
|
|
if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
|
|
return c->wbuf_pagesize;
|
|
#endif
|
|
return min;
|
|
|
|
}
|
|
|
|
static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) {
|
|
if (sector_size < DEFAULT_EMPTY_SCAN_SIZE)
|
|
return sector_size;
|
|
else
|
|
return DEFAULT_EMPTY_SCAN_SIZE;
|
|
}
|
|
|
|
int jffs2_scan_medium(struct jffs2_sb_info *c)
|
|
{
|
|
int i, ret;
|
|
uint32_t empty_blocks = 0, bad_blocks = 0;
|
|
unsigned char *flashbuf = NULL;
|
|
uint32_t buf_size = 0;
|
|
#ifndef __ECOS
|
|
size_t pointlen;
|
|
|
|
if (c->mtd->point) {
|
|
ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf);
|
|
if (!ret && pointlen < c->mtd->size) {
|
|
/* Don't muck about if it won't let us point to the whole flash */
|
|
D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
|
|
c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
|
|
flashbuf = NULL;
|
|
}
|
|
if (ret)
|
|
D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
|
|
}
|
|
#endif
|
|
if (!flashbuf) {
|
|
/* For NAND it's quicker to read a whole eraseblock at a time,
|
|
apparently */
|
|
if (jffs2_cleanmarker_oob(c))
|
|
buf_size = c->sector_size;
|
|
else
|
|
buf_size = PAGE_SIZE;
|
|
|
|
/* Respect kmalloc limitations */
|
|
if (buf_size > 128*1024)
|
|
buf_size = 128*1024;
|
|
|
|
D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
|
|
flashbuf = kmalloc(buf_size, GFP_KERNEL);
|
|
if (!flashbuf)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i=0; i<c->nr_blocks; i++) {
|
|
struct jffs2_eraseblock *jeb = &c->blocks[i];
|
|
|
|
ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size);
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
|
|
|
/* Now decide which list to put it on */
|
|
switch(ret) {
|
|
case BLK_STATE_ALLFF:
|
|
/*
|
|
* Empty block. Since we can't be sure it
|
|
* was entirely erased, we just queue it for erase
|
|
* again. It will be marked as such when the erase
|
|
* is complete. Meanwhile we still count it as empty
|
|
* for later checks.
|
|
*/
|
|
empty_blocks++;
|
|
list_add(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
break;
|
|
|
|
case BLK_STATE_CLEANMARKER:
|
|
/* Only a CLEANMARKER node is valid */
|
|
if (!jeb->dirty_size) {
|
|
/* It's actually free */
|
|
list_add(&jeb->list, &c->free_list);
|
|
c->nr_free_blocks++;
|
|
} else {
|
|
/* Dirt */
|
|
D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
|
|
list_add(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
}
|
|
break;
|
|
|
|
case BLK_STATE_CLEAN:
|
|
/* Full (or almost full) of clean data. Clean list */
|
|
list_add(&jeb->list, &c->clean_list);
|
|
break;
|
|
|
|
case BLK_STATE_PARTDIRTY:
|
|
/* Some data, but not full. Dirty list. */
|
|
/* We want to remember the block with most free space
|
|
and stick it in the 'nextblock' position to start writing to it. */
|
|
if (jeb->free_size > min_free(c) &&
|
|
(!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
|
|
/* Better candidate for the next writes to go to */
|
|
if (c->nextblock) {
|
|
c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
|
|
c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
|
|
c->free_size -= c->nextblock->free_size;
|
|
c->wasted_size -= c->nextblock->wasted_size;
|
|
c->nextblock->free_size = c->nextblock->wasted_size = 0;
|
|
if (VERYDIRTY(c, c->nextblock->dirty_size)) {
|
|
list_add(&c->nextblock->list, &c->very_dirty_list);
|
|
} else {
|
|
list_add(&c->nextblock->list, &c->dirty_list);
|
|
}
|
|
}
|
|
c->nextblock = jeb;
|
|
} else {
|
|
jeb->dirty_size += jeb->free_size + jeb->wasted_size;
|
|
c->dirty_size += jeb->free_size + jeb->wasted_size;
|
|
c->free_size -= jeb->free_size;
|
|
c->wasted_size -= jeb->wasted_size;
|
|
jeb->free_size = jeb->wasted_size = 0;
|
|
if (VERYDIRTY(c, jeb->dirty_size)) {
|
|
list_add(&jeb->list, &c->very_dirty_list);
|
|
} else {
|
|
list_add(&jeb->list, &c->dirty_list);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BLK_STATE_ALLDIRTY:
|
|
/* Nothing valid - not even a clean marker. Needs erasing. */
|
|
/* For now we just put it on the erasing list. We'll start the erases later */
|
|
D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
|
|
list_add(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
break;
|
|
|
|
case BLK_STATE_BADBLOCK:
|
|
D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
|
|
list_add(&jeb->list, &c->bad_list);
|
|
c->bad_size += c->sector_size;
|
|
c->free_size -= c->sector_size;
|
|
bad_blocks++;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
|
|
if (c->nextblock && (c->nextblock->dirty_size)) {
|
|
c->nextblock->wasted_size += c->nextblock->dirty_size;
|
|
c->wasted_size += c->nextblock->dirty_size;
|
|
c->dirty_size -= c->nextblock->dirty_size;
|
|
c->nextblock->dirty_size = 0;
|
|
}
|
|
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
|
|
if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
|
|
/* If we're going to start writing into a block which already
|
|
contains data, and the end of the data isn't page-aligned,
|
|
skip a little and align it. */
|
|
|
|
uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1);
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
|
|
skip));
|
|
c->nextblock->wasted_size += skip;
|
|
c->wasted_size += skip;
|
|
|
|
c->nextblock->free_size -= skip;
|
|
c->free_size -= skip;
|
|
}
|
|
#endif
|
|
if (c->nr_erasing_blocks) {
|
|
if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
|
|
printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
|
|
printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
jffs2_erase_pending_trigger(c);
|
|
}
|
|
ret = 0;
|
|
out:
|
|
if (buf_size)
|
|
kfree(flashbuf);
|
|
#ifndef __ECOS
|
|
else
|
|
c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf,
|
|
uint32_t ofs, uint32_t len)
|
|
{
|
|
int ret;
|
|
size_t retlen;
|
|
|
|
ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
|
|
if (ret) {
|
|
D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
|
|
return ret;
|
|
}
|
|
if (retlen < len) {
|
|
D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
|
|
return -EIO;
|
|
}
|
|
D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs));
|
|
D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]));
|
|
return 0;
|
|
}
|
|
|
|
static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
unsigned char *buf, uint32_t buf_size) {
|
|
struct jffs2_unknown_node *node;
|
|
struct jffs2_unknown_node crcnode;
|
|
uint32_t ofs, prevofs;
|
|
uint32_t hdr_crc, buf_ofs, buf_len;
|
|
int err;
|
|
int noise = 0;
|
|
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
|
|
int cleanmarkerfound = 0;
|
|
#endif
|
|
|
|
ofs = jeb->offset;
|
|
prevofs = jeb->offset - 1;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
|
|
|
|
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
|
|
if (jffs2_cleanmarker_oob(c)) {
|
|
int ret = jffs2_check_nand_cleanmarker(c, jeb);
|
|
D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
|
|
/* Even if it's not found, we still scan to see
|
|
if the block is empty. We use this information
|
|
to decide whether to erase it or not. */
|
|
switch (ret) {
|
|
case 0: cleanmarkerfound = 1; break;
|
|
case 1: break;
|
|
case 2: return BLK_STATE_BADBLOCK;
|
|
case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
|
|
default: return ret;
|
|
}
|
|
}
|
|
#endif
|
|
buf_ofs = jeb->offset;
|
|
|
|
if (!buf_size) {
|
|
buf_len = c->sector_size;
|
|
} else {
|
|
buf_len = EMPTY_SCAN_SIZE(c->sector_size);
|
|
err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* We temporarily use 'ofs' as a pointer into the buffer/jeb */
|
|
ofs = 0;
|
|
|
|
/* Scan only 4KiB of 0xFF before declaring it's empty */
|
|
while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
|
|
ofs += 4;
|
|
|
|
if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) {
|
|
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
|
|
if (jffs2_cleanmarker_oob(c)) {
|
|
/* scan oob, take care of cleanmarker */
|
|
int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
|
|
D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
|
|
switch (ret) {
|
|
case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
|
|
case 1: return BLK_STATE_ALLDIRTY;
|
|
default: return ret;
|
|
}
|
|
}
|
|
#endif
|
|
D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
|
|
if (c->cleanmarker_size == 0)
|
|
return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */
|
|
else
|
|
return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
|
|
}
|
|
if (ofs) {
|
|
D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
|
|
jeb->offset + ofs));
|
|
DIRTY_SPACE(ofs);
|
|
}
|
|
|
|
/* Now ofs is a complete physical flash offset as it always was... */
|
|
ofs += jeb->offset;
|
|
|
|
noise = 10;
|
|
|
|
scan_more:
|
|
while(ofs < jeb->offset + c->sector_size) {
|
|
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
|
|
|
cond_resched();
|
|
|
|
if (ofs & 3) {
|
|
printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
|
|
ofs = PAD(ofs);
|
|
continue;
|
|
}
|
|
if (ofs == prevofs) {
|
|
printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
|
|
DIRTY_SPACE(4);
|
|
ofs += 4;
|
|
continue;
|
|
}
|
|
prevofs = ofs;
|
|
|
|
if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
|
|
D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
|
|
jeb->offset, c->sector_size, ofs, sizeof(*node)));
|
|
DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
|
|
break;
|
|
}
|
|
|
|
if (buf_ofs + buf_len < ofs + sizeof(*node)) {
|
|
buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
|
|
D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
|
|
sizeof(struct jffs2_unknown_node), buf_len, ofs));
|
|
err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
|
|
if (err)
|
|
return err;
|
|
buf_ofs = ofs;
|
|
}
|
|
|
|
node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];
|
|
|
|
if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
|
|
uint32_t inbuf_ofs;
|
|
uint32_t empty_start;
|
|
|
|
empty_start = ofs;
|
|
ofs += 4;
|
|
|
|
D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
|
|
more_empty:
|
|
inbuf_ofs = ofs - buf_ofs;
|
|
while (inbuf_ofs < buf_len) {
|
|
if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
|
|
printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
|
|
empty_start, ofs);
|
|
DIRTY_SPACE(ofs-empty_start);
|
|
goto scan_more;
|
|
}
|
|
|
|
inbuf_ofs+=4;
|
|
ofs += 4;
|
|
}
|
|
/* Ran off end. */
|
|
D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));
|
|
|
|
/* If we're only checking the beginning of a block with a cleanmarker,
|
|
bail now */
|
|
if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
|
|
c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_phys) {
|
|
D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size)));
|
|
return BLK_STATE_CLEANMARKER;
|
|
}
|
|
|
|
/* See how much more there is to read in this eraseblock... */
|
|
buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
|
|
if (!buf_len) {
|
|
/* No more to read. Break out of main loop without marking
|
|
this range of empty space as dirty (because it's not) */
|
|
D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
|
|
empty_start));
|
|
break;
|
|
}
|
|
D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
|
|
err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
|
|
if (err)
|
|
return err;
|
|
buf_ofs = ofs;
|
|
goto more_empty;
|
|
}
|
|
|
|
if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
|
|
printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
|
|
DIRTY_SPACE(4);
|
|
ofs += 4;
|
|
continue;
|
|
}
|
|
if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
|
|
D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
|
|
DIRTY_SPACE(4);
|
|
ofs += 4;
|
|
continue;
|
|
}
|
|
if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
|
|
printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
|
|
printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
|
|
DIRTY_SPACE(4);
|
|
ofs += 4;
|
|
continue;
|
|
}
|
|
if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
|
|
/* OK. We're out of possibilities. Whinge and move on */
|
|
noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
|
|
JFFS2_MAGIC_BITMASK, ofs,
|
|
je16_to_cpu(node->magic));
|
|
DIRTY_SPACE(4);
|
|
ofs += 4;
|
|
continue;
|
|
}
|
|
/* We seem to have a node of sorts. Check the CRC */
|
|
crcnode.magic = node->magic;
|
|
crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
|
|
crcnode.totlen = node->totlen;
|
|
hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
|
|
|
|
if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
|
|
noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
|
|
ofs, je16_to_cpu(node->magic),
|
|
je16_to_cpu(node->nodetype),
|
|
je32_to_cpu(node->totlen),
|
|
je32_to_cpu(node->hdr_crc),
|
|
hdr_crc);
|
|
DIRTY_SPACE(4);
|
|
ofs += 4;
|
|
continue;
|
|
}
|
|
|
|
if (ofs + je32_to_cpu(node->totlen) >
|
|
jeb->offset + c->sector_size) {
|
|
/* Eep. Node goes over the end of the erase block. */
|
|
printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
|
|
ofs, je32_to_cpu(node->totlen));
|
|
printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
|
|
DIRTY_SPACE(4);
|
|
ofs += 4;
|
|
continue;
|
|
}
|
|
|
|
if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
|
|
/* Wheee. This is an obsoleted node */
|
|
D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
|
|
DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
|
|
ofs += PAD(je32_to_cpu(node->totlen));
|
|
continue;
|
|
}
|
|
|
|
switch(je16_to_cpu(node->nodetype)) {
|
|
case JFFS2_NODETYPE_INODE:
|
|
if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
|
|
buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
|
|
D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
|
|
sizeof(struct jffs2_raw_inode), buf_len, ofs));
|
|
err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
|
|
if (err)
|
|
return err;
|
|
buf_ofs = ofs;
|
|
node = (void *)buf;
|
|
}
|
|
err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
|
|
if (err) return err;
|
|
ofs += PAD(je32_to_cpu(node->totlen));
|
|
break;
|
|
|
|
case JFFS2_NODETYPE_DIRENT:
|
|
if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
|
|
buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
|
|
D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
|
|
je32_to_cpu(node->totlen), buf_len, ofs));
|
|
err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
|
|
if (err)
|
|
return err;
|
|
buf_ofs = ofs;
|
|
node = (void *)buf;
|
|
}
|
|
err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
|
|
if (err) return err;
|
|
ofs += PAD(je32_to_cpu(node->totlen));
|
|
break;
|
|
|
|
case JFFS2_NODETYPE_CLEANMARKER:
|
|
D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
|
|
if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
|
|
printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
|
|
ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
|
|
DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
|
|
ofs += PAD(sizeof(struct jffs2_unknown_node));
|
|
} else if (jeb->first_node) {
|
|
printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
|
|
DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
|
|
ofs += PAD(sizeof(struct jffs2_unknown_node));
|
|
} else {
|
|
struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
|
|
if (!marker_ref) {
|
|
printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
|
|
return -ENOMEM;
|
|
}
|
|
marker_ref->next_in_ino = NULL;
|
|
marker_ref->next_phys = NULL;
|
|
marker_ref->flash_offset = ofs | REF_NORMAL;
|
|
marker_ref->__totlen = c->cleanmarker_size;
|
|
jeb->first_node = jeb->last_node = marker_ref;
|
|
|
|
USED_SPACE(PAD(c->cleanmarker_size));
|
|
ofs += PAD(c->cleanmarker_size);
|
|
}
|
|
break;
|
|
|
|
case JFFS2_NODETYPE_PADDING:
|
|
DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
|
|
ofs += PAD(je32_to_cpu(node->totlen));
|
|
break;
|
|
|
|
default:
|
|
switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
|
|
case JFFS2_FEATURE_ROCOMPAT:
|
|
printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
|
|
c->flags |= JFFS2_SB_FLAG_RO;
|
|
if (!(jffs2_is_readonly(c)))
|
|
return -EROFS;
|
|
DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
|
|
ofs += PAD(je32_to_cpu(node->totlen));
|
|
break;
|
|
|
|
case JFFS2_FEATURE_INCOMPAT:
|
|
printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
|
|
return -EINVAL;
|
|
|
|
case JFFS2_FEATURE_RWCOMPAT_DELETE:
|
|
D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
|
|
DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
|
|
ofs += PAD(je32_to_cpu(node->totlen));
|
|
break;
|
|
|
|
case JFFS2_FEATURE_RWCOMPAT_COPY:
|
|
D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
|
|
USED_SPACE(PAD(je32_to_cpu(node->totlen)));
|
|
ofs += PAD(je32_to_cpu(node->totlen));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset,
|
|
jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));
|
|
|
|
/* mark_node_obsolete can add to wasted !! */
|
|
if (jeb->wasted_size) {
|
|
jeb->dirty_size += jeb->wasted_size;
|
|
c->dirty_size += jeb->wasted_size;
|
|
c->wasted_size -= jeb->wasted_size;
|
|
jeb->wasted_size = 0;
|
|
}
|
|
|
|
if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
|
|
&& (!jeb->first_node || !jeb->first_node->next_phys) )
|
|
return BLK_STATE_CLEANMARKER;
|
|
|
|
/* move blocks with max 4 byte dirty space to cleanlist */
|
|
else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
|
|
c->dirty_size -= jeb->dirty_size;
|
|
c->wasted_size += jeb->dirty_size;
|
|
jeb->wasted_size += jeb->dirty_size;
|
|
jeb->dirty_size = 0;
|
|
return BLK_STATE_CLEAN;
|
|
} else if (jeb->used_size || jeb->unchecked_size)
|
|
return BLK_STATE_PARTDIRTY;
|
|
else
|
|
return BLK_STATE_ALLDIRTY;
|
|
}
|
|
|
|
static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
|
|
{
|
|
struct jffs2_inode_cache *ic;
|
|
|
|
ic = jffs2_get_ino_cache(c, ino);
|
|
if (ic)
|
|
return ic;
|
|
|
|
if (ino > c->highest_ino)
|
|
c->highest_ino = ino;
|
|
|
|
ic = jffs2_alloc_inode_cache();
|
|
if (!ic) {
|
|
printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
|
|
return NULL;
|
|
}
|
|
memset(ic, 0, sizeof(*ic));
|
|
|
|
ic->ino = ino;
|
|
ic->nodes = (void *)ic;
|
|
jffs2_add_ino_cache(c, ic);
|
|
if (ino == 1)
|
|
ic->nlink = 1;
|
|
return ic;
|
|
}
|
|
|
|
static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_raw_inode *ri, uint32_t ofs)
|
|
{
|
|
struct jffs2_raw_node_ref *raw;
|
|
struct jffs2_inode_cache *ic;
|
|
uint32_t ino = je32_to_cpu(ri->ino);
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));
|
|
|
|
/* We do very little here now. Just check the ino# to which we should attribute
|
|
this node; we can do all the CRC checking etc. later. There's a tradeoff here --
|
|
we used to scan the flash once only, reading everything we want from it into
|
|
memory, then building all our in-core data structures and freeing the extra
|
|
information. Now we allow the first part of the mount to complete a lot quicker,
|
|
but we have to go _back_ to the flash in order to finish the CRC checking, etc.
|
|
Which means that the _full_ amount of time to get to proper write mode with GC
|
|
operational may actually be _longer_ than before. Sucks to be me. */
|
|
|
|
raw = jffs2_alloc_raw_node_ref();
|
|
if (!raw) {
|
|
printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ic = jffs2_get_ino_cache(c, ino);
|
|
if (!ic) {
|
|
/* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
|
|
first node we found for this inode. Do a CRC check to protect against the former
|
|
case */
|
|
uint32_t crc = crc32(0, ri, sizeof(*ri)-8);
|
|
|
|
if (crc != je32_to_cpu(ri->node_crc)) {
|
|
printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ofs, je32_to_cpu(ri->node_crc), crc);
|
|
/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
|
|
DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
|
|
jffs2_free_raw_node_ref(raw);
|
|
return 0;
|
|
}
|
|
ic = jffs2_scan_make_ino_cache(c, ino);
|
|
if (!ic) {
|
|
jffs2_free_raw_node_ref(raw);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* Wheee. It worked */
|
|
|
|
raw->flash_offset = ofs | REF_UNCHECKED;
|
|
raw->__totlen = PAD(je32_to_cpu(ri->totlen));
|
|
raw->next_phys = NULL;
|
|
raw->next_in_ino = ic->nodes;
|
|
|
|
ic->nodes = raw;
|
|
if (!jeb->first_node)
|
|
jeb->first_node = raw;
|
|
if (jeb->last_node)
|
|
jeb->last_node->next_phys = raw;
|
|
jeb->last_node = raw;
|
|
|
|
D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
|
|
je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
|
|
je32_to_cpu(ri->offset),
|
|
je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));
|
|
|
|
pseudo_random += je32_to_cpu(ri->version);
|
|
|
|
UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
|
|
return 0;
|
|
}
|
|
|
|
static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
|
|
struct jffs2_raw_dirent *rd, uint32_t ofs)
|
|
{
|
|
struct jffs2_raw_node_ref *raw;
|
|
struct jffs2_full_dirent *fd;
|
|
struct jffs2_inode_cache *ic;
|
|
uint32_t crc;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));
|
|
|
|
/* We don't get here unless the node is still valid, so we don't have to
|
|
mask in the ACCURATE bit any more. */
|
|
crc = crc32(0, rd, sizeof(*rd)-8);
|
|
|
|
if (crc != je32_to_cpu(rd->node_crc)) {
|
|
printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ofs, je32_to_cpu(rd->node_crc), crc);
|
|
/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
|
|
DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
|
|
return 0;
|
|
}
|
|
|
|
pseudo_random += je32_to_cpu(rd->version);
|
|
|
|
fd = jffs2_alloc_full_dirent(rd->nsize+1);
|
|
if (!fd) {
|
|
return -ENOMEM;
|
|
}
|
|
memcpy(&fd->name, rd->name, rd->nsize);
|
|
fd->name[rd->nsize] = 0;
|
|
|
|
crc = crc32(0, fd->name, rd->nsize);
|
|
if (crc != je32_to_cpu(rd->name_crc)) {
|
|
printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
|
|
ofs, je32_to_cpu(rd->name_crc), crc);
|
|
D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
|
|
jffs2_free_full_dirent(fd);
|
|
/* FIXME: Why do we believe totlen? */
|
|
/* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
|
|
DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
|
|
return 0;
|
|
}
|
|
raw = jffs2_alloc_raw_node_ref();
|
|
if (!raw) {
|
|
jffs2_free_full_dirent(fd);
|
|
printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
|
|
if (!ic) {
|
|
jffs2_free_full_dirent(fd);
|
|
jffs2_free_raw_node_ref(raw);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
raw->__totlen = PAD(je32_to_cpu(rd->totlen));
|
|
raw->flash_offset = ofs | REF_PRISTINE;
|
|
raw->next_phys = NULL;
|
|
raw->next_in_ino = ic->nodes;
|
|
ic->nodes = raw;
|
|
if (!jeb->first_node)
|
|
jeb->first_node = raw;
|
|
if (jeb->last_node)
|
|
jeb->last_node->next_phys = raw;
|
|
jeb->last_node = raw;
|
|
|
|
fd->raw = raw;
|
|
fd->next = NULL;
|
|
fd->version = je32_to_cpu(rd->version);
|
|
fd->ino = je32_to_cpu(rd->ino);
|
|
fd->nhash = full_name_hash(fd->name, rd->nsize);
|
|
fd->type = rd->type;
|
|
USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
|
|
jffs2_add_fd_to_list(c, fd, &ic->scan_dents);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int count_list(struct list_head *l)
|
|
{
|
|
uint32_t count = 0;
|
|
struct list_head *tmp;
|
|
|
|
list_for_each(tmp, l) {
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* Note: This breaks if list_empty(head). I don't care. You
|
|
might, if you copy this code and use it elsewhere :) */
|
|
static void rotate_list(struct list_head *head, uint32_t count)
|
|
{
|
|
struct list_head *n = head->next;
|
|
|
|
list_del(head);
|
|
while(count--) {
|
|
n = n->next;
|
|
}
|
|
list_add(head, n);
|
|
}
|
|
|
|
void jffs2_rotate_lists(struct jffs2_sb_info *c)
|
|
{
|
|
uint32_t x;
|
|
uint32_t rotateby;
|
|
|
|
x = count_list(&c->clean_list);
|
|
if (x) {
|
|
rotateby = pseudo_random % x;
|
|
D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby));
|
|
|
|
rotate_list((&c->clean_list), rotateby);
|
|
|
|
D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n",
|
|
list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset));
|
|
} else {
|
|
D1(printk(KERN_DEBUG "Not rotating empty clean_list\n"));
|
|
}
|
|
|
|
x = count_list(&c->very_dirty_list);
|
|
if (x) {
|
|
rotateby = pseudo_random % x;
|
|
D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby));
|
|
|
|
rotate_list((&c->very_dirty_list), rotateby);
|
|
|
|
D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n",
|
|
list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset));
|
|
} else {
|
|
D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n"));
|
|
}
|
|
|
|
x = count_list(&c->dirty_list);
|
|
if (x) {
|
|
rotateby = pseudo_random % x;
|
|
D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby));
|
|
|
|
rotate_list((&c->dirty_list), rotateby);
|
|
|
|
D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n",
|
|
list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset));
|
|
} else {
|
|
D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n"));
|
|
}
|
|
|
|
x = count_list(&c->erasable_list);
|
|
if (x) {
|
|
rotateby = pseudo_random % x;
|
|
D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby));
|
|
|
|
rotate_list((&c->erasable_list), rotateby);
|
|
|
|
D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n",
|
|
list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset));
|
|
} else {
|
|
D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n"));
|
|
}
|
|
|
|
if (c->nr_erasing_blocks) {
|
|
rotateby = pseudo_random % c->nr_erasing_blocks;
|
|
D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby));
|
|
|
|
rotate_list((&c->erase_pending_list), rotateby);
|
|
|
|
D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n",
|
|
list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset));
|
|
} else {
|
|
D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n"));
|
|
}
|
|
|
|
if (c->nr_free_blocks) {
|
|
rotateby = pseudo_random % c->nr_free_blocks;
|
|
D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby));
|
|
|
|
rotate_list((&c->free_list), rotateby);
|
|
|
|
D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n",
|
|
list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset));
|
|
} else {
|
|
D1(printk(KERN_DEBUG "Not rotating empty free_list\n"));
|
|
}
|
|
}
|