mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-22 18:42:01 +00:00
abb2bafd29
The EFI firmware on Macs contains a full-fledged network stack for downloading OS X images from osrecovery.apple.com. Unfortunately on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331 wireless card on every boot and leaves it enabled even after ExitBootServices has been called. The card continues to assert its IRQ line, causing spurious interrupts if the IRQ is shared. It also corrupts memory by DMAing received packets, allowing for remote code execution over the air. This only stops when a driver is loaded for the wireless card, which may be never if the driver is not installed or blacklisted. The issue seems to be constrained to the Broadcom 4331. Chris Milsted has verified that the newer Broadcom 4360 built into the MacBookPro11,3 (2013/2014) does not exhibit this behaviour. The chances that Apple will ever supply a firmware fix for the older machines appear to be zero. The solution is to reset the card on boot by writing to a reset bit in its mmio space. This must be done as an early quirk and not as a plain vanilla PCI quirk to successfully combat memory corruption by DMAed packets: Matthew Garrett found out in 2012 that the packets are written to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html). This type of memory is made available to the page allocator by efi_free_boot_services(). Plain vanilla PCI quirks run much later, in subsys initcall level. In-between a time window would be open for memory corruption. Random crashes occurring in this time window and attributed to DMAed packets have indeed been observed in the wild by Chris Bainbridge. When Matthew Garrett analyzed the memory corruption issue in 2012, he sought to fix it with a grub quirk which transitions the card to D3hot: http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56 This approach does not help users with other bootloaders and while it may prevent DMAed packets, it does not cure the spurious interrupts emanating from the card. Unfortunately the card's mmio space is inaccessible in D3hot, so to reset it, we have to undo the effect of Matthew's grub patch and transition the card back to D0. Note that the quirk takes a few shortcuts to reduce the amount of code: The size of BAR 0 and the location of the PM capability is identical on all affected machines and therefore hardcoded. Only the address of BAR 0 differs between models. Also, it is assumed that the BCMA core currently mapped is the 802.11 core. The EFI driver seems to always take care of this. Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback towards finding the best solution to this problem. The following should be a comprehensive list of affected models: iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16] iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16] Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12] Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12] Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12] MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12] MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12] MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12] MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12] For posterity, spurious interrupts caused by the Broadcom 4331 wireless card resulted in splats like this (stacktrace omitted): irq 17: nobody cared (try booting with the "irqpoll" option) handlers: [<ffffffff81374370>] pcie_isr [<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci] [<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec] Disabling IRQ #17 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130 Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732 Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1] Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1] Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2] Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1] Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2] Signed-off-by: Lukas Wunner <lukas@wunner.de> Acked-by: Rafał Miłecki <zajec5@gmail.com> Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chris Milsted <cmilsted@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Michael Buesch <m@bues.ch> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: b43-dev@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de [ Did minor readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
Broadcom introduced new bus as replacement for older SSB. It is based on AMBA, however from programming point of view there is nothing AMBA specific we use. Standard AMBA drivers are platform specific, have hardcoded addresses and use AMBA standard fields like CID and PID. In case of Broadcom's cards every device consists of: 1) Broadcom specific AMBA device. It is put on AMBA bus, but can not be treated as standard AMBA device. Reading it's CID or PID can cause machine lockup. 2) AMBA standard devices called ports or wrappers. They have CIDs (AMBA_CID) and PIDs (0x103BB369), but we do not use that info for anything. One of that devices is used for managing Broadcom specific core. Addresses of AMBA devices are not hardcoded in driver and have to be read from EPROM. In this situation we decided to introduce separated bus. It can contain up to 16 devices identified by Broadcom specific fields: manufacturer, id, revision and class.