mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-09 02:51:20 +00:00
f9a7febd82
Currently when using an initrd on a MIPS system the start of the bootmem region of memory is set to the larger of the end of the kernel bss region (_end) or the end of the initrd. In a typical memory layout where the initrd is at some address above the kernel image this means that the start of the bootmem region will be the end of the initrd. But when we are done processing/loading the initrd we have no way to reclaim the memory region it occupied, and we lose a large chunk of now otherwise empty RAM from our final running system. The bootmem code is designed to allow this initrd to be reserved (and the code in finalize_initrd() currently does this). When the initrd is finally processed/loaded its reserved memory is freed. Fix the setting of the start of the bootmem map to be the end of the kernel. [ralf@linux-mips.org: fold in the fix of Ashok Kumar <ashoks@broadcom.com>.] Signed-off-by: Greg Ungerer <gerg@uclinux.org> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/1574/ Cc: Ashok Kumar <ashoks@broadcom.com> Patchwork: https://patchwork.linux-mips.org/patch/5883/ Patchwork: https://patchwork.linux-mips.org/patch/6028/ Patchwork: https://patchwork.linux-mips.org/patch/6064/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
776 lines
18 KiB
C
776 lines
18 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995 Waldorf Electronics
|
|
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
|
|
* Copyright (C) 1996 Stoned Elipot
|
|
* Copyright (C) 1999 Silicon Graphics, Inc.
|
|
* Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/export.h>
|
|
#include <linux/screen_info.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/console.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <asm/addrspace.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/smp-ops.h>
|
|
#include <asm/prom.h>
|
|
|
|
struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
|
|
|
|
EXPORT_SYMBOL(cpu_data);
|
|
|
|
#ifdef CONFIG_VT
|
|
struct screen_info screen_info;
|
|
#endif
|
|
|
|
/*
|
|
* Despite it's name this variable is even if we don't have PCI
|
|
*/
|
|
unsigned int PCI_DMA_BUS_IS_PHYS;
|
|
|
|
EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
|
|
|
|
/*
|
|
* Setup information
|
|
*
|
|
* These are initialized so they are in the .data section
|
|
*/
|
|
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
|
|
|
|
EXPORT_SYMBOL(mips_machtype);
|
|
|
|
struct boot_mem_map boot_mem_map;
|
|
|
|
static char __initdata command_line[COMMAND_LINE_SIZE];
|
|
char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
|
|
#endif
|
|
|
|
/*
|
|
* mips_io_port_base is the begin of the address space to which x86 style
|
|
* I/O ports are mapped.
|
|
*/
|
|
const unsigned long mips_io_port_base = -1;
|
|
EXPORT_SYMBOL(mips_io_port_base);
|
|
|
|
static struct resource code_resource = { .name = "Kernel code", };
|
|
static struct resource data_resource = { .name = "Kernel data", };
|
|
|
|
static void *detect_magic __initdata = detect_memory_region;
|
|
|
|
void __init add_memory_region(phys_t start, phys_t size, long type)
|
|
{
|
|
int x = boot_mem_map.nr_map;
|
|
int i;
|
|
|
|
/* Sanity check */
|
|
if (start + size < start) {
|
|
pr_warning("Trying to add an invalid memory region, skipped\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Try to merge with existing entry, if any.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
struct boot_mem_map_entry *entry = boot_mem_map.map + i;
|
|
unsigned long top;
|
|
|
|
if (entry->type != type)
|
|
continue;
|
|
|
|
if (start + size < entry->addr)
|
|
continue; /* no overlap */
|
|
|
|
if (entry->addr + entry->size < start)
|
|
continue; /* no overlap */
|
|
|
|
top = max(entry->addr + entry->size, start + size);
|
|
entry->addr = min(entry->addr, start);
|
|
entry->size = top - entry->addr;
|
|
|
|
return;
|
|
}
|
|
|
|
if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
|
|
pr_err("Ooops! Too many entries in the memory map!\n");
|
|
return;
|
|
}
|
|
|
|
boot_mem_map.map[x].addr = start;
|
|
boot_mem_map.map[x].size = size;
|
|
boot_mem_map.map[x].type = type;
|
|
boot_mem_map.nr_map++;
|
|
}
|
|
|
|
void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
|
|
{
|
|
void *dm = &detect_magic;
|
|
phys_t size;
|
|
|
|
for (size = sz_min; size < sz_max; size <<= 1) {
|
|
if (!memcmp(dm, dm + size, sizeof(detect_magic)))
|
|
break;
|
|
}
|
|
|
|
pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
|
|
((unsigned long long) size) / SZ_1M,
|
|
(unsigned long long) start,
|
|
((unsigned long long) sz_min) / SZ_1M,
|
|
((unsigned long long) sz_max) / SZ_1M);
|
|
|
|
add_memory_region(start, size, BOOT_MEM_RAM);
|
|
}
|
|
|
|
static void __init print_memory_map(void)
|
|
{
|
|
int i;
|
|
const int field = 2 * sizeof(unsigned long);
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
|
|
field, (unsigned long long) boot_mem_map.map[i].size,
|
|
field, (unsigned long long) boot_mem_map.map[i].addr);
|
|
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
printk(KERN_CONT "(usable)\n");
|
|
break;
|
|
case BOOT_MEM_INIT_RAM:
|
|
printk(KERN_CONT "(usable after init)\n");
|
|
break;
|
|
case BOOT_MEM_ROM_DATA:
|
|
printk(KERN_CONT "(ROM data)\n");
|
|
break;
|
|
case BOOT_MEM_RESERVED:
|
|
printk(KERN_CONT "(reserved)\n");
|
|
break;
|
|
default:
|
|
printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manage initrd
|
|
*/
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
static int __init rd_start_early(char *p)
|
|
{
|
|
unsigned long start = memparse(p, &p);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* Guess if the sign extension was forgotten by bootloader */
|
|
if (start < XKPHYS)
|
|
start = (int)start;
|
|
#endif
|
|
initrd_start = start;
|
|
initrd_end += start;
|
|
return 0;
|
|
}
|
|
early_param("rd_start", rd_start_early);
|
|
|
|
static int __init rd_size_early(char *p)
|
|
{
|
|
initrd_end += memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("rd_size", rd_size_early);
|
|
|
|
/* it returns the next free pfn after initrd */
|
|
static unsigned long __init init_initrd(void)
|
|
{
|
|
unsigned long end;
|
|
|
|
/*
|
|
* Board specific code or command line parser should have
|
|
* already set up initrd_start and initrd_end. In these cases
|
|
* perfom sanity checks and use them if all looks good.
|
|
*/
|
|
if (!initrd_start || initrd_end <= initrd_start)
|
|
goto disable;
|
|
|
|
if (initrd_start & ~PAGE_MASK) {
|
|
pr_err("initrd start must be page aligned\n");
|
|
goto disable;
|
|
}
|
|
if (initrd_start < PAGE_OFFSET) {
|
|
pr_err("initrd start < PAGE_OFFSET\n");
|
|
goto disable;
|
|
}
|
|
|
|
/*
|
|
* Sanitize initrd addresses. For example firmware
|
|
* can't guess if they need to pass them through
|
|
* 64-bits values if the kernel has been built in pure
|
|
* 32-bit. We need also to switch from KSEG0 to XKPHYS
|
|
* addresses now, so the code can now safely use __pa().
|
|
*/
|
|
end = __pa(initrd_end);
|
|
initrd_end = (unsigned long)__va(end);
|
|
initrd_start = (unsigned long)__va(__pa(initrd_start));
|
|
|
|
ROOT_DEV = Root_RAM0;
|
|
return PFN_UP(end);
|
|
disable:
|
|
initrd_start = 0;
|
|
initrd_end = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void __init finalize_initrd(void)
|
|
{
|
|
unsigned long size = initrd_end - initrd_start;
|
|
|
|
if (size == 0) {
|
|
printk(KERN_INFO "Initrd not found or empty");
|
|
goto disable;
|
|
}
|
|
if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
|
|
printk(KERN_ERR "Initrd extends beyond end of memory");
|
|
goto disable;
|
|
}
|
|
|
|
reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
|
|
initrd_below_start_ok = 1;
|
|
|
|
pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
|
|
initrd_start, size);
|
|
return;
|
|
disable:
|
|
printk(KERN_CONT " - disabling initrd\n");
|
|
initrd_start = 0;
|
|
initrd_end = 0;
|
|
}
|
|
|
|
#else /* !CONFIG_BLK_DEV_INITRD */
|
|
|
|
static unsigned long __init init_initrd(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#define finalize_initrd() do {} while (0)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the bootmem allocator. It also setup initrd related data
|
|
* if needed.
|
|
*/
|
|
#ifdef CONFIG_SGI_IP27
|
|
|
|
static void __init bootmem_init(void)
|
|
{
|
|
init_initrd();
|
|
finalize_initrd();
|
|
}
|
|
|
|
#else /* !CONFIG_SGI_IP27 */
|
|
|
|
static void __init bootmem_init(void)
|
|
{
|
|
unsigned long reserved_end;
|
|
unsigned long mapstart = ~0UL;
|
|
unsigned long bootmap_size;
|
|
int i;
|
|
|
|
/*
|
|
* Sanity check any INITRD first. We don't take it into account
|
|
* for bootmem setup initially, rely on the end-of-kernel-code
|
|
* as our memory range starting point. Once bootmem is inited we
|
|
* will reserve the area used for the initrd.
|
|
*/
|
|
init_initrd();
|
|
reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
|
|
|
|
/*
|
|
* max_low_pfn is not a number of pages. The number of pages
|
|
* of the system is given by 'max_low_pfn - min_low_pfn'.
|
|
*/
|
|
min_low_pfn = ~0UL;
|
|
max_low_pfn = 0;
|
|
|
|
/*
|
|
* Find the highest page frame number we have available.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end;
|
|
|
|
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
|
|
continue;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
|
|
if (end > max_low_pfn)
|
|
max_low_pfn = end;
|
|
if (start < min_low_pfn)
|
|
min_low_pfn = start;
|
|
if (end <= reserved_end)
|
|
continue;
|
|
if (start >= mapstart)
|
|
continue;
|
|
mapstart = max(reserved_end, start);
|
|
}
|
|
|
|
if (min_low_pfn >= max_low_pfn)
|
|
panic("Incorrect memory mapping !!!");
|
|
if (min_low_pfn > ARCH_PFN_OFFSET) {
|
|
pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
|
|
(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
|
|
min_low_pfn - ARCH_PFN_OFFSET);
|
|
} else if (min_low_pfn < ARCH_PFN_OFFSET) {
|
|
pr_info("%lu free pages won't be used\n",
|
|
ARCH_PFN_OFFSET - min_low_pfn);
|
|
}
|
|
min_low_pfn = ARCH_PFN_OFFSET;
|
|
|
|
/*
|
|
* Determine low and high memory ranges
|
|
*/
|
|
max_pfn = max_low_pfn;
|
|
if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
|
|
#ifdef CONFIG_HIGHMEM
|
|
highstart_pfn = PFN_DOWN(HIGHMEM_START);
|
|
highend_pfn = max_low_pfn;
|
|
#endif
|
|
max_low_pfn = PFN_DOWN(HIGHMEM_START);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/*
|
|
* mapstart should be after initrd_end
|
|
*/
|
|
if (initrd_end)
|
|
mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the boot-time allocator with low memory only.
|
|
*/
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
|
|
min_low_pfn, max_low_pfn);
|
|
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
|
|
if (start <= min_low_pfn)
|
|
start = min_low_pfn;
|
|
if (start >= end)
|
|
continue;
|
|
|
|
#ifndef CONFIG_HIGHMEM
|
|
if (end > max_low_pfn)
|
|
end = max_low_pfn;
|
|
|
|
/*
|
|
* ... finally, is the area going away?
|
|
*/
|
|
if (end <= start)
|
|
continue;
|
|
#endif
|
|
|
|
memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
|
|
}
|
|
|
|
/*
|
|
* Register fully available low RAM pages with the bootmem allocator.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end, size;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
|
|
/*
|
|
* Reserve usable memory.
|
|
*/
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
break;
|
|
case BOOT_MEM_INIT_RAM:
|
|
memory_present(0, start, end);
|
|
continue;
|
|
default:
|
|
/* Not usable memory */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We are rounding up the start address of usable memory
|
|
* and at the end of the usable range downwards.
|
|
*/
|
|
if (start >= max_low_pfn)
|
|
continue;
|
|
if (start < reserved_end)
|
|
start = reserved_end;
|
|
if (end > max_low_pfn)
|
|
end = max_low_pfn;
|
|
|
|
/*
|
|
* ... finally, is the area going away?
|
|
*/
|
|
if (end <= start)
|
|
continue;
|
|
size = end - start;
|
|
|
|
/* Register lowmem ranges */
|
|
free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
|
|
memory_present(0, start, end);
|
|
}
|
|
|
|
/*
|
|
* Reserve the bootmap memory.
|
|
*/
|
|
reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
|
|
|
|
/*
|
|
* Reserve initrd memory if needed.
|
|
*/
|
|
finalize_initrd();
|
|
}
|
|
|
|
#endif /* CONFIG_SGI_IP27 */
|
|
|
|
/*
|
|
* arch_mem_init - initialize memory management subsystem
|
|
*
|
|
* o plat_mem_setup() detects the memory configuration and will record detected
|
|
* memory areas using add_memory_region.
|
|
*
|
|
* At this stage the memory configuration of the system is known to the
|
|
* kernel but generic memory management system is still entirely uninitialized.
|
|
*
|
|
* o bootmem_init()
|
|
* o sparse_init()
|
|
* o paging_init()
|
|
*
|
|
* At this stage the bootmem allocator is ready to use.
|
|
*
|
|
* NOTE: historically plat_mem_setup did the entire platform initialization.
|
|
* This was rather impractical because it meant plat_mem_setup had to
|
|
* get away without any kind of memory allocator. To keep old code from
|
|
* breaking plat_setup was just renamed to plat_setup and a second platform
|
|
* initialization hook for anything else was introduced.
|
|
*/
|
|
|
|
static int usermem __initdata;
|
|
|
|
static int __init early_parse_mem(char *p)
|
|
{
|
|
unsigned long start, size;
|
|
|
|
/*
|
|
* If a user specifies memory size, we
|
|
* blow away any automatically generated
|
|
* size.
|
|
*/
|
|
if (usermem == 0) {
|
|
boot_mem_map.nr_map = 0;
|
|
usermem = 1;
|
|
}
|
|
start = 0;
|
|
size = memparse(p, &p);
|
|
if (*p == '@')
|
|
start = memparse(p + 1, &p);
|
|
|
|
add_memory_region(start, size, BOOT_MEM_RAM);
|
|
return 0;
|
|
}
|
|
early_param("mem", early_parse_mem);
|
|
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
|
|
static int __init early_parse_elfcorehdr(char *p)
|
|
{
|
|
int i;
|
|
|
|
setup_elfcorehdr = memparse(p, &p);
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start = boot_mem_map.map[i].addr;
|
|
unsigned long end = (boot_mem_map.map[i].addr +
|
|
boot_mem_map.map[i].size);
|
|
if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
|
|
/*
|
|
* Reserve from the elf core header to the end of
|
|
* the memory segment, that should all be kdump
|
|
* reserved memory.
|
|
*/
|
|
setup_elfcorehdr_size = end - setup_elfcorehdr;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If we don't find it in the memory map, then we shouldn't
|
|
* have to worry about it, as the new kernel won't use it.
|
|
*/
|
|
return 0;
|
|
}
|
|
early_param("elfcorehdr", early_parse_elfcorehdr);
|
|
#endif
|
|
|
|
static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
|
|
{
|
|
phys_t size;
|
|
int i;
|
|
|
|
size = end - mem;
|
|
if (!size)
|
|
return;
|
|
|
|
/* Make sure it is in the boot_mem_map */
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
if (mem >= boot_mem_map.map[i].addr &&
|
|
mem < (boot_mem_map.map[i].addr +
|
|
boot_mem_map.map[i].size))
|
|
return;
|
|
}
|
|
add_memory_region(mem, size, type);
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
static inline unsigned long long get_total_mem(void)
|
|
{
|
|
unsigned long long total;
|
|
|
|
total = max_pfn - min_low_pfn;
|
|
return total << PAGE_SHIFT;
|
|
}
|
|
|
|
static void __init mips_parse_crashkernel(void)
|
|
{
|
|
unsigned long long total_mem;
|
|
unsigned long long crash_size, crash_base;
|
|
int ret;
|
|
|
|
total_mem = get_total_mem();
|
|
ret = parse_crashkernel(boot_command_line, total_mem,
|
|
&crash_size, &crash_base);
|
|
if (ret != 0 || crash_size <= 0)
|
|
return;
|
|
|
|
crashk_res.start = crash_base;
|
|
crashk_res.end = crash_base + crash_size - 1;
|
|
}
|
|
|
|
static void __init request_crashkernel(struct resource *res)
|
|
{
|
|
int ret;
|
|
|
|
ret = request_resource(res, &crashk_res);
|
|
if (!ret)
|
|
pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
|
|
(unsigned long)((crashk_res.end -
|
|
crashk_res.start + 1) >> 20),
|
|
(unsigned long)(crashk_res.start >> 20));
|
|
}
|
|
#else /* !defined(CONFIG_KEXEC) */
|
|
static void __init mips_parse_crashkernel(void)
|
|
{
|
|
}
|
|
|
|
static void __init request_crashkernel(struct resource *res)
|
|
{
|
|
}
|
|
#endif /* !defined(CONFIG_KEXEC) */
|
|
|
|
static void __init arch_mem_init(char **cmdline_p)
|
|
{
|
|
extern void plat_mem_setup(void);
|
|
|
|
/* call board setup routine */
|
|
plat_mem_setup();
|
|
|
|
/*
|
|
* Make sure all kernel memory is in the maps. The "UP" and
|
|
* "DOWN" are opposite for initdata since if it crosses over
|
|
* into another memory section you don't want that to be
|
|
* freed when the initdata is freed.
|
|
*/
|
|
arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
|
|
PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
|
|
BOOT_MEM_RAM);
|
|
arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
|
|
PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
|
|
BOOT_MEM_INIT_RAM);
|
|
|
|
pr_info("Determined physical RAM map:\n");
|
|
print_memory_map();
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
#ifdef CONFIG_CMDLINE_OVERRIDE
|
|
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
|
|
#else
|
|
if (builtin_cmdline[0]) {
|
|
strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
|
|
strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
|
|
}
|
|
strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
|
|
#endif
|
|
#else
|
|
strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
|
|
#endif
|
|
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
|
|
|
|
*cmdline_p = command_line;
|
|
|
|
parse_early_param();
|
|
|
|
if (usermem) {
|
|
pr_info("User-defined physical RAM map:\n");
|
|
print_memory_map();
|
|
}
|
|
|
|
bootmem_init();
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
if (setup_elfcorehdr && setup_elfcorehdr_size) {
|
|
printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
|
|
setup_elfcorehdr, setup_elfcorehdr_size);
|
|
reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
|
|
BOOTMEM_DEFAULT);
|
|
}
|
|
#endif
|
|
|
|
mips_parse_crashkernel();
|
|
#ifdef CONFIG_KEXEC
|
|
if (crashk_res.start != crashk_res.end)
|
|
reserve_bootmem(crashk_res.start,
|
|
crashk_res.end - crashk_res.start + 1,
|
|
BOOTMEM_DEFAULT);
|
|
#endif
|
|
device_tree_init();
|
|
sparse_init();
|
|
plat_swiotlb_setup();
|
|
paging_init();
|
|
}
|
|
|
|
static void __init resource_init(void)
|
|
{
|
|
int i;
|
|
|
|
if (UNCAC_BASE != IO_BASE)
|
|
return;
|
|
|
|
code_resource.start = __pa_symbol(&_text);
|
|
code_resource.end = __pa_symbol(&_etext) - 1;
|
|
data_resource.start = __pa_symbol(&_etext);
|
|
data_resource.end = __pa_symbol(&_edata) - 1;
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
struct resource *res;
|
|
unsigned long start, end;
|
|
|
|
start = boot_mem_map.map[i].addr;
|
|
end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
|
|
if (start >= HIGHMEM_START)
|
|
continue;
|
|
if (end >= HIGHMEM_START)
|
|
end = HIGHMEM_START - 1;
|
|
|
|
res = alloc_bootmem(sizeof(struct resource));
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
case BOOT_MEM_INIT_RAM:
|
|
case BOOT_MEM_ROM_DATA:
|
|
res->name = "System RAM";
|
|
break;
|
|
case BOOT_MEM_RESERVED:
|
|
default:
|
|
res->name = "reserved";
|
|
}
|
|
|
|
res->start = start;
|
|
res->end = end;
|
|
|
|
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
request_resource(&iomem_resource, res);
|
|
|
|
/*
|
|
* We don't know which RAM region contains kernel data,
|
|
* so we try it repeatedly and let the resource manager
|
|
* test it.
|
|
*/
|
|
request_resource(res, &code_resource);
|
|
request_resource(res, &data_resource);
|
|
request_crashkernel(res);
|
|
}
|
|
}
|
|
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
cpu_probe();
|
|
prom_init();
|
|
|
|
#ifdef CONFIG_EARLY_PRINTK
|
|
setup_early_printk();
|
|
#endif
|
|
cpu_report();
|
|
check_bugs_early();
|
|
|
|
#if defined(CONFIG_VT)
|
|
#if defined(CONFIG_VGA_CONSOLE)
|
|
conswitchp = &vga_con;
|
|
#elif defined(CONFIG_DUMMY_CONSOLE)
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
#endif
|
|
|
|
arch_mem_init(cmdline_p);
|
|
|
|
resource_init();
|
|
plat_smp_setup();
|
|
|
|
cpu_cache_init();
|
|
}
|
|
|
|
unsigned long kernelsp[NR_CPUS];
|
|
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct dentry *mips_debugfs_dir;
|
|
static int __init debugfs_mips(void)
|
|
{
|
|
struct dentry *d;
|
|
|
|
d = debugfs_create_dir("mips", NULL);
|
|
if (!d)
|
|
return -ENOMEM;
|
|
mips_debugfs_dir = d;
|
|
return 0;
|
|
}
|
|
arch_initcall(debugfs_mips);
|
|
#endif
|