mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-21 00:42:16 +00:00
59a2e613d0
This patch moves cpufreq driver of ARM based sa11x0 platform to drivers/cpufreq. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
407 lines
9.6 KiB
C
407 lines
9.6 KiB
C
/*
|
|
* linux/arch/arm/mach-sa1100/cpu-sa1110.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Note: there are two erratas that apply to the SA1110 here:
|
|
* 7 - SDRAM auto-power-up failure (rev A0)
|
|
* 13 - Corruption of internal register reads/writes following
|
|
* SDRAM reads (rev A0, B0, B1)
|
|
*
|
|
* We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
|
|
*
|
|
* The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
|
|
*/
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/mach-types.h>
|
|
|
|
#include <mach/generic.h>
|
|
#include <mach/hardware.h>
|
|
|
|
#undef DEBUG
|
|
|
|
struct sdram_params {
|
|
const char name[20];
|
|
u_char rows; /* bits */
|
|
u_char cas_latency; /* cycles */
|
|
u_char tck; /* clock cycle time (ns) */
|
|
u_char trcd; /* activate to r/w (ns) */
|
|
u_char trp; /* precharge to activate (ns) */
|
|
u_char twr; /* write recovery time (ns) */
|
|
u_short refresh; /* refresh time for array (us) */
|
|
};
|
|
|
|
struct sdram_info {
|
|
u_int mdcnfg;
|
|
u_int mdrefr;
|
|
u_int mdcas[3];
|
|
};
|
|
|
|
static struct sdram_params sdram_tbl[] __initdata = {
|
|
{ /* Toshiba TC59SM716 CL2 */
|
|
.name = "TC59SM716-CL2",
|
|
.rows = 12,
|
|
.tck = 10,
|
|
.trcd = 20,
|
|
.trp = 20,
|
|
.twr = 10,
|
|
.refresh = 64000,
|
|
.cas_latency = 2,
|
|
}, { /* Toshiba TC59SM716 CL3 */
|
|
.name = "TC59SM716-CL3",
|
|
.rows = 12,
|
|
.tck = 8,
|
|
.trcd = 20,
|
|
.trp = 20,
|
|
.twr = 8,
|
|
.refresh = 64000,
|
|
.cas_latency = 3,
|
|
}, { /* Samsung K4S641632D TC75 */
|
|
.name = "K4S641632D",
|
|
.rows = 14,
|
|
.tck = 9,
|
|
.trcd = 27,
|
|
.trp = 20,
|
|
.twr = 9,
|
|
.refresh = 64000,
|
|
.cas_latency = 3,
|
|
}, { /* Samsung K4S281632B-1H */
|
|
.name = "K4S281632B-1H",
|
|
.rows = 12,
|
|
.tck = 10,
|
|
.trp = 20,
|
|
.twr = 10,
|
|
.refresh = 64000,
|
|
.cas_latency = 3,
|
|
}, { /* Samsung KM416S4030CT */
|
|
.name = "KM416S4030CT",
|
|
.rows = 13,
|
|
.tck = 8,
|
|
.trcd = 24, /* 3 CLKs */
|
|
.trp = 24, /* 3 CLKs */
|
|
.twr = 16, /* Trdl: 2 CLKs */
|
|
.refresh = 64000,
|
|
.cas_latency = 3,
|
|
}, { /* Winbond W982516AH75L CL3 */
|
|
.name = "W982516AH75L",
|
|
.rows = 16,
|
|
.tck = 8,
|
|
.trcd = 20,
|
|
.trp = 20,
|
|
.twr = 8,
|
|
.refresh = 64000,
|
|
.cas_latency = 3,
|
|
}, { /* Micron MT48LC8M16A2TG-75 */
|
|
.name = "MT48LC8M16A2TG-75",
|
|
.rows = 12,
|
|
.tck = 8,
|
|
.trcd = 20,
|
|
.trp = 20,
|
|
.twr = 8,
|
|
.refresh = 64000,
|
|
.cas_latency = 3,
|
|
},
|
|
};
|
|
|
|
static struct sdram_params sdram_params;
|
|
|
|
/*
|
|
* Given a period in ns and frequency in khz, calculate the number of
|
|
* cycles of frequency in period. Note that we round up to the next
|
|
* cycle, even if we are only slightly over.
|
|
*/
|
|
static inline u_int ns_to_cycles(u_int ns, u_int khz)
|
|
{
|
|
return (ns * khz + 999999) / 1000000;
|
|
}
|
|
|
|
/*
|
|
* Create the MDCAS register bit pattern.
|
|
*/
|
|
static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
|
|
{
|
|
u_int shift;
|
|
|
|
rcd = 2 * rcd - 1;
|
|
shift = delayed + 1 + rcd;
|
|
|
|
mdcas[0] = (1 << rcd) - 1;
|
|
mdcas[0] |= 0x55555555 << shift;
|
|
mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1);
|
|
}
|
|
|
|
static void
|
|
sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
|
|
struct sdram_params *sdram)
|
|
{
|
|
u_int mem_khz, sd_khz, trp, twr;
|
|
|
|
mem_khz = cpu_khz / 2;
|
|
sd_khz = mem_khz;
|
|
|
|
/*
|
|
* If SDCLK would invalidate the SDRAM timings,
|
|
* run SDCLK at half speed.
|
|
*
|
|
* CPU steppings prior to B2 must either run the memory at
|
|
* half speed or use delayed read latching (errata 13).
|
|
*/
|
|
if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
|
|
(CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
|
|
sd_khz /= 2;
|
|
|
|
sd->mdcnfg = MDCNFG & 0x007f007f;
|
|
|
|
twr = ns_to_cycles(sdram->twr, mem_khz);
|
|
|
|
/* trp should always be >1 */
|
|
trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
|
|
if (trp < 1)
|
|
trp = 1;
|
|
|
|
sd->mdcnfg |= trp << 8;
|
|
sd->mdcnfg |= trp << 24;
|
|
sd->mdcnfg |= sdram->cas_latency << 12;
|
|
sd->mdcnfg |= sdram->cas_latency << 28;
|
|
sd->mdcnfg |= twr << 14;
|
|
sd->mdcnfg |= twr << 30;
|
|
|
|
sd->mdrefr = MDREFR & 0xffbffff0;
|
|
sd->mdrefr |= 7;
|
|
|
|
if (sd_khz != mem_khz)
|
|
sd->mdrefr |= MDREFR_K1DB2;
|
|
|
|
/* initial number of '1's in MDCAS + 1 */
|
|
set_mdcas(sd->mdcas, sd_khz >= 62000,
|
|
ns_to_cycles(sdram->trcd, mem_khz));
|
|
|
|
#ifdef DEBUG
|
|
printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
|
|
sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
|
|
sd->mdcas[2]);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set the SDRAM refresh rate.
|
|
*/
|
|
static inline void sdram_set_refresh(u_int dri)
|
|
{
|
|
MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
|
|
(void) MDREFR;
|
|
}
|
|
|
|
/*
|
|
* Update the refresh period. We do this such that we always refresh
|
|
* the SDRAMs within their permissible period. The refresh period is
|
|
* always a multiple of the memory clock (fixed at cpu_clock / 2).
|
|
*
|
|
* FIXME: we don't currently take account of burst accesses here,
|
|
* but neither do Intels DM nor Angel.
|
|
*/
|
|
static void
|
|
sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
|
|
{
|
|
u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
|
|
u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
|
|
|
|
#ifdef DEBUG
|
|
mdelay(250);
|
|
printk(KERN_DEBUG "new dri value = %d\n", dri);
|
|
#endif
|
|
|
|
sdram_set_refresh(dri);
|
|
}
|
|
|
|
/*
|
|
* Ok, set the CPU frequency.
|
|
*/
|
|
static int sa1110_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
{
|
|
struct sdram_params *sdram = &sdram_params;
|
|
struct cpufreq_freqs freqs;
|
|
struct sdram_info sd;
|
|
unsigned long flags;
|
|
unsigned int ppcr, unused;
|
|
|
|
switch (relation) {
|
|
case CPUFREQ_RELATION_L:
|
|
ppcr = sa11x0_freq_to_ppcr(target_freq);
|
|
if (sa11x0_ppcr_to_freq(ppcr) > policy->max)
|
|
ppcr--;
|
|
break;
|
|
case CPUFREQ_RELATION_H:
|
|
ppcr = sa11x0_freq_to_ppcr(target_freq);
|
|
if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&
|
|
(sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))
|
|
ppcr--;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
freqs.old = sa11x0_getspeed(0);
|
|
freqs.new = sa11x0_ppcr_to_freq(ppcr);
|
|
|
|
sdram_calculate_timing(&sd, freqs.new, sdram);
|
|
|
|
#if 0
|
|
/*
|
|
* These values are wrong according to the SA1110 documentation
|
|
* and errata, but they seem to work. Need to get a storage
|
|
* scope on to the SDRAM signals to work out why.
|
|
*/
|
|
if (policy->max < 147500) {
|
|
sd.mdrefr |= MDREFR_K1DB2;
|
|
sd.mdcas[0] = 0xaaaaaa7f;
|
|
} else {
|
|
sd.mdrefr &= ~MDREFR_K1DB2;
|
|
sd.mdcas[0] = 0xaaaaaa9f;
|
|
}
|
|
sd.mdcas[1] = 0xaaaaaaaa;
|
|
sd.mdcas[2] = 0xaaaaaaaa;
|
|
#endif
|
|
|
|
cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
|
|
|
|
/*
|
|
* The clock could be going away for some time. Set the SDRAMs
|
|
* to refresh rapidly (every 64 memory clock cycles). To get
|
|
* through the whole array, we need to wait 262144 mclk cycles.
|
|
* We wait 20ms to be safe.
|
|
*/
|
|
sdram_set_refresh(2);
|
|
if (!irqs_disabled())
|
|
msleep(20);
|
|
else
|
|
mdelay(20);
|
|
|
|
/*
|
|
* Reprogram the DRAM timings with interrupts disabled, and
|
|
* ensure that we are doing this within a complete cache line.
|
|
* This means that we won't access SDRAM for the duration of
|
|
* the programming.
|
|
*/
|
|
local_irq_save(flags);
|
|
asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
|
|
udelay(10);
|
|
__asm__ __volatile__("\n\
|
|
b 2f \n\
|
|
.align 5 \n\
|
|
1: str %3, [%1, #0] @ MDCNFG \n\
|
|
str %4, [%1, #28] @ MDREFR \n\
|
|
str %5, [%1, #4] @ MDCAS0 \n\
|
|
str %6, [%1, #8] @ MDCAS1 \n\
|
|
str %7, [%1, #12] @ MDCAS2 \n\
|
|
str %8, [%2, #0] @ PPCR \n\
|
|
ldr %0, [%1, #0] \n\
|
|
b 3f \n\
|
|
2: b 1b \n\
|
|
3: nop \n\
|
|
nop"
|
|
: "=&r" (unused)
|
|
: "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
|
|
"r" (sd.mdrefr), "r" (sd.mdcas[0]),
|
|
"r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* Now, return the SDRAM refresh back to normal.
|
|
*/
|
|
sdram_update_refresh(freqs.new, sdram);
|
|
|
|
cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
if (policy->cpu != 0)
|
|
return -EINVAL;
|
|
policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
|
|
policy->cpuinfo.min_freq = 59000;
|
|
policy->cpuinfo.max_freq = 287000;
|
|
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
|
|
return 0;
|
|
}
|
|
|
|
/* sa1110_driver needs __refdata because it must remain after init registers
|
|
* it with cpufreq_register_driver() */
|
|
static struct cpufreq_driver sa1110_driver __refdata = {
|
|
.flags = CPUFREQ_STICKY,
|
|
.verify = sa11x0_verify_speed,
|
|
.target = sa1110_target,
|
|
.get = sa11x0_getspeed,
|
|
.init = sa1110_cpu_init,
|
|
.name = "sa1110",
|
|
};
|
|
|
|
static struct sdram_params *sa1110_find_sdram(const char *name)
|
|
{
|
|
struct sdram_params *sdram;
|
|
|
|
for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
|
|
sdram++)
|
|
if (strcmp(name, sdram->name) == 0)
|
|
return sdram;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static char sdram_name[16];
|
|
|
|
static int __init sa1110_clk_init(void)
|
|
{
|
|
struct sdram_params *sdram;
|
|
const char *name = sdram_name;
|
|
|
|
if (!cpu_is_sa1110())
|
|
return -ENODEV;
|
|
|
|
if (!name[0]) {
|
|
if (machine_is_assabet())
|
|
name = "TC59SM716-CL3";
|
|
if (machine_is_pt_system3())
|
|
name = "K4S641632D";
|
|
if (machine_is_h3100())
|
|
name = "KM416S4030CT";
|
|
if (machine_is_jornada720())
|
|
name = "K4S281632B-1H";
|
|
if (machine_is_nanoengine())
|
|
name = "MT48LC8M16A2TG-75";
|
|
}
|
|
|
|
sdram = sa1110_find_sdram(name);
|
|
if (sdram) {
|
|
printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
|
|
" twr: %d refresh: %d cas_latency: %d\n",
|
|
sdram->tck, sdram->trcd, sdram->trp,
|
|
sdram->twr, sdram->refresh, sdram->cas_latency);
|
|
|
|
memcpy(&sdram_params, sdram, sizeof(sdram_params));
|
|
|
|
return cpufreq_register_driver(&sa1110_driver);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
|
|
arch_initcall(sa1110_clk_init);
|