mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 12:47:53 +00:00
2608441164
The current code only checks CCA of 0 when deciding if a dummy read is needed. Since the kernel can (and does) use other CCAs we need to mask out the CCA bits from the address. Since the address constant now fits in 16 bits, there is an added benefit that smaller code is generated. Signed-off-by: David Daney <ddaney@caviumnetworks.com> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
518 lines
14 KiB
C
518 lines
14 KiB
C
/***********************license start***************
|
|
* Author: Cavium Networks
|
|
*
|
|
* Contact: support@caviumnetworks.com
|
|
* This file is part of the OCTEON SDK
|
|
*
|
|
* Copyright (c) 2003-2008 Cavium Networks
|
|
*
|
|
* This file is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, Version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
|
|
* NONINFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this file; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
* or visit http://www.gnu.org/licenses/.
|
|
*
|
|
* This file may also be available under a different license from Cavium.
|
|
* Contact Cavium Networks for more information
|
|
***********************license end**************************************/
|
|
|
|
#ifndef __CVMX_H__
|
|
#define __CVMX_H__
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
|
|
#include "cvmx-asm.h"
|
|
#include "cvmx-packet.h"
|
|
#include "cvmx-sysinfo.h"
|
|
|
|
#include "cvmx-ciu-defs.h"
|
|
#include "cvmx-gpio-defs.h"
|
|
#include "cvmx-iob-defs.h"
|
|
#include "cvmx-ipd-defs.h"
|
|
#include "cvmx-l2c-defs.h"
|
|
#include "cvmx-l2d-defs.h"
|
|
#include "cvmx-l2t-defs.h"
|
|
#include "cvmx-led-defs.h"
|
|
#include "cvmx-mio-defs.h"
|
|
#include "cvmx-pow-defs.h"
|
|
|
|
#include "cvmx-bootinfo.h"
|
|
#include "cvmx-bootmem.h"
|
|
#include "cvmx-l2c.h"
|
|
|
|
#ifndef CVMX_ENABLE_DEBUG_PRINTS
|
|
#define CVMX_ENABLE_DEBUG_PRINTS 1
|
|
#endif
|
|
|
|
#if CVMX_ENABLE_DEBUG_PRINTS
|
|
#define cvmx_dprintf printk
|
|
#else
|
|
#define cvmx_dprintf(...) {}
|
|
#endif
|
|
|
|
#define CVMX_MAX_CORES (16)
|
|
#define CVMX_CACHE_LINE_SIZE (128) /* In bytes */
|
|
#define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) /* In bytes */
|
|
#define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
|
|
#define CAST64(v) ((long long)(long)(v))
|
|
#define CASTPTR(type, v) ((type *)(long)(v))
|
|
|
|
/*
|
|
* Returns processor ID, different Linux and simple exec versions
|
|
* provided in the cvmx-app-init*.c files.
|
|
*/
|
|
static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
|
|
static inline uint32_t cvmx_get_proc_id(void)
|
|
{
|
|
uint32_t id;
|
|
asm("mfc0 %0, $15,0" : "=r"(id));
|
|
return id;
|
|
}
|
|
|
|
/* turn the variable name into a string */
|
|
#define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
|
|
#define CVMX_TMP_STR2(x) #x
|
|
|
|
/**
|
|
* Builds a bit mask given the required size in bits.
|
|
*
|
|
* @bits: Number of bits in the mask
|
|
* Returns The mask
|
|
*/ static inline uint64_t cvmx_build_mask(uint64_t bits)
|
|
{
|
|
return ~((~0x0ull) << bits);
|
|
}
|
|
|
|
/**
|
|
* Builds a memory address for I/O based on the Major and Sub DID.
|
|
*
|
|
* @major_did: 5 bit major did
|
|
* @sub_did: 3 bit sub did
|
|
* Returns I/O base address
|
|
*/
|
|
static inline uint64_t cvmx_build_io_address(uint64_t major_did,
|
|
uint64_t sub_did)
|
|
{
|
|
return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
|
|
}
|
|
|
|
/**
|
|
* Perform mask and shift to place the supplied value into
|
|
* the supplied bit rage.
|
|
*
|
|
* Example: cvmx_build_bits(39,24,value)
|
|
* <pre>
|
|
* 6 5 4 3 3 2 1
|
|
* 3 5 7 9 1 3 5 7 0
|
|
* +-------+-------+-------+-------+-------+-------+-------+------+
|
|
* 000000000000000000000000___________value000000000000000000000000
|
|
* </pre>
|
|
*
|
|
* @high_bit: Highest bit value can occupy (inclusive) 0-63
|
|
* @low_bit: Lowest bit value can occupy inclusive 0-high_bit
|
|
* @value: Value to use
|
|
* Returns Value masked and shifted
|
|
*/
|
|
static inline uint64_t cvmx_build_bits(uint64_t high_bit,
|
|
uint64_t low_bit, uint64_t value)
|
|
{
|
|
return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
|
|
}
|
|
|
|
enum cvmx_mips_space {
|
|
CVMX_MIPS_SPACE_XKSEG = 3LL,
|
|
CVMX_MIPS_SPACE_XKPHYS = 2LL,
|
|
CVMX_MIPS_SPACE_XSSEG = 1LL,
|
|
CVMX_MIPS_SPACE_XUSEG = 0LL
|
|
};
|
|
|
|
/* These macros for use when using 32 bit pointers. */
|
|
#define CVMX_MIPS32_SPACE_KSEG0 1l
|
|
#define CVMX_ADD_SEG32(segment, add) \
|
|
(((int32_t)segment << 31) | (int32_t)(add))
|
|
|
|
#define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
|
|
|
|
/* These macros simplify the process of creating common IO addresses */
|
|
#define CVMX_ADD_SEG(segment, add) \
|
|
((((uint64_t)segment) << 62) | (add))
|
|
#ifndef CVMX_ADD_IO_SEG
|
|
#define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
|
|
#endif
|
|
|
|
/**
|
|
* Convert a memory pointer (void*) into a hardware compatable
|
|
* memory address (uint64_t). Octeon hardware widgets don't
|
|
* understand logical addresses.
|
|
*
|
|
* @ptr: C style memory pointer
|
|
* Returns Hardware physical address
|
|
*/
|
|
static inline uint64_t cvmx_ptr_to_phys(void *ptr)
|
|
{
|
|
if (sizeof(void *) == 8) {
|
|
/*
|
|
* We're running in 64 bit mode. Normally this means
|
|
* that we can use 40 bits of address space (the
|
|
* hardware limit). Unfortunately there is one case
|
|
* were we need to limit this to 30 bits, sign
|
|
* extended 32 bit. Although these are 64 bits wide,
|
|
* only 30 bits can be used.
|
|
*/
|
|
if ((CAST64(ptr) >> 62) == 3)
|
|
return CAST64(ptr) & cvmx_build_mask(30);
|
|
else
|
|
return CAST64(ptr) & cvmx_build_mask(40);
|
|
} else {
|
|
return (long)(ptr) & 0x1fffffff;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert a hardware physical address (uint64_t) into a
|
|
* memory pointer (void *).
|
|
*
|
|
* @physical_address:
|
|
* Hardware physical address to memory
|
|
* Returns Pointer to memory
|
|
*/
|
|
static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
|
|
{
|
|
if (sizeof(void *) == 8) {
|
|
/* Just set the top bit, avoiding any TLB uglyness */
|
|
return CASTPTR(void,
|
|
CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
|
|
physical_address));
|
|
} else {
|
|
return CASTPTR(void,
|
|
CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
|
|
physical_address));
|
|
}
|
|
}
|
|
|
|
/* The following #if controls the definition of the macro
|
|
CVMX_BUILD_WRITE64. This macro is used to build a store operation to
|
|
a full 64bit address. With a 64bit ABI, this can be done with a simple
|
|
pointer access. 32bit ABIs require more complicated assembly */
|
|
|
|
/* We have a full 64bit ABI. Writing to a 64bit address can be done with
|
|
a simple volatile pointer */
|
|
#define CVMX_BUILD_WRITE64(TYPE, ST) \
|
|
static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \
|
|
{ \
|
|
*CASTPTR(volatile TYPE##_t, addr) = val; \
|
|
}
|
|
|
|
|
|
/* The following #if controls the definition of the macro
|
|
CVMX_BUILD_READ64. This macro is used to build a load operation from
|
|
a full 64bit address. With a 64bit ABI, this can be done with a simple
|
|
pointer access. 32bit ABIs require more complicated assembly */
|
|
|
|
/* We have a full 64bit ABI. Writing to a 64bit address can be done with
|
|
a simple volatile pointer */
|
|
#define CVMX_BUILD_READ64(TYPE, LT) \
|
|
static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \
|
|
{ \
|
|
return *CASTPTR(volatile TYPE##_t, addr); \
|
|
}
|
|
|
|
|
|
/* The following defines 8 functions for writing to a 64bit address. Each
|
|
takes two arguments, the address and the value to write.
|
|
cvmx_write64_int64 cvmx_write64_uint64
|
|
cvmx_write64_int32 cvmx_write64_uint32
|
|
cvmx_write64_int16 cvmx_write64_uint16
|
|
cvmx_write64_int8 cvmx_write64_uint8 */
|
|
CVMX_BUILD_WRITE64(int64, "sd");
|
|
CVMX_BUILD_WRITE64(int32, "sw");
|
|
CVMX_BUILD_WRITE64(int16, "sh");
|
|
CVMX_BUILD_WRITE64(int8, "sb");
|
|
CVMX_BUILD_WRITE64(uint64, "sd");
|
|
CVMX_BUILD_WRITE64(uint32, "sw");
|
|
CVMX_BUILD_WRITE64(uint16, "sh");
|
|
CVMX_BUILD_WRITE64(uint8, "sb");
|
|
#define cvmx_write64 cvmx_write64_uint64
|
|
|
|
/* The following defines 8 functions for reading from a 64bit address. Each
|
|
takes the address as the only argument
|
|
cvmx_read64_int64 cvmx_read64_uint64
|
|
cvmx_read64_int32 cvmx_read64_uint32
|
|
cvmx_read64_int16 cvmx_read64_uint16
|
|
cvmx_read64_int8 cvmx_read64_uint8 */
|
|
CVMX_BUILD_READ64(int64, "ld");
|
|
CVMX_BUILD_READ64(int32, "lw");
|
|
CVMX_BUILD_READ64(int16, "lh");
|
|
CVMX_BUILD_READ64(int8, "lb");
|
|
CVMX_BUILD_READ64(uint64, "ld");
|
|
CVMX_BUILD_READ64(uint32, "lw");
|
|
CVMX_BUILD_READ64(uint16, "lhu");
|
|
CVMX_BUILD_READ64(uint8, "lbu");
|
|
#define cvmx_read64 cvmx_read64_uint64
|
|
|
|
|
|
static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
|
|
{
|
|
cvmx_write64(csr_addr, val);
|
|
|
|
/*
|
|
* Perform an immediate read after every write to an RSL
|
|
* register to force the write to complete. It doesn't matter
|
|
* what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
|
|
* because it is fast and harmless.
|
|
*/
|
|
if (((csr_addr >> 40) & 0x7ffff) == (0x118))
|
|
cvmx_read64(CVMX_MIO_BOOT_BIST_STAT);
|
|
}
|
|
|
|
static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
|
|
{
|
|
cvmx_write64(io_addr, val);
|
|
|
|
}
|
|
|
|
static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
|
|
{
|
|
uint64_t val = cvmx_read64(csr_addr);
|
|
return val;
|
|
}
|
|
|
|
|
|
static inline void cvmx_send_single(uint64_t data)
|
|
{
|
|
const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
|
|
cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
|
|
}
|
|
|
|
static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
|
|
{
|
|
union {
|
|
uint64_t u64;
|
|
struct {
|
|
uint64_t scraddr:8;
|
|
uint64_t len:8;
|
|
uint64_t addr:48;
|
|
} s;
|
|
} addr;
|
|
addr.u64 = csr_addr;
|
|
addr.s.scraddr = scraddr >> 3;
|
|
addr.s.len = 1;
|
|
cvmx_send_single(addr.u64);
|
|
}
|
|
|
|
/* Return true if Octeon is CN38XX pass 1 */
|
|
static inline int cvmx_octeon_is_pass1(void)
|
|
{
|
|
#if OCTEON_IS_COMMON_BINARY()
|
|
return 0; /* Pass 1 isn't supported for common binaries */
|
|
#else
|
|
/* Now that we know we're built for a specific model, only check CN38XX */
|
|
#if OCTEON_IS_MODEL(OCTEON_CN38XX)
|
|
return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
|
|
#else
|
|
return 0; /* Built for non CN38XX chip, we're not CN38XX pass1 */
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned int cvmx_get_core_num(void)
|
|
{
|
|
unsigned int core_num;
|
|
CVMX_RDHWRNV(core_num, 0);
|
|
return core_num;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of bits set in the provided value.
|
|
* Simple wrapper for POP instruction.
|
|
*
|
|
* @val: 32 bit value to count set bits in
|
|
*
|
|
* Returns Number of bits set
|
|
*/
|
|
static inline uint32_t cvmx_pop(uint32_t val)
|
|
{
|
|
uint32_t pop;
|
|
CVMX_POP(pop, val);
|
|
return pop;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of bits set in the provided value.
|
|
* Simple wrapper for DPOP instruction.
|
|
*
|
|
* @val: 64 bit value to count set bits in
|
|
*
|
|
* Returns Number of bits set
|
|
*/
|
|
static inline int cvmx_dpop(uint64_t val)
|
|
{
|
|
int pop;
|
|
CVMX_DPOP(pop, val);
|
|
return pop;
|
|
}
|
|
|
|
/**
|
|
* Provide current cycle counter as a return value
|
|
*
|
|
* Returns current cycle counter
|
|
*/
|
|
|
|
static inline uint64_t cvmx_get_cycle(void)
|
|
{
|
|
uint64_t cycle;
|
|
CVMX_RDHWR(cycle, 31);
|
|
return cycle;
|
|
}
|
|
|
|
/**
|
|
* Wait for the specified number of cycle
|
|
*
|
|
*/
|
|
static inline void cvmx_wait(uint64_t cycles)
|
|
{
|
|
uint64_t done = cvmx_get_cycle() + cycles;
|
|
|
|
while (cvmx_get_cycle() < done)
|
|
; /* Spin */
|
|
}
|
|
|
|
/**
|
|
* Reads a chip global cycle counter. This counts CPU cycles since
|
|
* chip reset. The counter is 64 bit.
|
|
* This register does not exist on CN38XX pass 1 silicion
|
|
*
|
|
* Returns Global chip cycle count since chip reset.
|
|
*/
|
|
static inline uint64_t cvmx_get_cycle_global(void)
|
|
{
|
|
if (cvmx_octeon_is_pass1())
|
|
return 0;
|
|
else
|
|
return cvmx_read64(CVMX_IPD_CLK_COUNT);
|
|
}
|
|
|
|
/**
|
|
* This macro spins on a field waiting for it to reach a value. It
|
|
* is common in code to need to wait for a specific field in a CSR
|
|
* to match a specific value. Conceptually this macro expands to:
|
|
*
|
|
* 1) read csr at "address" with a csr typedef of "type"
|
|
* 2) Check if ("type".s."field" "op" "value")
|
|
* 3) If #2 isn't true loop to #1 unless too much time has passed.
|
|
*/
|
|
#define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
|
|
( \
|
|
{ \
|
|
int result; \
|
|
do { \
|
|
uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
|
|
cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \
|
|
type c; \
|
|
while (1) { \
|
|
c.u64 = cvmx_read_csr(address); \
|
|
if ((c.s.field) op(value)) { \
|
|
result = 0; \
|
|
break; \
|
|
} else if (cvmx_get_cycle() > done) { \
|
|
result = -1; \
|
|
break; \
|
|
} else \
|
|
cvmx_wait(100); \
|
|
} \
|
|
} while (0); \
|
|
result; \
|
|
})
|
|
|
|
/***************************************************************************/
|
|
|
|
static inline void cvmx_reset_octeon(void)
|
|
{
|
|
union cvmx_ciu_soft_rst ciu_soft_rst;
|
|
ciu_soft_rst.u64 = 0;
|
|
ciu_soft_rst.s.soft_rst = 1;
|
|
cvmx_write_csr(CVMX_CIU_SOFT_RST, ciu_soft_rst.u64);
|
|
}
|
|
|
|
/* Return the number of cores available in the chip */
|
|
static inline uint32_t cvmx_octeon_num_cores(void)
|
|
{
|
|
uint32_t ciu_fuse = (uint32_t) cvmx_read_csr(CVMX_CIU_FUSE) & 0xffff;
|
|
return cvmx_pop(ciu_fuse);
|
|
}
|
|
|
|
/**
|
|
* Read a byte of fuse data
|
|
* @byte_addr: address to read
|
|
*
|
|
* Returns fuse value: 0 or 1
|
|
*/
|
|
static uint8_t cvmx_fuse_read_byte(int byte_addr)
|
|
{
|
|
union cvmx_mio_fus_rcmd read_cmd;
|
|
|
|
read_cmd.u64 = 0;
|
|
read_cmd.s.addr = byte_addr;
|
|
read_cmd.s.pend = 1;
|
|
cvmx_write_csr(CVMX_MIO_FUS_RCMD, read_cmd.u64);
|
|
while ((read_cmd.u64 = cvmx_read_csr(CVMX_MIO_FUS_RCMD))
|
|
&& read_cmd.s.pend)
|
|
;
|
|
return read_cmd.s.dat;
|
|
}
|
|
|
|
/**
|
|
* Read a single fuse bit
|
|
*
|
|
* @fuse: Fuse number (0-1024)
|
|
*
|
|
* Returns fuse value: 0 or 1
|
|
*/
|
|
static inline int cvmx_fuse_read(int fuse)
|
|
{
|
|
return (cvmx_fuse_read_byte(fuse >> 3) >> (fuse & 0x7)) & 1;
|
|
}
|
|
|
|
static inline int cvmx_octeon_model_CN36XX(void)
|
|
{
|
|
return OCTEON_IS_MODEL(OCTEON_CN38XX)
|
|
&& !cvmx_octeon_is_pass1()
|
|
&& cvmx_fuse_read(264);
|
|
}
|
|
|
|
static inline int cvmx_octeon_zip_present(void)
|
|
{
|
|
return octeon_has_feature(OCTEON_FEATURE_ZIP);
|
|
}
|
|
|
|
static inline int cvmx_octeon_dfa_present(void)
|
|
{
|
|
if (!OCTEON_IS_MODEL(OCTEON_CN38XX)
|
|
&& !OCTEON_IS_MODEL(OCTEON_CN31XX)
|
|
&& !OCTEON_IS_MODEL(OCTEON_CN58XX))
|
|
return 0;
|
|
else if (OCTEON_IS_MODEL(OCTEON_CN3020))
|
|
return 0;
|
|
else if (cvmx_octeon_is_pass1())
|
|
return 1;
|
|
else
|
|
return !cvmx_fuse_read(120);
|
|
}
|
|
|
|
static inline int cvmx_octeon_crypto_present(void)
|
|
{
|
|
return octeon_has_feature(OCTEON_FEATURE_CRYPTO);
|
|
}
|
|
|
|
#endif /* __CVMX_H__ */
|