mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 14:10:43 +00:00
750d857c68
This patch fixes a crash during shutdown reported below. The crash is caused by accessing already freed task structs. The fix changes the order for registering and unregistering notifier callbacks. All notifiers must be initialized before buffers start working. To stop buffer synchronization we cancel all workqueues, unregister the notifier callback and then flush all buffers. After all of this we finally can free all tasks listed. This should avoid accessing freed tasks. On 22.07.10 01:14:40, Benjamin Herrenschmidt wrote: > So the initial observation is a spinlock bad magic followed by a crash > in the spinlock debug code: > > [ 1541.586531] BUG: spinlock bad magic on CPU#5, events/5/136 > [ 1541.597564] Unable to handle kernel paging request for data at address 0x6b6b6b6b6b6b6d03 > > Backtrace looks like: > > spin_bug+0x74/0xd4 > ._raw_spin_lock+0x48/0x184 > ._spin_lock+0x10/0x24 > .get_task_mm+0x28/0x8c > .sync_buffer+0x1b4/0x598 > .wq_sync_buffer+0xa0/0xdc > .worker_thread+0x1d8/0x2a8 > .kthread+0xa8/0xb4 > .kernel_thread+0x54/0x70 > > So we are accessing a freed task struct in the work queue when > processing the samples. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: stable@kernel.org Signed-off-by: Robert Richter <robert.richter@amd.com>
598 lines
14 KiB
C
598 lines
14 KiB
C
/**
|
|
* @file buffer_sync.c
|
|
*
|
|
* @remark Copyright 2002-2009 OProfile authors
|
|
* @remark Read the file COPYING
|
|
*
|
|
* @author John Levon <levon@movementarian.org>
|
|
* @author Barry Kasindorf
|
|
* @author Robert Richter <robert.richter@amd.com>
|
|
*
|
|
* This is the core of the buffer management. Each
|
|
* CPU buffer is processed and entered into the
|
|
* global event buffer. Such processing is necessary
|
|
* in several circumstances, mentioned below.
|
|
*
|
|
* The processing does the job of converting the
|
|
* transitory EIP value into a persistent dentry/offset
|
|
* value that the profiler can record at its leisure.
|
|
*
|
|
* See fs/dcookies.c for a description of the dentry/offset
|
|
* objects.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/dcookies.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/oprofile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include "oprofile_stats.h"
|
|
#include "event_buffer.h"
|
|
#include "cpu_buffer.h"
|
|
#include "buffer_sync.h"
|
|
|
|
static LIST_HEAD(dying_tasks);
|
|
static LIST_HEAD(dead_tasks);
|
|
static cpumask_var_t marked_cpus;
|
|
static DEFINE_SPINLOCK(task_mortuary);
|
|
static void process_task_mortuary(void);
|
|
|
|
/* Take ownership of the task struct and place it on the
|
|
* list for processing. Only after two full buffer syncs
|
|
* does the task eventually get freed, because by then
|
|
* we are sure we will not reference it again.
|
|
* Can be invoked from softirq via RCU callback due to
|
|
* call_rcu() of the task struct, hence the _irqsave.
|
|
*/
|
|
static int
|
|
task_free_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
unsigned long flags;
|
|
struct task_struct *task = data;
|
|
spin_lock_irqsave(&task_mortuary, flags);
|
|
list_add(&task->tasks, &dying_tasks);
|
|
spin_unlock_irqrestore(&task_mortuary, flags);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
|
|
/* The task is on its way out. A sync of the buffer means we can catch
|
|
* any remaining samples for this task.
|
|
*/
|
|
static int
|
|
task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
/* To avoid latency problems, we only process the current CPU,
|
|
* hoping that most samples for the task are on this CPU
|
|
*/
|
|
sync_buffer(raw_smp_processor_id());
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* The task is about to try a do_munmap(). We peek at what it's going to
|
|
* do, and if it's an executable region, process the samples first, so
|
|
* we don't lose any. This does not have to be exact, it's a QoI issue
|
|
* only.
|
|
*/
|
|
static int
|
|
munmap_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
unsigned long addr = (unsigned long)data;
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *mpnt;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
mpnt = find_vma(mm, addr);
|
|
if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
|
|
up_read(&mm->mmap_sem);
|
|
/* To avoid latency problems, we only process the current CPU,
|
|
* hoping that most samples for the task are on this CPU
|
|
*/
|
|
sync_buffer(raw_smp_processor_id());
|
|
return 0;
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* We need to be told about new modules so we don't attribute to a previously
|
|
* loaded module, or drop the samples on the floor.
|
|
*/
|
|
static int
|
|
module_load_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
#ifdef CONFIG_MODULES
|
|
if (val != MODULE_STATE_COMING)
|
|
return 0;
|
|
|
|
/* FIXME: should we process all CPU buffers ? */
|
|
mutex_lock(&buffer_mutex);
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(MODULE_LOADED_CODE);
|
|
mutex_unlock(&buffer_mutex);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct notifier_block task_free_nb = {
|
|
.notifier_call = task_free_notify,
|
|
};
|
|
|
|
static struct notifier_block task_exit_nb = {
|
|
.notifier_call = task_exit_notify,
|
|
};
|
|
|
|
static struct notifier_block munmap_nb = {
|
|
.notifier_call = munmap_notify,
|
|
};
|
|
|
|
static struct notifier_block module_load_nb = {
|
|
.notifier_call = module_load_notify,
|
|
};
|
|
|
|
int sync_start(void)
|
|
{
|
|
int err;
|
|
|
|
if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&buffer_mutex);
|
|
|
|
err = task_handoff_register(&task_free_nb);
|
|
if (err)
|
|
goto out1;
|
|
err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
|
|
if (err)
|
|
goto out2;
|
|
err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
|
|
if (err)
|
|
goto out3;
|
|
err = register_module_notifier(&module_load_nb);
|
|
if (err)
|
|
goto out4;
|
|
|
|
start_cpu_work();
|
|
|
|
out:
|
|
mutex_unlock(&buffer_mutex);
|
|
return err;
|
|
out4:
|
|
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
|
out3:
|
|
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
|
out2:
|
|
task_handoff_unregister(&task_free_nb);
|
|
out1:
|
|
free_cpumask_var(marked_cpus);
|
|
goto out;
|
|
}
|
|
|
|
|
|
void sync_stop(void)
|
|
{
|
|
/* flush buffers */
|
|
mutex_lock(&buffer_mutex);
|
|
end_cpu_work();
|
|
unregister_module_notifier(&module_load_nb);
|
|
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
|
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
|
task_handoff_unregister(&task_free_nb);
|
|
mutex_unlock(&buffer_mutex);
|
|
flush_scheduled_work();
|
|
|
|
/* make sure we don't leak task structs */
|
|
process_task_mortuary();
|
|
process_task_mortuary();
|
|
|
|
free_cpumask_var(marked_cpus);
|
|
}
|
|
|
|
|
|
/* Optimisation. We can manage without taking the dcookie sem
|
|
* because we cannot reach this code without at least one
|
|
* dcookie user still being registered (namely, the reader
|
|
* of the event buffer). */
|
|
static inline unsigned long fast_get_dcookie(struct path *path)
|
|
{
|
|
unsigned long cookie;
|
|
|
|
if (path->dentry->d_flags & DCACHE_COOKIE)
|
|
return (unsigned long)path->dentry;
|
|
get_dcookie(path, &cookie);
|
|
return cookie;
|
|
}
|
|
|
|
|
|
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
|
|
* which corresponds loosely to "application name". This is
|
|
* not strictly necessary but allows oprofile to associate
|
|
* shared-library samples with particular applications
|
|
*/
|
|
static unsigned long get_exec_dcookie(struct mm_struct *mm)
|
|
{
|
|
unsigned long cookie = NO_COOKIE;
|
|
struct vm_area_struct *vma;
|
|
|
|
if (!mm)
|
|
goto out;
|
|
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
if (!vma->vm_file)
|
|
continue;
|
|
if (!(vma->vm_flags & VM_EXECUTABLE))
|
|
continue;
|
|
cookie = fast_get_dcookie(&vma->vm_file->f_path);
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return cookie;
|
|
}
|
|
|
|
|
|
/* Convert the EIP value of a sample into a persistent dentry/offset
|
|
* pair that can then be added to the global event buffer. We make
|
|
* sure to do this lookup before a mm->mmap modification happens so
|
|
* we don't lose track.
|
|
*/
|
|
static unsigned long
|
|
lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
|
|
{
|
|
unsigned long cookie = NO_COOKIE;
|
|
struct vm_area_struct *vma;
|
|
|
|
for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
continue;
|
|
|
|
if (vma->vm_file) {
|
|
cookie = fast_get_dcookie(&vma->vm_file->f_path);
|
|
*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
|
|
vma->vm_start;
|
|
} else {
|
|
/* must be an anonymous map */
|
|
*offset = addr;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (!vma)
|
|
cookie = INVALID_COOKIE;
|
|
|
|
return cookie;
|
|
}
|
|
|
|
static unsigned long last_cookie = INVALID_COOKIE;
|
|
|
|
static void add_cpu_switch(int i)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(CPU_SWITCH_CODE);
|
|
add_event_entry(i);
|
|
last_cookie = INVALID_COOKIE;
|
|
}
|
|
|
|
static void add_kernel_ctx_switch(unsigned int in_kernel)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
if (in_kernel)
|
|
add_event_entry(KERNEL_ENTER_SWITCH_CODE);
|
|
else
|
|
add_event_entry(KERNEL_EXIT_SWITCH_CODE);
|
|
}
|
|
|
|
static void
|
|
add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(CTX_SWITCH_CODE);
|
|
add_event_entry(task->pid);
|
|
add_event_entry(cookie);
|
|
/* Another code for daemon back-compat */
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(CTX_TGID_CODE);
|
|
add_event_entry(task->tgid);
|
|
}
|
|
|
|
|
|
static void add_cookie_switch(unsigned long cookie)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(COOKIE_SWITCH_CODE);
|
|
add_event_entry(cookie);
|
|
}
|
|
|
|
|
|
static void add_trace_begin(void)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(TRACE_BEGIN_CODE);
|
|
}
|
|
|
|
static void add_data(struct op_entry *entry, struct mm_struct *mm)
|
|
{
|
|
unsigned long code, pc, val;
|
|
unsigned long cookie;
|
|
off_t offset;
|
|
|
|
if (!op_cpu_buffer_get_data(entry, &code))
|
|
return;
|
|
if (!op_cpu_buffer_get_data(entry, &pc))
|
|
return;
|
|
if (!op_cpu_buffer_get_size(entry))
|
|
return;
|
|
|
|
if (mm) {
|
|
cookie = lookup_dcookie(mm, pc, &offset);
|
|
|
|
if (cookie == NO_COOKIE)
|
|
offset = pc;
|
|
if (cookie == INVALID_COOKIE) {
|
|
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
|
offset = pc;
|
|
}
|
|
if (cookie != last_cookie) {
|
|
add_cookie_switch(cookie);
|
|
last_cookie = cookie;
|
|
}
|
|
} else
|
|
offset = pc;
|
|
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(code);
|
|
add_event_entry(offset); /* Offset from Dcookie */
|
|
|
|
while (op_cpu_buffer_get_data(entry, &val))
|
|
add_event_entry(val);
|
|
}
|
|
|
|
static inline void add_sample_entry(unsigned long offset, unsigned long event)
|
|
{
|
|
add_event_entry(offset);
|
|
add_event_entry(event);
|
|
}
|
|
|
|
|
|
/*
|
|
* Add a sample to the global event buffer. If possible the
|
|
* sample is converted into a persistent dentry/offset pair
|
|
* for later lookup from userspace. Return 0 on failure.
|
|
*/
|
|
static int
|
|
add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
|
|
{
|
|
unsigned long cookie;
|
|
off_t offset;
|
|
|
|
if (in_kernel) {
|
|
add_sample_entry(s->eip, s->event);
|
|
return 1;
|
|
}
|
|
|
|
/* add userspace sample */
|
|
|
|
if (!mm) {
|
|
atomic_inc(&oprofile_stats.sample_lost_no_mm);
|
|
return 0;
|
|
}
|
|
|
|
cookie = lookup_dcookie(mm, s->eip, &offset);
|
|
|
|
if (cookie == INVALID_COOKIE) {
|
|
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
|
return 0;
|
|
}
|
|
|
|
if (cookie != last_cookie) {
|
|
add_cookie_switch(cookie);
|
|
last_cookie = cookie;
|
|
}
|
|
|
|
add_sample_entry(offset, s->event);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void release_mm(struct mm_struct *mm)
|
|
{
|
|
if (!mm)
|
|
return;
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
}
|
|
|
|
|
|
static struct mm_struct *take_tasks_mm(struct task_struct *task)
|
|
{
|
|
struct mm_struct *mm = get_task_mm(task);
|
|
if (mm)
|
|
down_read(&mm->mmap_sem);
|
|
return mm;
|
|
}
|
|
|
|
|
|
static inline int is_code(unsigned long val)
|
|
{
|
|
return val == ESCAPE_CODE;
|
|
}
|
|
|
|
|
|
/* Move tasks along towards death. Any tasks on dead_tasks
|
|
* will definitely have no remaining references in any
|
|
* CPU buffers at this point, because we use two lists,
|
|
* and to have reached the list, it must have gone through
|
|
* one full sync already.
|
|
*/
|
|
static void process_task_mortuary(void)
|
|
{
|
|
unsigned long flags;
|
|
LIST_HEAD(local_dead_tasks);
|
|
struct task_struct *task;
|
|
struct task_struct *ttask;
|
|
|
|
spin_lock_irqsave(&task_mortuary, flags);
|
|
|
|
list_splice_init(&dead_tasks, &local_dead_tasks);
|
|
list_splice_init(&dying_tasks, &dead_tasks);
|
|
|
|
spin_unlock_irqrestore(&task_mortuary, flags);
|
|
|
|
list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
|
|
list_del(&task->tasks);
|
|
free_task(task);
|
|
}
|
|
}
|
|
|
|
|
|
static void mark_done(int cpu)
|
|
{
|
|
int i;
|
|
|
|
cpumask_set_cpu(cpu, marked_cpus);
|
|
|
|
for_each_online_cpu(i) {
|
|
if (!cpumask_test_cpu(i, marked_cpus))
|
|
return;
|
|
}
|
|
|
|
/* All CPUs have been processed at least once,
|
|
* we can process the mortuary once
|
|
*/
|
|
process_task_mortuary();
|
|
|
|
cpumask_clear(marked_cpus);
|
|
}
|
|
|
|
|
|
/* FIXME: this is not sufficient if we implement syscall barrier backtrace
|
|
* traversal, the code switch to sb_sample_start at first kernel enter/exit
|
|
* switch so we need a fifth state and some special handling in sync_buffer()
|
|
*/
|
|
typedef enum {
|
|
sb_bt_ignore = -2,
|
|
sb_buffer_start,
|
|
sb_bt_start,
|
|
sb_sample_start,
|
|
} sync_buffer_state;
|
|
|
|
/* Sync one of the CPU's buffers into the global event buffer.
|
|
* Here we need to go through each batch of samples punctuated
|
|
* by context switch notes, taking the task's mmap_sem and doing
|
|
* lookup in task->mm->mmap to convert EIP into dcookie/offset
|
|
* value.
|
|
*/
|
|
void sync_buffer(int cpu)
|
|
{
|
|
struct mm_struct *mm = NULL;
|
|
struct mm_struct *oldmm;
|
|
unsigned long val;
|
|
struct task_struct *new;
|
|
unsigned long cookie = 0;
|
|
int in_kernel = 1;
|
|
sync_buffer_state state = sb_buffer_start;
|
|
unsigned int i;
|
|
unsigned long available;
|
|
unsigned long flags;
|
|
struct op_entry entry;
|
|
struct op_sample *sample;
|
|
|
|
mutex_lock(&buffer_mutex);
|
|
|
|
add_cpu_switch(cpu);
|
|
|
|
op_cpu_buffer_reset(cpu);
|
|
available = op_cpu_buffer_entries(cpu);
|
|
|
|
for (i = 0; i < available; ++i) {
|
|
sample = op_cpu_buffer_read_entry(&entry, cpu);
|
|
if (!sample)
|
|
break;
|
|
|
|
if (is_code(sample->eip)) {
|
|
flags = sample->event;
|
|
if (flags & TRACE_BEGIN) {
|
|
state = sb_bt_start;
|
|
add_trace_begin();
|
|
}
|
|
if (flags & KERNEL_CTX_SWITCH) {
|
|
/* kernel/userspace switch */
|
|
in_kernel = flags & IS_KERNEL;
|
|
if (state == sb_buffer_start)
|
|
state = sb_sample_start;
|
|
add_kernel_ctx_switch(flags & IS_KERNEL);
|
|
}
|
|
if (flags & USER_CTX_SWITCH
|
|
&& op_cpu_buffer_get_data(&entry, &val)) {
|
|
/* userspace context switch */
|
|
new = (struct task_struct *)val;
|
|
oldmm = mm;
|
|
release_mm(oldmm);
|
|
mm = take_tasks_mm(new);
|
|
if (mm != oldmm)
|
|
cookie = get_exec_dcookie(mm);
|
|
add_user_ctx_switch(new, cookie);
|
|
}
|
|
if (op_cpu_buffer_get_size(&entry))
|
|
add_data(&entry, mm);
|
|
continue;
|
|
}
|
|
|
|
if (state < sb_bt_start)
|
|
/* ignore sample */
|
|
continue;
|
|
|
|
if (add_sample(mm, sample, in_kernel))
|
|
continue;
|
|
|
|
/* ignore backtraces if failed to add a sample */
|
|
if (state == sb_bt_start) {
|
|
state = sb_bt_ignore;
|
|
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
|
|
}
|
|
}
|
|
release_mm(mm);
|
|
|
|
mark_done(cpu);
|
|
|
|
mutex_unlock(&buffer_mutex);
|
|
}
|
|
|
|
/* The function can be used to add a buffer worth of data directly to
|
|
* the kernel buffer. The buffer is assumed to be a circular buffer.
|
|
* Take the entries from index start and end at index end, wrapping
|
|
* at max_entries.
|
|
*/
|
|
void oprofile_put_buff(unsigned long *buf, unsigned int start,
|
|
unsigned int stop, unsigned int max)
|
|
{
|
|
int i;
|
|
|
|
i = start;
|
|
|
|
mutex_lock(&buffer_mutex);
|
|
while (i != stop) {
|
|
add_event_entry(buf[i++]);
|
|
|
|
if (i >= max)
|
|
i = 0;
|
|
}
|
|
|
|
mutex_unlock(&buffer_mutex);
|
|
}
|
|
|