linux/fs/f2fs/node.h
Chao Yu 7d768d2c26 f2fs: flush dirty nat entries when exceeding threshold
When testing f2fs with xfstest, generic/251 is stuck for long time,
the case uses below serials to obtain fresh released space in device,
in order to prepare for following fstrim test.

1. rm -rf /mnt/dir
2. mkdir /mnt/dir/
3. cp -axT `pwd`/ /mnt/dir/
4. goto 1

During preparing step, all nat entries will be cached in nat cache,
most of them are dirty entries with invalid blkaddr, which means
nodes related to these entries have been truncated, and they could
be reused after the dirty entries been checkpointed.

However, there was no checkpoint been triggered, so nid allocators
(e.g. mkdir, creat) will run into long journey of iterating all NAT
pages, looking for free nids in alloc_nid->build_free_nids.

Here, in f2fs_balance_fs_bg we give another chance to do checkpoint
to flush nat entries for reusing them in free nid cache when dirty
entry count exceeds 10% of max count.

Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 16:07:23 -08:00

406 lines
11 KiB
C

/*
* fs/f2fs/node.h
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* start node id of a node block dedicated to the given node id */
#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
/* node block offset on the NAT area dedicated to the given start node id */
#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
/* # of pages to perform synchronous readahead before building free nids */
#define FREE_NID_PAGES 4
#define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */
/* maximum readahead size for node during getting data blocks */
#define MAX_RA_NODE 128
/* control the memory footprint threshold (10MB per 1GB ram) */
#define DEF_RAM_THRESHOLD 10
/* control dirty nats ratio threshold (default: 10% over max nid count) */
#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
/* vector size for gang look-up from nat cache that consists of radix tree */
#define NATVEC_SIZE 64
#define SETVEC_SIZE 32
/* return value for read_node_page */
#define LOCKED_PAGE 1
/* For flag in struct node_info */
enum {
IS_CHECKPOINTED, /* is it checkpointed before? */
HAS_FSYNCED_INODE, /* is the inode fsynced before? */
HAS_LAST_FSYNC, /* has the latest node fsync mark? */
IS_DIRTY, /* this nat entry is dirty? */
};
/*
* For node information
*/
struct node_info {
nid_t nid; /* node id */
nid_t ino; /* inode number of the node's owner */
block_t blk_addr; /* block address of the node */
unsigned char version; /* version of the node */
unsigned char flag; /* for node information bits */
};
struct nat_entry {
struct list_head list; /* for clean or dirty nat list */
struct node_info ni; /* in-memory node information */
};
#define nat_get_nid(nat) (nat->ni.nid)
#define nat_set_nid(nat, n) (nat->ni.nid = n)
#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
#define nat_get_ino(nat) (nat->ni.ino)
#define nat_set_ino(nat, i) (nat->ni.ino = i)
#define nat_get_version(nat) (nat->ni.version)
#define nat_set_version(nat, v) (nat->ni.version = v)
#define inc_node_version(version) (++version)
static inline void copy_node_info(struct node_info *dst,
struct node_info *src)
{
dst->nid = src->nid;
dst->ino = src->ino;
dst->blk_addr = src->blk_addr;
dst->version = src->version;
/* should not copy flag here */
}
static inline void set_nat_flag(struct nat_entry *ne,
unsigned int type, bool set)
{
unsigned char mask = 0x01 << type;
if (set)
ne->ni.flag |= mask;
else
ne->ni.flag &= ~mask;
}
static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
{
unsigned char mask = 0x01 << type;
return ne->ni.flag & mask;
}
static inline void nat_reset_flag(struct nat_entry *ne)
{
/* these states can be set only after checkpoint was done */
set_nat_flag(ne, IS_CHECKPOINTED, true);
set_nat_flag(ne, HAS_FSYNCED_INODE, false);
set_nat_flag(ne, HAS_LAST_FSYNC, true);
}
static inline void node_info_from_raw_nat(struct node_info *ni,
struct f2fs_nat_entry *raw_ne)
{
ni->ino = le32_to_cpu(raw_ne->ino);
ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
ni->version = raw_ne->version;
}
static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
struct node_info *ni)
{
raw_ne->ino = cpu_to_le32(ni->ino);
raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
raw_ne->version = ni->version;
}
static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
{
return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
DEF_DIRTY_NAT_RATIO_THRESHOLD / 100;
}
enum mem_type {
FREE_NIDS, /* indicates the free nid list */
NAT_ENTRIES, /* indicates the cached nat entry */
DIRTY_DENTS, /* indicates dirty dentry pages */
INO_ENTRIES, /* indicates inode entries */
EXTENT_CACHE, /* indicates extent cache */
BASE_CHECK, /* check kernel status */
};
struct nat_entry_set {
struct list_head set_list; /* link with other nat sets */
struct list_head entry_list; /* link with dirty nat entries */
nid_t set; /* set number*/
unsigned int entry_cnt; /* the # of nat entries in set */
};
/*
* For free nid mangement
*/
enum nid_state {
NID_NEW, /* newly added to free nid list */
NID_ALLOC /* it is allocated */
};
struct free_nid {
struct list_head list; /* for free node id list */
nid_t nid; /* node id */
int state; /* in use or not: NID_NEW or NID_ALLOC */
};
static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *fnid;
spin_lock(&nm_i->free_nid_list_lock);
if (nm_i->fcnt <= 0) {
spin_unlock(&nm_i->free_nid_list_lock);
return;
}
fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
*nid = fnid->nid;
spin_unlock(&nm_i->free_nid_list_lock);
}
/*
* inline functions
*/
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
}
static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
pgoff_t block_off;
pgoff_t block_addr;
int seg_off;
block_off = NAT_BLOCK_OFFSET(start);
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & (sbi->blocks_per_seg - 1)));
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
block_addr += sbi->blocks_per_seg;
return block_addr;
}
static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
pgoff_t block_addr)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
block_addr -= nm_i->nat_blkaddr;
if ((block_addr >> sbi->log_blocks_per_seg) % 2)
block_addr -= sbi->blocks_per_seg;
else
block_addr += sbi->blocks_per_seg;
return block_addr + nm_i->nat_blkaddr;
}
static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
{
unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
f2fs_change_bit(block_off, nm_i->nat_bitmap);
}
static inline void fill_node_footer(struct page *page, nid_t nid,
nid_t ino, unsigned int ofs, bool reset)
{
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int old_flag = 0;
if (reset)
memset(rn, 0, sizeof(*rn));
else
old_flag = le32_to_cpu(rn->footer.flag);
rn->footer.nid = cpu_to_le32(nid);
rn->footer.ino = cpu_to_le32(ino);
/* should remain old flag bits such as COLD_BIT_SHIFT */
rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
(old_flag & OFFSET_BIT_MASK));
}
static inline void copy_node_footer(struct page *dst, struct page *src)
{
struct f2fs_node *src_rn = F2FS_NODE(src);
struct f2fs_node *dst_rn = F2FS_NODE(dst);
memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
}
static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
struct f2fs_node *rn = F2FS_NODE(page);
rn->footer.cp_ver = ckpt->checkpoint_ver;
rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
}
static inline nid_t ino_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.ino);
}
static inline nid_t nid_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.nid);
}
static inline unsigned int ofs_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
unsigned flag = le32_to_cpu(rn->footer.flag);
return flag >> OFFSET_BIT_SHIFT;
}
static inline unsigned long long cpver_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le64_to_cpu(rn->footer.cp_ver);
}
static inline block_t next_blkaddr_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.next_blkaddr);
}
/*
* f2fs assigns the following node offsets described as (num).
* N = NIDS_PER_BLOCK
*
* Inode block (0)
* |- direct node (1)
* |- direct node (2)
* |- indirect node (3)
* | `- direct node (4 => 4 + N - 1)
* |- indirect node (4 + N)
* | `- direct node (5 + N => 5 + 2N - 1)
* `- double indirect node (5 + 2N)
* `- indirect node (6 + 2N)
* `- direct node
* ......
* `- indirect node ((6 + 2N) + x(N + 1))
* `- direct node
* ......
* `- indirect node ((6 + 2N) + (N - 1)(N + 1))
* `- direct node
*/
static inline bool IS_DNODE(struct page *node_page)
{
unsigned int ofs = ofs_of_node(node_page);
if (f2fs_has_xattr_block(ofs))
return false;
if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
ofs == 5 + 2 * NIDS_PER_BLOCK)
return false;
if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
ofs -= 6 + 2 * NIDS_PER_BLOCK;
if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
return false;
}
return true;
}
static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
{
struct f2fs_node *rn = F2FS_NODE(p);
f2fs_wait_on_page_writeback(p, NODE);
if (i)
rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
else
rn->in.nid[off] = cpu_to_le32(nid);
return set_page_dirty(p);
}
static inline nid_t get_nid(struct page *p, int off, bool i)
{
struct f2fs_node *rn = F2FS_NODE(p);
if (i)
return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
return le32_to_cpu(rn->in.nid[off]);
}
/*
* Coldness identification:
* - Mark cold files in f2fs_inode_info
* - Mark cold node blocks in their node footer
* - Mark cold data pages in page cache
*/
static inline int is_cold_data(struct page *page)
{
return PageChecked(page);
}
static inline void set_cold_data(struct page *page)
{
SetPageChecked(page);
}
static inline void clear_cold_data(struct page *page)
{
ClearPageChecked(page);
}
static inline int is_node(struct page *page, int type)
{
struct f2fs_node *rn = F2FS_NODE(page);
return le32_to_cpu(rn->footer.flag) & (1 << type);
}
#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
static inline void set_cold_node(struct inode *inode, struct page *page)
{
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int flag = le32_to_cpu(rn->footer.flag);
if (S_ISDIR(inode->i_mode))
flag &= ~(0x1 << COLD_BIT_SHIFT);
else
flag |= (0x1 << COLD_BIT_SHIFT);
rn->footer.flag = cpu_to_le32(flag);
}
static inline void set_mark(struct page *page, int mark, int type)
{
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int flag = le32_to_cpu(rn->footer.flag);
if (mark)
flag |= (0x1 << type);
else
flag &= ~(0x1 << type);
rn->footer.flag = cpu_to_le32(flag);
}
#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)